7. NETWORK FLow | 7. NETWORK FLow |

[

Addison
Wesley

max-flow and min-cut problems

» max-flow and min-cut problems
Ford-Fulkerson algorithm

max-flow min-cut theorem
capacity-scaling algorithm

shortest augmenting paths

\ Igumhm Jesinn

JON KLEINBERG - EVA TARDOS Dinitz’ a/gorifhm JON KLEINBERG - EVA TARDOS
simple unit-capacity networks
SECTION 7.1
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Last updated on 11/1/21 4:31 PM

Flow network Minimum-cut problem
A flow network is a tuple G=(V,E,s,t,c). Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

» Digraph (V,E) with source s€ V and sink t€ V.

* Capacity c(e) = 0 for each e € E. \ Def. Its capacity is the sum of the capacities of the edges from A to B.

assume all nodes are reachable from s

Intuition. Material flowing through a transportation network; cap(A, B) = Z c(e)

. e out of A
material originates at source and is sent to sink.

capacity

(~)

\ 4 6 \
% 16 \%1/ capacity =10+ 5+ 15 = N\, N\

Minimum-cut problem Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B. Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and rE B.

Def. Its capacity is the sum of the capacities of the edges from A to B. Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e) cap(A, B) = Z c(e)
e out of A e out of A

Min-cut problem. Find a cut of minimum capacity.

10/]0/
O 8 > () O 8 > 0
/ don’t include edges /
from Bto A 10
capacity=10+8 + 16 : ‘_ e —)‘, ; capacity =10+ 8 + 10 : ‘—
Network flow: quiz 1 & Maximum-flow problem
Which is the capacity of the given st-cut? Def. An st-flow (flow) fis a function that satisfies:
. - 0 < 0) < c(e i
A 11 (20425-8—11-9-6) For each ¢e€E: < f(e) < cle) [capacity]
* ForeachveV—{s,i}: > fle = > Jfle [flow conservation]
B_ 34 (8+11+9+6) e in to v e out of v
C. 45 (20 +25)
D. 79 20+25+8+11+9+6))
flow capacity

infowatv = 5+5+0 =10
. 5/9
capacity

\ outflow atv = 1040 =10
20 7 8) 10 {/ ® s o/15 S
/ 9 /

75 %
1

o //S\¢ ’
s 5/5 _5/3—)?_10/10_)[
W

8
7z,
° 0/15
I s

t) ¢

10/16

NN

©
® - @ -

KN

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

» Foreache€E: 0 < fle) < cle) [capacity]
* ForeachveVv—{s,i}: >, fle = Y. fle) [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = > fle) — > fle)

e out of s einto s
5/9
Q $ S
A\ - =
7 7,
R s 0
5/ 5 m—p 5/8 10/10 @
%0 \\e
“% KN
value = 5+10+10 =(25) \
10/16

7. NETWORK FLow |

» Ford-Fulkerson algorithm

\ Algorthm Desig

JON KLEINBERG - EVA TARDOS

SECTION 7.1

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:
» Foreache€E: 0 < fle) < cle) [capacity]

* ForeachvevV—{s,i}: >, fle = Y. fle) [flow conservation]

e in to v e out of v

Def. The value of a flow f is: wal(f) = > fle) — > fle)

e out of s ein to s

Max-flow problem. Find a flow of maximum value.

8/9
Q (?/
R : 15 ‘o
5/ 5 m—p 8/8 10/10 @
75 NJ
s s o
value = 10+5+13 = \
13/16
10
Toward a max-flow algorithm
Greedy algorithm.
+ Start with f(e) =0 for each edge ¢ € E.
flow capacity
flow network G and flow f \ /
@. os——@
Q 17) 4
Q\\ 0/2 s 0/6 s

value of flow

/
@ 0/10 O 0/9 O 0/10 @ 0

Toward a max-flow algorithm

Greedy algorithm.

* Find an s~ path P where each edge has f(e) < c(e).

flow network G and flow f

0/10 O 0/9

Toward a max-flow algorithm

Greedy algorithm.

» Repeat until you get stuck.

flow network G and flow f

0/4 O
o

0/6 -
‘o

ER/
-«
.

0/10 O ©/9)O l;)/lo_)@ 8+2=10

Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

7N\

o O 0/2 8

: N

0/10 O 0/9

Toward a max-flow algorithm

Greedy algorithm.

» Repeat until you get stuck.

flow network G and flow f

O 0/4

o
N 2/2 ¢ .

