
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/25/20 4:16 PM
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‣ Dijkstra′s algorithm 

‣ minimum spanning trees 
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‣ single-link clustering 

‣ min-cost arborescences
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SECTION 4.4

Single-pair shortest path problem

Problem.  Given a digraph G = (V, E), edge lengths ℓe  ≥  0, source s ∈ V, 

and destination t ∈ V, find a shortest directed path from s to t.
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Single-source shortest paths problem

Problem.  Given a digraph G = (V, E), edge lengths ℓe  ≥  0, source s ∈ V, 

find a shortest directed path from s to every node.
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Suppose that you change the length of every edge of G as follows.  
For which is every shortest path in G a shortest path in G′?  

A. Add 17.

B. Multiply by 17.

C. Either A or B.

D. Neither A nor B.

5

Shortest paths:  quiz 1
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Shortest paths:  quiz 2

Which variant in car GPS?

A. Single source:  from one node s to every other node.

B. Single sink:  from every node to one node t. 

C. Source–sink:  from one node s to another node t.  

D. All pairs:  between all pairs of nodes.
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Shortest path applications

・PERT/CPM. 

・Map routing. 

・Seam carving. 

・Robot navigation.  

・Texture mapping. 

・Typesetting in LaTeX. 

・Urban traffic planning. 

・Telemarketer operator scheduling. 

・Routing of telecommunications messages. 

・Network routing protocols (OSPF, BGP, RIP). 

・Optimal truck routing through given traffic congestion pattern.
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Network Flows:  Theory, Algorithms, and Applications,
by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.

Dijkstra′s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which 

algorithm has determined d[u] = length of a shortest s↝u path. 

・Initialize S ← { s },  d[s] ← 0. 

・Repeatedly choose unexplored node v ∉ S which minimizes 
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Greedy approach. Maintain a set of explored nodes S for which 

algorithm has determined d[u] = length of a shortest s↝u path. 

・Initialize S ← { s },  d[s] ← 0. 

・Repeatedly choose unexplored node v ∉ S which minimizes 

 

 

add v to S, and set d[v] ← π(v). 

・To recover path, set pred[v] ← e that achieves min.

Dijkstra′s algorithm (for single-source shortest paths problem)
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Invariant.  For each node u ∈ S :  d[u] = length of a shortest s↝u path. 

Pf.  [ by induction on ⎜S⎟ ] 
Base case:  ⎜S⎟ = 1 is easy since S = { s } and d[s] = 0. 

Inductive hypothesis:  Assume true for ⎜S⎟  ≥  1. 

・Let v be next node added to S, and let (u, v) be the final edge. 

・A shortest s↝u path plus (u, v) is an s↝v path of length π(v). 

・Consider any other s↝v path P. We show that it is no shorter than π(v). 

・Let e = (x, y) be the first edge in P that leaves S, 

and let P ʹ be the subpath from s to x. 

・The length of P is already ≥  π (v) as soon 

as it reaches y:

S

s

Dijkstra′s algorithm:  proof of correctness
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Dijkstra′s algorithm:  efficient implementation

Critical optimization 1.  For each unexplored node v ∉ S : 
explicitly maintain π[v] instead of computing directly from definition 

 

・For each v ∉ S :  π(v) can only decrease (because set S increases). 

・More specifically, suppose u is added to S and there is an edge e = (u, v) 
leaving u. Then, it suffices to update: 

 

 

 

Critical optimization 2.  Use a min-oriented priority queue (PQ) 

to choose an unexplored node that minimizes π[v].
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π[v] ← min { π[v],  π[u] + ℓe) }

�(v) = min
e = (u,v) : u�S

d[u] + �e

recall: for each u ∈ S,  
π[u] = d [u] = length of shortest s↝u path

Dijkstra’s algorithm:  efficient implementation

Implementation. 

・Algorithm maintains π[v] for each node v. 

・Priority queue stores unexplored nodes, using π[⋅] as priorities. 

・Once u is deleted from the PQ, π[u] = length of a shortest s↝u path.
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DIJKSTRA (V, E, ℓ, s)                          


FOREACH v ≠ s :  π[v]  ←  ∞, pred[v]  ←  null;  π[s]  ←  0. 

Create an empty priority queue pq.

FOREACH v ∈ V : INSERT(pq, v, π[v]).

WHILE  (IS-NOT-EMPTY(pq))

u ← DEL-MIN(pq).

FOREACH edge e = (u, v) ∈  E leaving u:

IF (π[v]  >  π[u]  + ℓe)

DECREASE-KEY(pq,  v,  π[u] + ℓe).

π[v] ← π[u]  + ℓe ;  pred[v]  ← e.



Dijkstra′s algorithm:  which priority queue?

Performance.  Depends on PQ: n INSERT, n DELETE-MIN, ≤ m DECREASE-KEY. 

・Array implementation optimal for dense graphs. 

・Binary heap much faster for sparse graphs. 

