5. **Divide and Conquer I**

- *merge demo*
- *merge-and-count demo*
5. **Divide and Conquer**

- *merge demo*
- *merge-and-count demo*
Merge demo

Given two sorted lists A and B, merge into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>
Merge demo

Given two sorted lists \(A \) and \(B \), merge into sorted list \(C \).

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 2

sorted list C
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

compare minimum entry in each list: copy 3

sorted list C

| 2 |

Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

compare minimum entry in each list: copy 7

sorted list C

| 2 | 3 |
Merge demo

Given two sorted lists \(A \) and \(B \), merge into sorted list \(C \).

sorted list A

\[
\begin{array}{c}
3 \\
7 \\
10 \\
14 \\
18 \\
\end{array}
\]

sorted list B

\[
\begin{array}{c}
2 \\
11 \\
16 \\
20 \\
23 \\
\end{array}
\]

compare minimum entry in each list: copy 10

sorted list C

\[
\begin{array}{c}
2 \\
3 \\
7 \\
\end{array}
\]
Given two sorted lists A and B, merge into sorted list C.

Sorted list A

3 7 10 14 18

Sorted list B

2 11 16 20 23

Sorted list C

2 3 7 10

Compare minimum entry in each list: copy 11
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

3 7 10 14 18

sorted list B

2 11 16 20 23

compare minimum entry in each list: copy 14

sorted list C

2 3 7 10 11
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

3 7 10 14 18

sorted list B

2 11 16 20 23

compare minimum entry in each list: copy 16

sorted list C

2 3 7 10 11 14
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

compare minimum entry in each list: copy 18

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 |
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

list A exhausted: copy 20

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 18 |
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

list A exhausted: copy 23

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 18 | 20 |
Merge demo

Given two sorted lists A and B, merge into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

done

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 18 | 20 | 23 |
5. **DIVIDE AND CONQUER**

- *merge demo*
- *merge-and-count demo*
Merge-and-count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>
Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Merge-and-count demo

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 2 and add x to inversion count

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 5</td>
</tr>
<tr>
<td>inversions = 0</td>
</tr>
</tbody>
</table>

x = 5 ← number of elements remaining in A
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

$x = 5$

inversions $= 5$
Merge-and-count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 7 and decrement x

<table>
<thead>
<tr>
<th>sorted list C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3</td>
<td></td>
</tr>
</tbody>
</table>

$x = 4$

inversions = 5
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sorted list B</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 10 and decrement x

<table>
<thead>
<tr>
<th>sorted list C</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x = 3
inversions = 5
Merge-and-count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

Compare minimum entry in each list: copy 11 and add x to increment count

sorted list C

| 2 | 3 | 7 | 10 |

$x = 2$

inversions $= 5$
Merge-and-count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

compare minimum entry in each list: copy 14 and decrement x

sorted list C

| 2 | 3 | 7 | 10 | 11 |

$x = 2$

inversions $= 7$
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 20 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 16 and add x to increment count

<table>
<thead>
<tr>
<th>sorted list C</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14</td>
<td></td>
</tr>
</tbody>
</table>

inversions = 7
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 20 | 23 |

compare minimum entry in each list: copy 18 and decrement x

Sorted List C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 |

$x = 1$

inversions = 8
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted list B</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

list A exhausted: copy 20

| sorted list C | 2 | 3 | 7 | 10 | 11 | 14 | 16 | 18 |

$x = 0$

inversions = 8
Merge-and-count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 20 | 23 |

list A exhausted: copy 23

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 18 | 20 |

$x = 0$

inversions = 8
Merge-and-count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

3 7 10 14 18

sorted list B

2 11 16 20 23

sorted list C

2 3 7 10 11 14 16 18 20 23

$x = 0$

inversions = 8

done: return 8 inversions