\“\

6}_3/10_}@ 2/9

[e)]
%
~
[}

) 4
()—

Toward a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for each edge ¢ € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

Qo —@

N 2/2 s, 6/6 -

0

@ 6/10 O 8/9 O 10/10 @ 16

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

* The unique max flow f*has f*(v,w) =0.
* Greedy algorithm could choose s—v—w—t as first path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

Toward a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for each edge ¢ € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

Q@

o

N

0/2 > 6/6

\a\ / “& / “

@ 9/10 O 9/9 O 10/10 @ 19

Residual network

Ozl edlgee ¢ =, v) € 2 original flow network G
> Flow f(e). 6/ 17
* Capacity c(e). : / \ :
flow capacity
Reverse edge. e™ver™e = (v,).
* “Undo” flow sent.
residual network G residual
Residual capacity. 4 capacity
cle)—f(e) ifeeFE
crle) = {

f(ereverse) if ereverse e E

reverse edge

edges with positive
residual capacity

Residual network. Gf= v, Ef, s, 1, Cf) where flow on a reverse edge
negates flow on

* Ef = {e :f(e) < c(e)} U {e :f(ereverw) > 0}. corresponding forward edge
+ Key property: f'is a flow in G;iff f+f'is a flow in G.

20

Augmenting path

Def. An augmenting path is a simple s~ path in the residual network G,.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G,.
Then, after calling f' < AUGMENT(f, c, P), the resulting ' is a flow and
val(f') = val(f) + bottleneck(Gy, P).

AUGMENT(f, c, P)

O < bottleneck capacity of augmenting path P.
FOREACH edge e €E P :

IF (e €E) f(e) < f(e) + .
ELSE f(ereverse) <« f (ereverse) — 9.

RETURN f.

21

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
* Start with f(e) =0 for each edge ¢ € E. D
* Find an s~r path P in the residual network G;.
* Augment flow along path P.
» Repeat until you get stuck.

FORD-FULKERSON(G)

FOREACH edge e EE : f(e) < 0.
Gy < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)
f < AUGMENT(f, ¢, P).
Update Gy.

RETURN f.

augmenting path

23

Network flow: quiz 2 I>

Which is the augmenting path of highest bottleneck capacity?
A. A-F—-G—H
B A—=B—-C—D—H
C A—-F—-B—-G—H
D

A-F—>B—>G—>C—D—H

residual capacity

/ /\‘/

8 C 6 D

i
LY

5

9 (B)

- ™\
5 > 8
(gi 5\ F

target

7. NETWORK FLow |

» max-flow min-cut theorem

N Mot Desiy

JON KLEINBERG - EVA TARDOS

SECTION 7.2

22

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

KN

N

/0/
%

val(f)

net flow across cut

5/9

5/8

10/16

Soofle) = D> fle)

e out of A

e in to A

5+ 10+ 10 = 25

O\

J\/
‘0

N\
‘—10/10—) t
7

\Q\

4

Relationship between flows and cuts

value of flow =

25

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

W™

val(f)

— 5 /9

VAR

0/4

0/4

<; -
T
%

s
<7

net flow across cut

S

8
76

Sofle) = D> fle)

e out of A

e in to A

%

Q

0/15 o)

NV

10/16

/ T—]o/m* t value of flow =

(100+10 +5+10+0+0)-(5+5+0+0) = 25

} edges from B to A
5
~

25

25

27

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

Network flow: quiz 3

val(f) =

e out of A

net flow across cut =

7

N

N

5/ 5 mup

/0/
%

N

5/9

&

5/8

10/16

Soofle) = D> fle)

e in to A

10 + 5+ 10 = 25

‘0

10/10

N
AN

t

value of flow =

25

Which is the net flow across the given cut?

A.

B
C.
D

11 20+25-8—11-9-6)

26 20+22-8-4-4)

42 (20 +22)

45 (20 +25)

° 20/20

1/6 ‘S\/

flow capacity

\/

8/8

8/8 -~
/ 7,

. 14/16

4/10

4/9 Q\

. 22 /25

4/8

t

26

28

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (4, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

Pf. val(f) = Y. fle) = > fle)

e out of s e in to s
by flow conservation, all terms _ .
except forv=sare 0 - Z Z f((i) Z f(e)
vEA \e out of v e in to v
= > flo - > fl,
e out of A einto A

Certificate of optimality

Corollary. Letf be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (4, B) is a min cut.
Pf. weak duality

* For any flow f': val(f") = cap(A, B) =val(f).

* For any cut (A',B'): cap(A’',B') = val(f) = cap(A,B). =

AN

weak duality
8/9
2 ¢ /
Q <, —
< s ‘o
N 10
v
s 5/5 8/8 10/10 t 8 >
%
3 P
/5 “6 \Q\ l 10
13/16

value of flow = 28 = capacity of cut = 28

29

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).