・4-way heap worth the trouble in performance-critical situations.
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priority queue INSERT DELETE-MIN DECREASE-KEY total

node-indexed array
(A[i] = priority of i) O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-way heap 
(Johnson 1975) O(d logd n) O(d logd n) O(logd n) O(m logm/n n)

Fibonacci heap 
(Fredman–Tarjan 1984) O(1) O(log n) † O(1) † O(m + n log n)

integer priority queue 
(Thorup 2004) O(1) O(log log n) O(1) O(m + n log log n)

† amortized

Θ(n2) edges

Θ(n) edges

assumes m ≥ n

How to solve the the single-source shortest paths problem in 
undirected graphs with positive edge lengths?  

A. Replace each undirected edge with two antiparallel edges of same 
length. Run Dijkstra’s algorithm in the resulting digraph.

B. Modify Dijkstra’s algorithms so that when it processes node u,  
it consider all edges incident to u (instead of edges leaving u).

C. Either A or B.

D. Neither A nor B.
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Shortest paths:  quiz 3

Theorem.  [Thorup 1999]  Can solve single-source shortest paths problem 

in undirected graphs with positive integer edge lengths in O(m) time. 

 

Remark.  Does not explore nodes in increasing order of distance from s.
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Shortest paths:  quiz 3 Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems: 

・Shortest paths in undirected graphs:  π[v]  ≤  π[u] + ℓ(u, v). 

・Maximum capacity paths:  π[v]  ≥  min { π[u],  c(u, v) }. 

・Maximum reliability paths:  π[v]  ≥  π[u] 𐄂 γ(u, v) . 

・… 

Key algebraic structure.  Closed semiring (min-plus, bottleneck, Viterbi, …).
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Fun with Semirings
A functional pearl on the abuse of linear algebra

Stephen Dolan
Computer Laboratory, University of Cambridge

stephen.dolan@cl.cam.ac.uk

Abstract
Describing a problem using classical linear algebra is a very well-
known problem-solving technique. If your question can be formu-
lated as a question about real or complex matrices, then the answer
can often be found by standard techniques.

It’s less well-known that very similar techniques still apply
where instead of real or complex numbers we have a closed semir-
ing, which is a structure with some analogue of addition and multi-
plication that need not support subtraction or division.

We define a typeclass in Haskell for describing closed semir-
ings, and implement a few functions for manipulating matrices and
polynomials over them. We then show how these functions can
be used to calculate transitive closures, find shortest or longest
or widest paths in a graph, analyse the data flow of imperative
programs, optimally pack knapsacks, and perform discrete event
simulations, all by just providing an appropriate underlying closed
semiring.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms

Keywords closed semirings; transitive closure; linear systems;
shortest paths

1. Introduction
Linear algebra provides an incredibly powerful problem-solving
toolbox. A great many problems in computer graphics and vision,
machine learning, signal processing and many other areas can be
solved by simply expressing the problem as a system of linear
equations and solving using standard techniques.

Linear algebra is defined abstractly in terms of fields, of which
the real and complex numbers are the most familiar examples.
Fields are sets equipped with some notion of addition and multi-
plication as well as negation and reciprocals.

Many discrete mathematical structures commonly encountered
in computer science do not have sensible notions of negation.
Booleans, sets, graphs, regular expressions, imperative programs,
datatypes and various other structures can all be given natural no-
tions of product (interpreted variously as intersection, sequencing

[Copyright notice will appear here once ’preprint’ option is removed.]

or conjunction) and sum (union, choice or disjunction), but gener-
ally lack negation or reciprocals.

Such structures, having addition and multiplication (which dis-
tribute in the usual way) but not in general negation or reciprocals,
are called semirings. Many structures specifying sequential actions
can be thought of as semirings, with multiplication as sequencing
and addition as choice. The distributive law then states, intuitively,
a followed by a choice between b and c is the same as a choice
between a followed by b and a followed by c.

Plain semirings are a very weak structure. We can find many
examples of them in the wild, but unlike fields which provide
the toolbox of linear algebra, there isn’t much we can do with
something knowing only that it is a semiring.

However, we can build some useful tools by introducing the
closed semiring, which is a semiring equipped with an extra opera-
tion called closure. With the intuition of multiplication as sequenc-
ing and addition as choice, closure can be interpreted as iteration.
As we see in the following sections, it is possible to use something
akin to Gaussian elimination on an arbitrary closed semiring, giv-
ing us a means of solving certain “linear” equations over any struc-
ture with suitable notions of sequencing, choice and iteration. First,
though, we need to define the notion of semiring more precisely.

