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‣ Prim’s algorithm demo 

‣ Kruskal’s algorithm demo 

‣ reverse-delete algorithm demo 

‣ Boruvka’s algorithm demo

4.  GREEDY ALGORITHMS II

‣ red-rule blue-rule demo 

‣ Prim’s algorithm demo 

‣ Kruskal’s algorithm demo 

‣ reverse-delete algorithm demo 

‣ Boruvka’s algorithm demo

SECTION 6.1

Red-rule blue-rule demo

Red rule.  Let C be a cycle with no red edges. Select an uncolored edge of C 
of max weight and color it red. 

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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the input graph

Red-rule blue-rule demo

Red rule.  Let C be a cycle with no red edges. Select an uncolored edge of C 
of max weight and color it red. 
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apply the red rule to the cycle

1



Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Red rule.  Let C be a cycle with no red edges. Select an uncolored edge of C 
of max weight and color it red. 
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apply the red rule to the cycle

Red-rule blue-rule demo

Red rule.  Let C be a cycle with no red edges. Select an uncolored edge of C 
of max weight and color it red. 

7

current set of red and blue edges

Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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apply the blue rule to the cutset

Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Red rule.  Let C be a cycle with no red edges. Select an uncolored edge of C 
of max weight and color it red. 
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apply the red rule to the cycle



Red-rule blue-rule demo
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Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 

14

9 2

4

8

apply the blue rule to the cutset

7

Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Blue rule.  Let D be a cutset with no blue edges. Select an uncolored edge in 

D of min weight and color it blue. 
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Red-rule blue-rule demo
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current set of red and blue edges

Red-rule blue-rule demo

Greedy algorithm.  Upon termination, the blue edges form a MST.

22

1

3

2

47

a minimum spanning tree
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‣ red-rule blue-rule demo 

‣ Prim’s algorithm demo 
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‣ Boruvka’s algorithm demo

SECTION 4.5

Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.

36

4



Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.
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Prim’s algorithm demo

Initialize S  = { s } for any node s,  T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with exactly one endpoint in S. 

・Add the other endpoint to S.

40

1

4

3

9

2

5

7
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SECTION 4.5

Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.
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SECTION 4.5

Reverse-delete algorithm demo

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.

64

1



Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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SECTION 6.2

Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.

72

7 11

58 12

13



Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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Borůvka’s algorithm demo

Repeat until only one tree. 

・Apply blue rule to cutset corresponding to each blue tree. 

・Color all selected edges blue.
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