Pf.
val(f) = Y fle) = > f(e)

e out of A einto A
< Y fe
flow value - f()
lemma e out of A
< Y e
e out of A
= cap(A,B) =
8/9
B ® /
o ~, -
~ s ‘o
o 10
s 5/5 7/8 9/10 ' 5 —p
7
>
% e o 15 \
12/16

capacity of cut = 30

I\

value of flow = 27

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

strong duality

MAXIMAL FLOW THROUGH A NETWORK Gﬂ THE MAX FLOW MIN CUT THEOREM OF N!mnx)’ '

L. R. FORD, Jr. axp D. R. FULKERSON

‘ G. B. Dantzig
’ D. R. Fulkerson "
Introduction. The problem discussed in this paper was formulated by |

T. Harris as follows:
“Consider a rail network connecting two cities by way of a number of J' r-826 %‘

intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal April 15, 1955

flow from one given city to the other.”

A Note on the Maximum Flow Through a Network”

P. ELIAST, A. FEINSTEIN{, AND C. E. SHANNON§

Summary —This note discusses the problem of maximizing the fyom one terminal to the other in the original network
rate of flow from one terminal to another, through a necwork which . P’ FAHES B ST B L EEEEE
consists of a number of branches, each of which has a limited capa- P255¢8 through at least one branch in the cut-set. In the
ity. The main result is a theorem: The maximum possible flow from network above, some examples of cut-sets are (d, ¢,),
left to right through a network is equal to the minimum value among and (b, ¢,), d, g, h, 9). By a simple cut-set we will

all simple cut-sets. This theorem is applied to solve a more general . b that if any branch is dit is
problem, in which a number of input nodes and a number of output uch that if any branch is omitted it is no
nodes are used. at-set. Thus (d, ¢, /) and (b, ¢, ¢, g, h) are simple
bl o n o et ot e

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).

ii. fisamax flow.

if Ford-Fulkerson terminates,

iii. There is no augmenting path with respect to f. «— then fis max flow

[i=ii]
* This is the weak duality corollary. =

Max-flow min-cut theorem

[iii=1i]
* Let f be a flow with no augmenting paths.
* Let A=set of nodes reachable from s in residual network Gy.
* By definition of A: s€ A.
* By definition of flow f: ¢ & A. S S S

must have f(e) =
original flow network G

val(f)y = Y fle) = Y flo) A
e out of A e in to A B
fl?:vmvrilaue _ Z C(C) 9 @
e out of A

= cap(A,B) = *,é)

edge e=(v,w) withvEA, WwEB
must have f(e) = c(e)

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).

ii. fisamax flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: —iii = =ii.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, fis not a max flow. =

Computing a minimum cut from a maximum flow

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time.

Pf. Let A = set of nodes reachable from s in residual network Gy. =

argument from previous slide implies that
capacity of (4, B) = value of flow f

/\\
/1'\

Analysis of Ford-Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

7. NETWORK FLow |

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e)
and residual capacity c;(e) is an integer.
Pf. By induction on the number of augmenting paths. = consider cut A={s}
(assumes no parallel edges)
Theorem. Ford-Fulkerson terminates after at most val(f*) < nC
» capacity-scaling algorithm augmenting paths, where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1. =

W

\ w“ll\lgmmhn“| Jesinn

JON KLEINBERG - EVA TARDOS

Corollary. The running time of Ford-Fulkerson is O(mnC).
Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =

SECTION 7.3
Iz f(e) is an integer for every e

Integrality theorem. There exists an integral max flow f*.

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). =
Ford-Fulkerson: exponential example Network flow: quiz 4 I)\
Q. Is generic Ford-Fulkerson algorithm poly-time in input size? The Ford-Fulkerson algorithm is guaranteed to terminate if the edge

m, n, and log C D capacities are ...

A. No. If max capacity is C, then algorithm can take > C iterations.

* SV Ww—t .
) A. Rational numbers.
o s Ww—y—t each augmenting path
<«—— sends only 1 unit of flow
o gyt (# augmenting paths = 2C) B. Real numbers.
© sTwev— C. Both A and B.
¢ o D. Neither A nor B.
S sV w—t
* s—eWw—y—t / \\
v 1

Choosing good augmenting paths

Use care when selecting augmenting paths.
» Some choices lead to exponential algorithms.
+ Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee
that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:
» Can find augmenting paths efficiently.
* Few iterations.

4

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
* Maintain scaling parameter A. though not necessarily largest
* Let G,(A) be the part of the residual network containing
only those edges with capacity > A.