2. Semirings
We define a semiring formally as consisting of a set R, two distin-
guished elements of R named 0 and 1, and two binary operations
+ and ·, satisfying the following relations for any a, b, c 2 R:

a + b = b + a

a + (b + c) = (a + b) + c

a + 0 = a

a · (b · c) = (a · b) · c

a · 0 = 0 · a = 0

a · 1 = 1 · a = a

a · (b + c) = a · b + a · c

(a + b) · c = a · c + b · c

We often write a · b as ab, and a · a · a as a3.
Our focus will be on closed semirings [12], which are semir-

ings with an additional operation called closure (denoted ⇤) which
satisfies the axiom:

a⇤ = 1 + a · a⇤ = 1 + a⇤ · a

If we have an affine map x 7! ax + b in some closed semiring,
then x = a⇤b is a fixpoint, since a⇤b = (aa⇤ + 1)b = a(a⇤b) + b.
So, a closed semiring can also be thought of as a semiring where
affine maps have fixpoints.

The definition of a semiring translates neatly to Haskell:
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GOOGLE’S FOO.BAR CHALLENGE

You have maps of parts of the space station, each starting at a prison exit 

and ending at the door to an escape pod. The map is represented as a 

matrix of 0s and 1s, where 0s are passable space and 1s are impassable 

walls. The door out of the prison is at the top left (0, 0) and the door into 

an escape pod is at the bottom right (w−1, h−1).  

Write a function that generates the length of a shortest path from the 

prison door to the escape pod, where you are allowed to remove one wall 

as part of your remodeling plans.

s

t

Edsger Dijkstra

19

“ What’s the shortest way to travel from Rotterdam to Groningen? 

   It is the algorithm for the shortest path, which I designed in 

   about 20 minutes. One morning I was shopping in Amsterdam 

   with my young fiancée, and tired, we sat down on the café 

   terrace to drink a cup of coffee and I was just thinking about 

   whether I could do this, and I then designed the algorithm for 

   the shortest path. ”    — Edsger Dijsktra

The moral implications of implementing shortest-path algorithms

20
https://www.facebook.com/pg/npcompleteteens
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Def.  A path is a sequence of edges which connects a sequence of nodes.  

 

Def.  A cycle is a path with no repeated nodes or edges other than the 

starting and ending nodes.

Cycles
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cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }
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path P = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6) }
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Cuts

Def.  A cut is a partition of the nodes into two nonempty subsets S and V  – S. 

 

Def.  The cutset of a cut S is the set of edges with exactly one endpoint in S.
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cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

1

2 3

6

7

cut S =  { 4, 5, 8 }

Minimum spanning trees:  quiz 1

Consider the cut S = { 1, 4, 6, 7 }. Which edge is in the cutset of S?

A. S is not a cut (not connected) 

B. 1–7

C. 5–7

D. 2–3
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Minimum spanning trees:  quiz 2

Let C be a cycle and let D be a cutset. How many edges do C and D 
have in common? Choose the best answer.

A. 0 

B. 2 

C. not 1  

D. an even number

25



Cycle–cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.
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cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }
intersection C ∩ D = { (3, 4), (5, 6) }

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

Cycle–cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges. 

Pf.  [by picture]
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cycle C

S

Def.  Let H = (V, T ) be a subgraph of an undirected graph G = (V, E). 
H is a spanning tree of G if H is both acyclic and connected.

Spanning tree definition

28

graph G = (V, E)
spanning tree H = (V, T)

Minimum spanning trees:  quiz 3

Which of the following properties are true for all spanning trees H?

A. Contains exactly ⎜V⎟ – 1 edges. 

B. The removal of any edge disconnects it. 

C. The addition of any edge creates a cycle. 

D. All of the above.

29

graph G = (V, E)
spanning tree H = (V, T)



Spanning tree properties

Proposition.  Let H = (V, T ) be a subgraph of an undirected graph G = (V, E).  
Then, the following are equivalent: 

・H is a spanning tree of G. 

・H is acyclic and connected. 

・H is connected and has ⎜V⎟ – 1 edges. 

・H is acyclic and has ⎜V⎟  – 1 edges. 

・H is minimally connected: removal of any edge disconnects it. 

・H is maximally acyclic: addition of any edge creates a cycle.
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graph G = (V, E)
spanning tree H = (V, T) 31https://maps.roadtrippers.com/places/46955/photos/374771356

A tree containing a cycle

Minimum spanning tree (MST)

Def.  Given a connected, undirected graph G = (V, E) with edge costs ce, 

a minimum spanning tree (V, T ) is a spanning tree of G such that the sum 

of the edge costs in T is minimized. 

 

 

 

 

 

 

 

 

 

 

 

Cayley’s theorem.  The complete graph on n  nodes has nn–2 spanning trees.

32
can’t solve by brute force

MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
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6 23

10 
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7
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8

Suppose that you change the cost of every edge in G as follows.  
For which is every MST in G an MST in G′ (and vice versa)?  
Assume c(e) > 0 for each e.  

A. cʹ(e) = c(e) + 17.

B. cʹ(e) = 17 𐄂 c(e).

C. cʹ(e) = log17 c(e).

D. All of the above.

33

Minimum spanning trees:  quiz 4



Applications

MST is fundamental problem with diverse applications. 

