3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

Undirected graphs

Notation. $G = (V, E)$

- $V =$ nodes (or vertices).
- $E =$ edges (or arcs) between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|$.

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$E = \{1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8\}$

$m = 11, n = 8$

One week of Enron emails

The analysis detected an anomaly; a new e-mail address for a person, who had been "Philip Adler" in 1999 across years.
Some graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>node</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>

Graph representation: adjacency matrix

Adjacency matrix. An n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

![Graph representation: adjacency matrix](image)
Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.

- Two representations of each edge.
- Space is $\Theta(m + n)$.
- Checking if (u, v) is an edge takes $O(\text{degree}(u))$ time.
- Identifying all edges takes $O(m + n)$ time.

Paths and connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1, v_2, \ldots, v_k in which $v_1 = v_k$, $k > 2$, and the first $k - 1$ nodes are all distinct.

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third:

- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.
Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

```
3
 o
 |  \
 |   \
 o  7
 |   |
 |   o
 | r  v
5  
```

- a tree
- the same tree, rooted at 1

Phylogeny trees

Describe evolutionary history of species.

```
gut bacteria
  --- trees
  |     |     |
  |     |     |
  mushrooms fish mammals
  |     |     |
  |     |     |
  birds dragonflies beetles
```

GUI containment hierarchy

Describe organization of GUI widgets.

```
http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
```

3. Graphs

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

[Image of graph examples and Java Swing diagram]

[Algorithm Design book cover]
Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path between s and t?

Applications.
- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest hops in a communication network.

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one “layer” at a time.

BFS algorithm.
- $L_0 = \{ s \}$.
- L_1 = all neighbors of L_0.
- L_2 = all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.
- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\deg(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \deg(u) = 2m$. □

![BFS diagram](image)
Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

Testing bipartiteness

Many graph problems become:

- Easier if the underlying graph is bipartite (matching).
- Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

Bipartite graphs

Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored blue or white such that every edge has one white and one blue end.

Applications.

- Stable matching: med-school residents = blue, hospitals = white.
- Scheduling: machines = blue, jobs = white.

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

![A bipartite graph](image1)

![Another drawing of G](image2)
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf.

(i)

- Suppose no edge joins two nodes in same layer.
- By BFS property, each edge joins two nodes in adjacent levels.
- Bipartition: white = nodes on odd levels, blue = nodes on even levels.

(ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = lca(x, y)$ = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
then path from y to z,
then path from z to x.
- Its length is $1 + (j - i) + (j - i)$, which is odd. •

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.
3. **Graphs**

- Basic definitions and applications
- Graph connectivity and graph traversal
- Testing bipartiteness
- Connectivity in directed graphs
- DAGs and topological ordering

Directed graphs

Notation. \(G = (V, E) \).

- Edge \((u, v)\) leaves node \(u\) and enters node \(v\).

Example. Web graph: hyperlink points from one web page to another.
- Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

World wide web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.

Road network

Node = intersection; edge = one-way street.
Political blogosphere graph

Node = political blog; edge = link.

Some directed graph applications

<table>
<thead>
<tr>
<th>directed graph</th>
<th>node</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>

Ecological food web

Food web graph.
- Node = species.
- Edge = from prey to predator.

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path from s to t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong connectivity

Def. Nodes \(u \) and \(v \) are **mutually reachable** if there is both a path from \(u \) to \(v \) and also a path from \(v \) to \(u \).

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let \(s \) be any node. \(G \) is strongly connected iff every node is reachable from \(s \), and \(s \) is reachable from every node.

Pf. \(\Rightarrow \) Follows from definition.

Pf. \(\Leftarrow \) Path from \(u \) to \(v \): concatenate \(u \to s \) path with \(s \to v \) path.

Path from \(v \) to \(u \): concatenate \(v \to s \) path with \(s \to u \) path.

\[\text{ok if paths overlap} \]

Strong components

Def. A **strong component** is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in \(O(m + n) \) time.

3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have $i < j$.

Precedence constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j.

Applications.
- Course prerequisite graph: course v_i must be taken before v_j.
- Compilation: module v_i must be compiled before v_j.
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_j.

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
- Suppose that G has a topological order $v_1, v_2, ..., v_n$ and that G also has a directed cycle C. Let’s see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and $v_1, v_2, ..., v_n$ is a topological order, we must have $j < i$, a contradiction.

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]
• Suppose that G is a DAG and every node has at least one entering edge. Let’s see what happens.
• Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u,v) we can walk backward to u.
• Then, since u has at least one entering edge (x,u), we can walk backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. □

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
• Maintain the following information:
 • $\text{count}(w) =$ remaining number of incoming edges
 • $S =$ set of remaining nodes with no incoming edges
• Initialization: $O(m + n)$ via single scan through graph.
• Update: to delete v
 • remove v from S
 • decrement $\text{count}(w)$ for all edges from v to w;
 and add w to S if $\text{count}(w)$ hits 0
 • this is $O(1)$ per edge □