* Any augmenting path in G4(A) has bottleneck capacity = A.

N ‘0, N ‘0,
Q ! o Q O
%, & 2, &

Gr G (A), A =100

43

Choosing good augmenting paths

Choose augmenting paths with:
* Max bottleneck capacity (“fattest”). <—— how to find?
+ Sufficiently large bottleneck capacity. «—— next
» Fewest edges. «—— ahead

Theoretical Improvements in Algorithmic Efficiency

Dokl. Akad. Nauk SSSR
for Network Flow Problems

Tom 194 (1970), No. 4

Soviet Math, Dokl.
Vol. 11 (1970), No..s

JACK EDMONDS ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH
Cniversity of Waterloo, Waterloo, Ontario, Canada POWER ESTIMATION
y e sies

AND

E. A. DINIC
RICHARD M. KARP

s of the formulation of the probl
are given in [1]. There also
1 daca are integers (or, what is equivalent e). In th
unding off of the iniial di

Cuiversity of California, Berkeley, California

, ie. only an approx: u
tion the rapidity of convergence of the algorithm is inverse-

Edmonds-Karp 1972 (USA) Dinitz 1970 (Soviet Union)

/

invented in response to a class
exercises by Adel’son-Vel’skif

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACH edge e EE : f(e) < 0.

A < largest powerof 2 < C.

WHILE (A = 1)

Gr(A) < A-residual network of G with respect to flow f .
WHILE (there exists an s~ path P in G(A))

f < AUGMENT(f, c, P).
Update Gr(A).
A<A/2.

A-scaling phase

RETURN f.

42

44

val(f)

flow value
lemma

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2; each phase divides A by exactly 2. =

Integrality invariant. Throughout the algorithm, every edge flow f(e) and
residual capacity c(e) is an integer.
Pf. Same as for generic Ford—Fulkerson. =

Theorem. If capacity-scaling algorithm terminates, then fis a max flow.
Pf.

* By integrality invariant, when A=1 = G;(A) =G;.

* Upon termination of A=1 phase, there are no augmenting paths.

* Result follows augmenting path theorem =

45

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) +m A.

Pf.
* We show there exists a cut (A, B) such that cap(A, B) < val(f) + m A.
+ Choose A to be the set of nodes reachable from s in G(A).
* By definition of A: s€ A.
* By definition of flow £ ¢ & A. edge e = (v, w) with v E B,w EA
must have f(e) < A
original flow network
= Y fo - X e A g
e out of A e in to A
> 3 (-2 - ¥ A O]
e out of A ein to A
> Z cle) — Z A — Z A
e out of A e out of A ein to A

> cap(A,B) — mA = /

edgee=(v,w) withvEA,WwEB

must have f(e) > c(e) — A .

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 +|log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.
or equivalently,
Pf. at the end

* Let f be the flow at the beginning of a A-scaling phase.” °f@?2Ascaling phase
* Lemma 2 = max-flow value < val(f)+m (2 A).
* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The capacity-scaling algorithm takes O(m? log C) time.
Pf.

* Lemma 1 + Lemma 3 = O(mlog C) augmentations.

* Finding an augmenting path takes O(m) time. =

46

7. NETWORK FLow |

» shortest augmenting paths

SECTION 17.2

Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACH e EE: f(e) < 0.

Gy < residual network of G with respect to flow f.
WHILE (there exists an s~¢ path in Gy)

(P BREADTH-F{RST-SEARCH(G/»).)
f < AUGMENT(f, c, P).
Update Gy.
RETURN f.

49

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
* L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ¢w) = £(v) + 1.

graph G O O

©, @ @ ®

level graph Lc

@

© @ o

12

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.

Pf. Ahead. AN

number of edges

Lemma 2. After at most m shortest-path augmentations, the length of a

shortest augmenting path strictly increases.

Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes O(n? n) time.

Pf.

* O(m) time to find a shortest augmenting path via BFS.

* There are = m n augmentations.
- at most m augmenting paths of length k «<— Lemma 1 +Lemma 2
- at most n-1 different lengths

N

augmenting paths are simple paths

Network flow: quiz 5

Which edges are in the level graph of the following digraph?

source @

A. D-—F.

B. E—F.

C. Both A and B.
D. Neither A nor B.

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
* L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ¢w) = £(v) + 1.

Key property. P is a shortest s~v path in G iff P is an s~v path in L.

level graph Lc O Q

Shortest augmenting path: analysis

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

+ At least one (bottleneck) edge is deleted from L; per augmentation.