・Dithering. 

・Cluster analysis. 

・Max bottleneck paths. 

・Real-time face verification. 

・LDPC codes for error correction. 

・Image registration with Renyi entropy. 

・Find road networks in satellite and aerial imagery. 

・Model locality of particle interactions in turbulent fluid flows. 

・Reducing data storage in sequencing amino acids in a protein. 

・Autoconfig protocol for Ethernet bridging to avoid cycles in a network. 

・Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree). 

・Network design (communication, electrical, hydraulic, computer, road).

34

Network Flows:  Theory, Algorithms, and Applications,
by Ahuja, Magnanti, and Orlin, Prentice Hall, 1993.

Fundamental cycle.  Let H = (V, T ) be a spanning tree of G = (V, E). 

・For any non tree-edge e ∈ E :  T  ∪ { e } contains a unique cycle, say C. 

・For any edge f  ∈ C :  (V,  T  ∪ { e } – { f }) is a spanning tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation.  If ce < cf, then (V, T) is not an MST.

Fundamental cycle

35

e

f

graph G = (V, E)
spanning tree H = (V, T)

Fundamental cutset

Fundamental cutset.  Let H = (V, T ) be a spanning tree of G = (V, E). 

・For any tree edge f ∈ T :  (V,  T  – { f }) has two connected components. 

・Let D denote corresponding cutset. 

・For any edge e ∈ D :  (V,  T – { f } ∪ { e }) is a spanning tree. 

 

 

 

 

 

 

 

 

 

 

 

 

Observation.  If ce < cf, then (V, T) is not an MST.
36

e

f

graph G = (V, E)
spanning tree H = (V, T)

The greedy algorithm

Red rule. 

・Let C be a cycle with no red edges. 

・Select an uncolored edge of C of max cost and color it red.  

Blue rule. 

・Let D be a cutset with no blue edges. 

・Select an uncolored edge in D of min cost and color it blue.  

Greedy algorithm. 

・Apply the red and blue rules (nondeterministically!) until all edges 

are colored. The blue edges form an MST. 

・Note:  can stop once n – 1 edges colored blue.

37



Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge 

and no red edge. 

Pf.  [ by induction on number of iterations ] 

Base case.  No edges colored  ⇒  every MST satisfies invariant.
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Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge 

and no red edge. 

Pf.  [ by induction on number of iterations ] 

Induction step (blue rule).  Suppose color invariant true before blue rule. 

・let D be chosen cutset, and let f be edge colored blue. 

・if f ∈ T*, then T* still satisfies invariant. 

・Otherwise, consider fundamental cycle C by adding f to T*. 

・let e ∈ C be another edge in D. 

・e is uncolored and ce  ≥  cf  since 
- e ∈ T*  ⇒  e not red 
- blue rule  ⇒  e not blue and ce  ≥  cf  

・Thus, T* ∪ { f } – { e } satisfies invariant.
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 T*

e

cut

Greedy algorithm:  proof of correctness

Color invariant.  There exists an MST (V, T*) containing every blue edge 

and no red edge. 

Pf.  [ by induction on number of iterations ] 

Induction step (red rule).  Suppose color invariant true before red rule. 

・let C be chosen cycle, and let e be edge colored red. 

・if e ∉ T*, then T* still satisfies invariant. 

・Otherwise, consider fundamental cutset D by deleting e from T*. 

・let f ∈ D be another edge in C. 

・f is uncolored and ce  ≥  cf  since 
- f  ∉ T*  ⇒  f  not blue 
- red rule  ⇒  f not red and ce  ≥  cf  

・Thus, T* ∪ { f } – { e } satisfies invariant. ▪

40
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 T*

e

cut

Greedy algorithm:  proof of correctness

Theorem.  The greedy algorithm terminates. Blue edges form an MST. 

Pf.  We need to show that either the red or blue rule (or both) applies. 

・Suppose edge e is left uncolored. 

・Blue edges form a forest. 

・Case 1:  both endpoints of e are in same blue tree.  

       ⇒  apply red rule to cycle formed by adding e to blue forest.

41

Case 1

e



Greedy algorithm:  proof of correctness

Theorem.  The greedy algorithm terminates. Blue edges form an MST. 

Pf.  We need to show that either the red or blue rule (or both) applies. 

・Suppose edge e is left uncolored. 

・Blue edges form a forest. 

・Case 1:  both endpoints of e are in same blue tree.  

       ⇒  apply red rule to cycle formed by adding e to blue forest. 

・Case 2:  both endpoints of e are in different blue trees. 

       ⇒  apply blue rule to cutset induced by either of two blue trees.  ▪
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Case 2

e

4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 6.2

Prim′s algorithm

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-cost edge with exactly one endpoint in S. 

・Add the other endpoint to S. 

 

 

Theorem.  Prim’s algorithm computes an MST. 