* No new edge added to L; until shortest path length strictly increases. =

level graph Lc O O

() > > () 290,

£=0 e=1 £=2 e=3

level graph L¢’ O O

©) O O ® 5

Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.
» Let fand f’ be flow before and after a shortest-path augmentation.
* Let L and L be level graphs of G and G .
* Only back edges added to G
(any s+t path that uses a back edge is longer than previous length) =

level graph Lc O O

() > > () 290,

=0 =1 L=2 =3

level graph L¢’ O O

Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting
path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m?n) time.

Shortest augmenting path: improving the running time

Note. ©(m n) augmentations necessary for some flow networks.
» Try to decrease time per augmentation instead.
* Simple idea = O@mn?) [Dinitz 1970] «— ahead
* Dynamic trees = O(mnlogn) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Trees
DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN

Bell Laboratories, Murray Hill, New Jersey 07974
Received May 8, 1982; revised October 18, 1982

A data structure is proposed to maintain a collection of vertex-disjoint trees under a
sequence of two kinds of operations: a link operation that combines two trees into one by
adding an edge, and a cuf operation that divides one tre into two by deleting an edge. Each
operation requires O(log 1) time. Using this data structure, new fast algorithms are obtained
for the following problems:

(1) Computing nearest common ancestors.

(2) Solving various network flow problems including finding maximum flows, blocking
flows, and acyclic flows.

(3) Computing certain kinds of constrained minimum spanning trees.

(4) Implementing the network simplex algorithm for minimum-cost flows.
The most significant application is (2); an O(mn log n)-time algorithm is obtained 1o find a
maximum flow in a network of vertices and m edges, beating by a factor of log 1 the fastest
algorithm previously known for sparse graphs.

Dinitz’ algorithm

Two types of augmentations.
» Normal: length of shortest path does not change.
» Special: length of shortest path strictly increases.

within a phase, length of shortest

Phase of normal augmentations. «— augmenting path does not change

« Construct level graph L.

construct level graph Q Q

©) O @) @

level graph L¢

7. NETWORK FLow |

» Dinitz’ algorithm

SECTION 18.1

Dinitz’ algorithm

Two types of augmentations.
» Normal: length of shortest path does not change.
» Special: length of shortest path strictly increases.

Phase of normal augmentations.

 Start at s, advance along an edge in L¢ until reach r or get stuck.

advance Q Q

[> @ > >0

level graph Lg

60

Dinitz’ algorithm Dinitz’ algorithm

Two types of augmentations. Two types of augmentations.
» Normal: length of shortest path does not change. » Normal: length of shortest path does not change.
» Special: length of shortest path strictly increases. » Special: length of shortest path strictly increases.
Phase of normal augmentations. Phase of normal augmentations.

» Start at s, advance along an edge in Lg until reach ¢ or get stuck.
« If reach ¢, augment flow; update L;; and restart from s.

augment O O remove from level graph advance O O

edges with bottleneck capacity

(& > > () >® o > @ >0 ®

level graph L¢ level graph L¢
61
Dinitz’ algorithm Dinitz’ algorithm
Two types of augmentations. Two types of augmentations.
» Normal: length of shortest path does not change. » Normal: length of shortest path does not change.
» Special: length of shortest path strictly increases. » Special: length of shortest path strictly increases.
Phase of normal augmentations. Phase of normal augmentations.

» Start at s, advance along an edge in Lg until reach ¢ or get stuck.

- If get stuck, delete node from L; and retreat to previous node.

retreat O O advance O

©, > @ >0 ® (§ ey o

level graph Lg level graph L¢
63

Dinitz’ algorithm Dinitz’ algorithm

Two types of augmentations. Two types of augmentations.
» Normal: length of shortest path does not change. » Normal: length of shortest path does not change.
» Special: length of shortest path strictly increases. » Special: length of shortest path strictly increases.
Phase of normal augmentations. Phase of normal augmentations.

» Start at s, advance along an edge in Lg until reach ¢ or get stuck.
« If reach ¢, augment flow; update L;; and restart from s.

augment O advance . O

(ey @ O ®

level graph L¢ level graph L¢
65

Dinitz’ algorithm Dinitz’ algorithm
Two types of augmentations. Two types of augmentations.

» Normal: length of shortest path does not change. » Normal: length of shortest path does not change.

» Special: length of shortest path strictly increases. » Special: length of shortest path strictly increases.
Phase of normal augmentations. Phase of normal augmentations.

- If get stuck, delete node from L; and retreat to previous node. - If get stuck, delete node from L; and retreat to previous node.

retreat . O retreat O

O ®] O ®

level graph Lg level graph L¢
67

Dinitz’ algorithm Dinitz’ algorithm (as refined by Even and ltai)

Two types of augmentations.

» Normal: length of shortest path does not change. INITIALIZE(G, f) ADVANCE(V)
» Special: length of shortest path strictly increases.
Lc < level-graph of Gy. IF (v=19)
. — . AUGMENT(P).
Phase of normal augmentations. P @ P)
« Construct level graph L. GOTO ADVANCE(S). Remove saturated edges from Lg.
» Start at s, advance along an edge in Lg until reach ¢ or get stuck. P <.
« If reach ¢, augment flow; update L;; and restart from s. GOTO ADVANCE(s).
. RETREAT
- If get stuck, delete node from L; and retreat to previous node. o)
IF (v=y1) IF (there exists edge (v, w) € Lg)
STOP Add edge (v, w) to P.
end of phase O ELSE GOTO ADVANCE(W).

Delete v (and all incident edges) from Lg. E
LSE
Remove last edge (u, v) from P.
GOTO RETREAT(V).
GOTO ADVANCE(u).
s @) ®

level graph Lc
69

Network flow: quiz 6 > Dinitz’ algorithm: analysis
How to compute the level graph L; efficiently? Lemma. A phase can be implemented to run in O(mn) time.
Pf.

: « Initialization happens once per phase. <«—— 0(m) using BFS
Depth-first search. pp per p m

* At most m augmentations per phase. <—— 0(nn) per phase
BIEadthitiEscalchi (because an augmentation deletes at least one edge from L)
Both A and B. * At most n retreats per phase. <«—— O(m + n) per phase

(because a retreat deletes one node from L)

°©n wm >

Neither A nor B.
* At most mn advances per phase. <«—— O(mn) per phase

(because at most » advances before retreat or augmentation) =

@ Theorem. [Dinitz 1970] Dinitz’ algorithm runs in O(mn?) time.
Pf.

* By Lemma, O(mn) time per phase.
* At most n—1 phases (as in shortest-augmenting-path analysis). =

souree (@ © ® @ e

Augmenting-path algorithms: summary

year

1955

1972

1972

1985

1970

1970

1983

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

augmentations

augmenting path nC O(mn C)
fattest path m log (mC) O(m? log n log (mC))
capacity scaling mlog C O(m? log C)
improved capacity scaling mlog C O(mn log C)
shortest augmenting path mn O(m?n)
level graph mn o(mn®)
dynamic trees mn O(mnlogn)

Maximum-flow algorithms: practice

fat paths

shortest paths

Push-relabel algorithm (SECTION 7.4). [Goldberg-Tarjan 1988]
Increases flow one edge at a time instead of one augmenting path at a time.

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Institute of Technology, Ce idge, &

AND
ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths,
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length
augmenting paths at once (using the layered network approach of Dinic). An alternative method based
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount
flowing into a vertex is allowed to exceed the total amount flowing out. The mcthod maintains a preflow
in the original network and pushes local flow excess toward the sink along what are estimated to be
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as
any other known method on dense graphs, achieving an O(n°) time bound on an n-vertex graph. By
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm
running in O(nm log(n*/m)) time on an n-vertex, m-edge graph. This is as fast as any known method
for any graph density and faster on graphs of moderate density. The algorithm also admits efficient
distributed and parallel i i A parallel i ion running in O(n’log n) time using
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin
algorithm, which also uses n processors but requires O(n?) space.

Maximum-flow algorithms: theory highlights

1951

1955

1970

1974

1983

1985

1988

1998

2013

2014

2016

20xx

simplex
augmenting paths
shortest augmenting paths
blocking flows
dynamic trees
improved capacity scaling
push-relabel
binary blocking flows
compact networks
interior-point methods

electrical flows

O(m n® C) Dantzig
O(mn C) Ford-Fulkerson
O(mn?) Edmonds—Karp, Dinitz
o) Karzanov
O(m nlog n) Sleator-Tarjan
O(m nlog C) Gabow
O(m n log (n* / m)) Goldberg-Tarjan
O(m>* log (n* / m) log C) Goldberg-Rao
O(m n) Orlin
O(mn'"?log C) Lee-Sidford
Oom'7 c'7y Madry

?7??

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

Maximum-flow algorithms: practice

Caveat. Worst-case running time is generally not useful for predicting or

comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: 0(m*?) in

On Implementing Push-Relabel Method
for the Maximum Flow Problem

Boris V. Cherkassky! and Andrew V. Goldberg?