Pf.  Special case of greedy algorithm (blue rule repeatedly applied to S).  ▪
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S

by construction, edges in 
cutset are uncolored

Prim′s algorithm:  implementation

Theorem.  Prim’s algorithm can be implemented to run in O(m log n) time. 

Pf.  Implementation almost identical to Dijkstra’s algorithm.
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PRIM (V, E, c)                   


S  ← ∅,  T ← ∅.
s  ←  any node in V.

FOREACH v ≠ s :  π[v]  ←  ∞, pred[v]  ←  null;  π[s]  ←  0. 
Create an empty priority queue pq.
FOREACH v ∈ V :  INSERT(pq, v, π[v]).

WHILE  (IS-NOT-EMPTY(pq))
u  ←  DEL-MIN(pq).

S  ←  S  ∪  { u },  T  ←  T  ∪  { pred[u] }.
FOREACH edge e = (u, v) ∈  E with v  ∉  S :

IF (ce  <  π[v])
DECREASE-KEY(pq, v, ce).
π[v]  ← ce;  pred[v]  ← e.

π[v] = cost of cheapest 
known edge between v and S



Kruskal′s algorithm

Consider edges in ascending order of cost: 

・Add to tree unless it would create a cycle.  

 

Theorem.  Kruskal’s algorithm computes an MST. 

Pf.  Special case of greedy algorithm. 

・Case 1:  both endpoints of e in same blue tree. 

       ⇒  color e red by applying red rule to unique cycle. 

・Case 2:  both endpoints of e in different blue trees. 

       ⇒  color e blue by applying blue rule to cutset defined by either tree.  ▪

46

e

all other edges in cycle are blue

no edge in cutset has smaller cost 
(since Kruskal chose it first)

Kruskal′s algorithm:  implementation

Theorem.  Kruskal’s algorithm can be implemented to run in O(m log m) time. 

・Sort edges by cost. 

・Use union–find data structure to dynamically maintain connected 

components.
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KRUSKAL (V, E, c)                          


SORT m edges by cost and renumber so that c(e1)  ≤  c(e2)  ≤ … ≤ c(em).

T ← ∅.

FOREACH  v  ∈ V :   MAKE-SET(v).

FOR  i = 1 TO  m

(u, v)  ← ei.

IF  (FIND-SET(u)  ≠  FIND-SET(v))

T  ←  T  ∪ { ei }.

UNION(u, v).

RETURN T.

are u and v in 
same component?

make u and v in 
same component

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of cost: 

・Delete edge from T unless it would disconnect T. 

 

Theorem.  The reverse-delete algorithm computes an MST. 

Pf.  Special case of greedy algorithm. 

・Case 1.  [ deleting edge e does not disconnect T ] 

       ⇒  apply red rule to cycle C formed by adding e to another path 

            in T between its two endpoints 

・Case 2.  [ deleting edge e disconnects T ] 

       ⇒  apply blue rule to cutset D induced by either component    ▪  
 

 

 

 
Fact.  [Thorup 2000]  Can be implemented to run in O(m log n (log log n)3) time.
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no edge in C is more expensive 
(it would have already been considered and deleted)

e is the only remaining edge in the cutset 
(all other edges in D must have been colored red / deleted)

Review:  the greedy MST algorithm

Red rule. 

・Let C be a cycle with no red edges. 

・Select an uncolored edge of C of max cost and color it red.  

Blue rule. 

・Let D be a cutset with no blue edges. 

・Select an uncolored edge in D of min cost and color it blue.  

Greedy algorithm. 

・Apply the red and blue rules (nondeterministically!) until all edges 

are colored. The blue edges form an MST. 

・Note:  can stop once n – 1 edges colored blue. 

Theorem.  The greedy algorithm is correct. 

Special cases.  Prim, Kruskal, reverse-delete, …
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Borůvka′s algorithm

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue. 

Theorem.  Borůvka’s algorithm computes the MST. 

Pf.  Special case of greedy algorithm (repeatedly apply blue rule).  ▪
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7 11

58 12

13

assume edge 
costs are distinct

Borůvka′s algorithm:  implementation

Theorem.  Borůvka’s algorithm can be implemented to run in O(m log n) time. 

Pf. 

・To implement a phase in O(m) time: 
- compute connected components of blue edges 
- for each edge (u, v) ∈ E, check if u and v are in different components; 

if so, update each component’s best edge in cutset  

・≤ log2 n phases since each phase (at least) halves total # components.  ▪
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7 11

58 12

13

Borůvka′s algorithm:  implementation

Contraction version. 

・After each phase, contract each blue tree to a single supernode. 

・Delete self-loops and parallel edges (keeping only cheapest one). 

・Borůvka phase becomes: take cheapest edge incident to each node. 

 

 

 

 

 

 

 

 

 

 

 

Q.  How to contract a set of edges?
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2, 5

graph G contract edge 2-5

delete self-loops and parallel edges

1 1

1

Problem.  Given a graph G = (V, E) and a set of edges F, contract all edges 

in F, removing any self-loops or parallel edges. 