! Central Institute for Economics and Mathematics,

Krasikova St. 32, 117418, Moscow, Russia

cher@cemi.msk.su

* Computer Science Department, Stanford University

Stanford, CA 94305, USA
goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method
for the maximum flow problem. The resulting codes are faster than the
previous codes, and much faster on some problem families. The speedup

tion of heuristics used in our implementations. We

ly of problems for which the running time of all known

methods seem to have a roughly quadratic growth rate

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

practice.

ELSEVIER Buropean Joumal o Operaional Rescarch 97 (1997) 509-542 e

Theory and Methodology
Computational investigations of maximum flow algorithms

Ravindra K. Ahuja *, Murali Kodialam °, Ajay K. Mishra ©, James B. Orlin *

Indian Institue of Technology. Kanpur. 208 016, India
® AT&T Bell Laboratories. Holmdel. NJ 07733, USA
© KATZ Graduate School of Business, University of Pitshurgh. Pitisburgh, PA 15260, USA
Stoun School of Management. Massachusetts Institute of Technology. Cambridge. MA 02139, USA

Received 30 August 1995, accepied 27 June 1996

Maximum-flow algorithms: practice

Computer vision. Different algorithms work better for some dense

problems that arise in applications to computer vision.

An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov*

Abstract

After (15, 31,19, 8,25, 5 mi

an increasingly useful tool for exact or approximate ener

The algorithms we study include both

1 alg

nenting paths”. We benchmark corithms on & mn

performance possible. An implementation of our mas-flow/min-cut algorithm is available

upon request for research pusposes.

VERMA, BATRA: MAXFLOW REVISITED 1

MaxFlow Revisited:
An Empirical Comparison of Maxflow
Algorithms for Dense Vision Problems

Tanmay Verma IIT-Delhi

tanmay08054@iiitd.ac.in Delhi, India

Dhruv Batra TTI-Chicago

dbatra@ttic.edu Chicago, USA
Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] s no longer the fastest algorithm available, especially
for dense graphs.

Maximum-flow algorithms: Google

= 0 Google Optimization Tools

Products > Optimization > Reference

Contents

Classes

C++ Reference: max_flow

This documentation is automatically generated.

Q, SIGNIN

S

Java

@ python

An implementation of a push-relabel algorithm for the max flow problem.

In the following, we consider a graph G = (V,E,s,t) where V denotes the set of nodes (vertices) in
the graph, E denotes the set of arcs (edges). s and t denote distinguished nodes in G called
source and target. n = |V| denotes the number of nodes in the graph, and m = |E| denotes the

number of arcs in the graph.

Each arc (v,w) is associated a capacity c(v,w).

Maximum-flow algorithms: Matlab

4\ MathWorkse

Documentation

= CONTENTS

maxflow

Maximum flow in graph

Syntax

mf = maxflow(G,s,t)

mf = maxflow(G,s,t,algorithm)
[mf,GF] = maxflow(__)
[mf,GF,cs,ct] = maxflow(__)

Description

mf = maxflow(G,s,t) returns the maximum flow between nodes s and t. If graph G is unweighted
(that is, G. Edges does not contain the variable Weight), then maxf low treats all graph edges as
having a weight equal to 1.

mf = maxflow(G,s,t,algorithm) specifies the maximum flow algorithm to use. This syntax is
only available if G is a directed graph.

7. NETWORK FLow |

R2018a

collapse all in page

example

example

» simple unit-capacity networks

Network flow: quiz 7 >

Which max-flow algorithm to use for bipartite matching?

Ford-Fulkerson: O(mn C).
Capacity scaling: O@m? log C).

Shortest augmenting path: O®m? n).

O n ®m >

Dinitz’ algorithm: O(mn?).

Simple unit-capacity networks

Shortest-augmenting-path algorithm.
» Normal augmentation: length of shortest path does not change.
» Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In simple unit-capacity networks,
Dinitz’ algorithm computes a maximum flow in O(m n'?) time.
Pf.

* Lemma 1. Each phase of normal augmentations takes O(m) time.

* Lemma 2. After n'? phases, val(f) = val(f*) — n'2.

* Lemma 3. After < »!? additional augmentations, flow is optimal. =

Lemma 3. After < »n'? additional augmentations, flow is optimal.
Pf. Each augmentation increases flow value by at least 1. =

Lemma 1 and Lemma 2. Ahead.

83

Simple unit-capacity networks

Def. A flow network is a simple unit-capacity network if:
* Every edge has capacity 1.
* Every node (other than s or 1) has exactly one entering edge, | "°d¢capacity =1

or exactly one leaving edge, or both.

Property. Let G be a simple unit-capacity network and let fbe a 0-1 flow.
Then, residual network G, is also a simple unit-capacity network.