Goal.  O(m + n) time. 

CONTRACT A SET OF EDGES

53

graph G

contracted graph G′



CONTRACT A SET OF EDGES

Problem.  Given a graph G = (V, E) and a set of edges F, contract all edges 

in F, removing any self-loops or parallel edges. 

Solution. 

・Compute the nʹ connected components in (V, F). 

・Suppose id[u] = i means node u is in connected component i. 

・The contracted graph G ʹ has nʹ nodes. 

・For each edge u–v ∈ E, add an edge i–j to G ʹ, where i = id[u] and j = id[v]. 
 

Removing self loops.  Easy. 

 

Removing parallel edges. 

・Create a list of edges i–j with the convention that i < j. 

・Sort the edges lexicographically via LSD radix sort. 

・Add the edges to the graph G ʹ, removing parallel edges.
54

Theorem.  Borůvka’s algorithm (contraction version) can be implemented to 

run in O(n) time on planar graphs. 

Pf. 

・Each Borůvka phase takes O(n) time: 
- Fact 1:  m  ≤  3n for simple planar graphs. 
- Fact 2:  planar graphs remains planar after edge contractions/deletions. 

・Number of nodes (at least) halves in each phase. 

・Thus, overall running time  ≤  cn + cn / 2 + cn / 4 + cn / 8 + …  = O(n).  ▪

Borůvka′s algorithm on planar graphs

55planar K3,3 not planar

A hybrid algorithm

Borůvka–Prim algorithm. 

・Run Borůvka (contraction version) for log2 log2 n phases. 

・Run Prim on resulting, contracted graph. 

 

Theorem.  Borůvka–Prim computes an MST. 

Pf.  Special case of the greedy algorithm. 

 

Theorem.  Borůvka–Prim can be implemented to run in O(m log log n) time. 

Pf. 

・The log2 log2 n phases of Borůvka’s algorithm take O(m log log n) time; 

resulting graph has ≤ n / log2 n nodes and ≤ m edges. 

・Prim’s algorithm (using Fibonacci heaps) takes O(m + n) time on a 

graph with n / log2 n nodes and m edges.  ▪

56

O

�
m +

n

log n
log

�
n

log n

��

Does a linear-time compare-based MST algorithm exist?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem.  [Fredman–Willard 1990]     O(m) in word RAM model. 

Theorem.  [Dixon–Rauch–Tarjan 1992]  O(m) MST verification algorithm. 

Theorem.  [Karger–Klein–Tarjan 1995]   O(m) randomized MST algorithm.
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deterministic compare-based MST algorithms

year worst case discovered by

1975 O(m log log n) Yao

1976 O(m log log n) Cheriton–Tarjan

1984 O(m log*n),  O(m + n log n) Fredman–Tarjan

1986 O(m log (log* n)) Gabow–Galil–Spencer–Tarjan

1997 O(m α(n) log α(n)) Chazelle

2000 O(m α(n)) Chazelle

2002 asymptotically optimal Pettie–Ramachandran

20xx O(m)

n lg* n

(−∞, 1] 0

(1, 2] 1

(2, 4] 2

(4, 16] 3

(16, 216] 4

(216, 265536] 5
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MINIMUM BOTTLENECK SPANNING TREE

Problem.  Given a connected graph G with positive edge costs, find a 

spanning tree that minimizes the most expensive edge. 

Goal.  O(m log m) time or better. 

58
minimum bottleneck spanning tree T (bottleneck = 9)

6 5

9

78 7 14

21

3

24

4 10 11

Note: not necessarily a MST
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4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 4.7

Goal.   Given a set U of n objects labeled p1, …, pn, partition into clusters so 

that objects in different clusters are far apart. 

 

 

 

 

 

 

 

 

 

Applications. 

・Routing in mobile ad-hoc networks. 

・Document categorization for web search. 

・Similarity searching in medical image databases 

・Cluster celestial objects into stars, quasars, galaxies. 

・...

Clustering

outbreak of cholera deaths in London in 1850s (Nina Mishra)

62 4-clustering

k-clustering.  Divide objects into k non-empty groups. 

 

Distance function.  Numeric value specifying “closeness” of two objects. 

・d(pi, pj)  =  0 iff pi = pj [ identity of indiscernibles ] 

・d(pi, pj)  ≥  0 [ non-negativity ] 

・d(pi, pj)  =  d(pj, pi) [ symmetry ] 

 

Spacing.  Min distance between any pair of points in different clusters. 

 

Goal.  Given an integer k, find a k-clustering of maximum spacing.

Clustering of maximum spacing

63

distance between 
two clusters

min distance between 
two closest clusters



Greedy clustering algorithm

“Well-known” algorithm in science literature for single-linkage k-clustering: 

・Form a graph on the node set U, corresponding to n clusters. 

・Find the closest pair of objects such that each object is in a different 

cluster, and add an edge between them. 

・Repeat n – k times (until there are exactly k clusters). 

 

 

 

 

 

 

 

 

Key observation.  This procedure is precisely Kruskal’s algorithm 

(except we stop when there are k connected components). 

 

Alternative.  Find an MST and delete the k – 1 longest edges.
64

Greedy clustering algorithm:  analysis

Theorem. Let C* denote the clustering C*
1, …, C*

k formed by deleting the 

k – 1 longest edges of an MST. Then, C* is a k-clustering of max spacing. 

Pf.  

・Let C denote any other clustering C1, …, Ck. 

・Let pi and pj be in the same cluster in C*, say C*
r , but different clusters 

in C, say Cs and Ct. 

・Some edge (p, q) on pi – pj path in C*
r  spans two different clusters in C. 

・Spacing of C* = length d* of the (k – 1)st longest edge in MST. 

・Edge (p, q) has length ≤ d* since it was added by Kruskal. 

・Spacing of C is ≤ d* since p and q are in different clusters.  ▪
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p qpi
pj

Cs Ct

C*
r

edges left after deleting 
k – 1 longest edges 

from a MST

this is the edge 
Kruskal would have 

added next had 
we not stopped it 

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference:  Botstein & Brown group

gene 1

gene n

gene expressed

gene not expressed
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Which MST algorithm should you use for single-link clustering?  

A. Kruskal (stop when there are k components).

B. Prim (delete k – 1 longest edges).

C. Either A or B.

D. Neither A nor B.
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Minimum spanning trees:  quiz 5

number of objects n 
can be very large



4.  GREEDY ALGORITHMS II

‣ Dijkstra′s algorithm 

‣ minimum spanning trees 

‣ Prim, Kruskal, Boruvka 

‣ single-link clustering 

‣ min-cost arborescences

SECTION 4.9

Arborescences

Def.  Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r) 
is a subgraph T = (V, F) such that 

・T is a spanning tree of G if we ignore the direction of edges. 

・There is a (unique) directed path in T from r to each other node v ∈ V.

69

r

Which of the following are properties of arborescences rooted at r? 

A. No directed cycles.

B. Exactly n − 1 edges.

C. For each v ≠ r : indegree(v) = 1.

D. All of the above.
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Minimum spanning arborescence:  quiz 1

r

Arborescences

Proposition.  A subgraph T = (V, F) of G is an arborescence rooted at r iff 
T has no directed cycles and each node v ≠ r has exactly one entering edge. 

Pf. 

⇒  If T is an arborescence, then no (directed) cycles and every node v ≠ r 
      has exactly one entering edge—the last edge on the unique r↝v path. 

 

⇐  Suppose T  has no cycles and each node v ≠ r has one entering edge. 

・To construct an r↝v path, start at v and repeatedly follow edges in the 

backward direction. 

・Since T has no directed cycles, the process must terminate. 

・It must terminate at r since r is the only node with no entering edge.   ▪ 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Given a digraph G, how to find an arborescence rooted at r?  

A. Breadth-first search from r.

B. Depth-first search from r.

C. Either A or B.

D. Neither A nor B.
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Minimum spanning arborescence:  quiz 2

r

Min-cost arborescence problem

Problem.  Given a digraph G with a root node r and edge costs ce ≥ 0, 

find an arborescence rooted at r of minimum cost. 

 

 

 

 

 

 

 

 

 

 

 

 

Assumption 1.  All nodes reachable from r. 
Assumption 2.  No edge enters r (safe to delete since they won’t help).
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A min-cost arborescence must… 

A. Include the cheapest edge.

B. Exclude the most expensive edge.

C. Be a shortest-paths tree from r.

D. None of the above.
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Minimum spanning arborescence:  quiz 3

r

8

3

4

610

12

A sufficient optimality condition

Property.  For each node v ≠ r, choose a cheapest edge entering v 
and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence, 

then it is a min-cost arborescence. 

 

Pf.  An arborescence needs exactly one edge entering each node v ≠ r 
and (V, F*) is the cheapest way to make each of these choices.  ▪
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A sufficient optimality condition

Property.  For each node v ≠ r, choose a cheapest edge entering v 
and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence, 

then it is a min-cost arborescence. 

 

Note.  F* may not be an arborescence (since it may have directed cycles).
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F* = thick black edges

Reduced costs

Def.  For each v ≠ r, let y(v) denote the min cost of any edge entering v. 
Define the reduced cost of an edge (u, v) as cʹ(u, v) = c(u, v) –  y(v)  ≥  0. 

Observation.  T is a min-cost arborescence in G using costs c iff 
T is a min-cost arborescence in G using reduced costs cʹ. 
Pf.  For each v ≠ r : each arborescence has exactly one edge entering v.  ▪
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1 9

4 3 y(v)

Intuition.  Recall F* = set of cheapest edges entering v for each v ≠ r. 