Ex. Bipartite matching.

@)
Q @ Q O O
Q © O ©O O
@)

82

Simple unit-capacity networks

within a phase, length of shortest

Phase of normal augmentations. <—— ,,gmenting path does not change

» Construct level graph L.

construct level graph

@) @) Q

@ O @ Q

level graph L¢

Q O g ©
@)
Q

84

Simple unit-capacity networks

Phase of normal augmentations.

 Start at s, advance along an edge in Lg until reach r or get stuck.

advance

\; o
O O —0

level graph L¢

Simple unit-capacity networks

A\ 4

Phase of normal augmentations.

 Start at s, advance along an edge in Lg until reach r or get stuck.

advance

z/c >0
Yo—— O Q

level graph L¢

85

87

Simple unit-capacity networks

Phase of normal augmentations.

+ If reach ¢, augment flow; update L;; and restart from s.

augment

\i
o——0

remove from level graph
all edges in augmenting path

level graph L¢

Simple unit-capacity networks

4
Q
Q

86

Phase of normal augmentations.

« If get stuck, delete node from L; and go to previous node.

retreat

N

level graph L¢

Q Q @)
>0 > O ®
Q @) O O

@

88

Simple unit-capacity networks

Phase of normal augmentations.

 Start at s, advance along an edge in Lg until reach r or get stuck.

advance
@, @ Q @)
® »O——>0_ O cg/@
O Q @)
@
level graph L¢
@,

89

Simple unit-capacity networks

Phase of normal augmentations.
» Construct level graph L.
 Start at s, advance along an edge in Lg until reach r or get stuck.
* If reach ¢, augment flow; update L;; and restart from s.
« If get stuck, delete node from L; and go to previous node.

end of phase (length of shortest augmenting path has increased)

O @) Q

level graph L¢

@)
@)
Q
O
0 0 O ©
@)
@)

91

Simple unit-capacity networks

Phase of normal augmentations.

+ If reach ¢, augment flow; update L;; and restart from s.

augment
@ @ Q Q
@ >0 > O O
O Q @)
@,
level graph L¢
@,

Si

mple unit-capacity networks: analysis

Phase of normal augmentations.

» Construct level graph L.

 Start at s, advance along an edge in Lg until reach 7 or get stuck.
* If reach ¢, augment flow; update L;; and restart from s.

« If get stuck, delete node from L; and go to previous node.

Lemma 1. A phase of normal augmentations takes O(m) time.
Pf.

* O(m) to create level graph L.

* 0(1) per edge (each edge involved in at most one advance, retreat, and
augmentation).

* 0(1) per node (each node deleted at most once). =

90

92

Network flow: quiz 8 Dy Simple unit-capacity networks: analysis

Consider running advance-retreat algorithm in a unit-capacity network Lemma 2. After n'2 phases, val(f) = val(f*) — n'2
(but not necessarily a simple one). What is running time? * After n'2 phases, length of shortest augmenting path is > n'2.
Y= s indegree and outdegree * Thus, level graph has = n'? levels (not including levels for s or 7).
of a node can be larger than 1 i .
* Let1 < h< n'? be a level with min number of nodes = |V,| < n'2.
A. O(m).
B. O@m?).
C. O@mn).
) level graph L for flow f
D. May not terminate.
@ o Q o O Q
@ @) O O @ O O ©)
O O O Q O O O
@
Vl Vh anz
O / 94
93
Simple unit-capacity networks: analysis Simple unit-capacity networks: review
Lemma 2. After n'? phases, val(f) = val(f*) — n'2. Theorem. [Even-Tarjan 1975] In simple unit-capacity networks,
* After n'? phases, length of shortest augmenting path is > n'2. Dinitz’ algorithm computes a maximum flow in O(m n'?) time.
* Thus, level graph has = n'? levels (not including levels for s or 7). Pf.
* Let 1 < h< n'? be a level with min number of nodes = |V,| < n'2. * Lemma 1. Each phase takes O(m) time.
* LetA = {v:8(v)< h}U {v:L(v)=hand v has <1 outgoing residual edge}. * Lemma 2. After n'? phases, val(f) = val(f*) — n'.
* capf(A,B) < |Viu| = n'? = val(f) = val(f*) — n'?. = * Lemma 3. After < »'? additional augmentations, flow is optimal. =

unit-capacity
simple network

residual network Gr Corollary. Dinitz’ algorithm computes max-cardinality bipartite matching

idual ed . .
resicual edges in O(m n'?) time.

e o @) o O o
@ O—<—>0 o O 0—30
O O o ®) O o
O
Va A\ o Vi

95 96