・Now, all edges in F* have 0 cost with respect to reduced costs cʹ(u, v). 

・If F* does not contain a cycle, then it is a min-cost arborescence. 

・If F* contains a cycle C, can afford to use as many edges in C as desired. 

・Contract edges in C to a supernode (removing any self-loops). 

・Recursively solve problem in contracted network G ʹ with costs cʹ(u, v).

Edmonds branching algorithm:  intuition
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Edmonds branching algorithm:  intuition

Intuition.  Recall F* = set of cheapest edges entering v for each v ≠ r. 

・Now, all edges in F* have 0 cost with respect to reduced costs cʹ(u, v). 

・If F* does not contain a cycle, then it is a min-cost arborescence. 

・If F* contains a cycle C, can afford to use as many edges in C as desired. 

・Contract edges in C to a supernode (removing any self-loops). 

・Recursively solve problem in contracted network G ʹ with costs cʹ(u, v).
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Edmonds branching algorithm

80

EDMONDS-BRANCHING (G, r , c)                          


FOREACH v ≠ r :

y(v)  ←  min cost of any edge entering v.

cʹ(u, v)  ←  cʹ(u, v) –  y(v) for each edge (u, v) entering v.

FOREACH v ≠ r : choose one 0-cost edge entering v and let F* 
be the resulting set of edges.

IF  (F* forms an arborescence) RETURN T = (V, F*).

ELSE

C ← directed cycle in F*.

Contract C to a single supernode, yielding G ʹ = (V ʹ, E ʹ).

T ʹ ← EDMONDS-BRANCHING(G ʹ, r , cʹ).

Extend T ʹ to an arborescence T in G by adding all but one edge of C.

RETURN T.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Edmonds branching algorithm

Q.  What could go wrong? 

A.  Contracting cycle C places extra constraint on arborescence. 

・Min-cost arborescence in G ʹ must have exactly one edge entering 

a node in C (since C is contracted to a single node) 

・But min-cost arborescence in G might have several edges entering C.
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ba

r

cycle C

min-cost arborescence in G

Edmonds branching algorithm:  key lemma

Lemma.  Let C be a cycle in G containing only 0-cost edges. There exists a 

min-cost arborescence T rooted at r that has exactly one edge entering C. 

Pf.  

 

Case 0.  T has no edges entering C. 

Since T is an arborescence, there is an r↝v path for each node v  ⇒ 
at least one edge enters C.  ※ 

Case 1.  T has exactly one edge entering C. 

T satisfies the lemma. 

Case 2.  T has two (or more) edges entering C. 

We construct another min-cost arborescence T * that has exactly one edge 

entering C.
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Edmonds branching algorithm:  key lemma

Case 2 construction of T *. 

・Let (a, b) be an edge in T entering C that lies on a shortest path from r. 

・We delete all edges of T that enter a node in C except (a, b). 

・We add in all edges of C except the one that enters b.

b

83

a

r

cycle CT

this path from r to C 
uses only one node in C



T

Edmonds branching algorithm:  key lemma

Case 2 construction of T *. 

・Let (a, b) be an edge in T entering C that lies on a shortest path from r. 

・We delete all edges of T that enter a node in C except (a, b). 

・We add in all edges of C except the one that enters b. 

 

Claim.  T * is a min-cost arborescence. 

・The cost of T * is at most that of T since we add only 0-cost edges. 

・T * has exactly one edge entering each node v ≠ r. 

・T * has no directed cycles. 

(T had no cycles before; no cycles within C; now only (a, b) enters C)

b
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ba

T is an arborescence rooted at r

r

cycle CT* and the only path in T * to a
is the path from r to a 

(since any path must follow 
unique entering edge back to r)

this path from r to C 
uses only one node in C

Edmonds branching algorithm:  analysis

Theorem.  [Chu–Liu 1965, Edmonds 1967]  The greedy algorithm finds a 

min-cost arborescence. 

Pf.  [ by strong induction on number of nodes ] 

・If the edges of F* form an arborescence, then min-cost arborescence. 

・Otherwise, we use reduced costs, which is equivalent. 

・After contracting a 0-cost cycle C to obtain a smaller graph G ʹ, 

the algorithm finds a min-cost arborescence T ʹ in G ʹ (by induction). 

・Key lemma: there exists a min-cost arborescence T in G that 

corresponds to T ʹ.  ▪
 
Theorem. The greedy algorithm can be implemented to run in O(m n) time. 

Pf.  

・At most n contractions (since each reduces the number of nodes). 

・Finding and contracting the cycle C takes O(m) time. 

・Transforming T ʹ into T takes O(m) time.  ▪
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un-contracting cycle C, 
remove all but one edge entering C, 

taking all but one edge in C

Min-cost arborescence

Theorem. [Gabow–Galil–Spencer–Tarjan 1985] There exists an O(m + n log n) 
time algorithm to compute a min-cost arborescence.
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