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Undirected graphs

Notation. G=(V,E)
* V=nodes (or vertices).
* E=edges (or arcs) between pairs of nodes.
« Captures pairwise relationship between objects.
* Graph size parameters: n=1VI,m=1EI.

V={1,2.3,4,5.6,7,8}

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }
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The evolution of FCC lobbying coalitions

Fred Will: & Associates . Consolidated Companies
e KCF::"“" Vermont PSB CO Tel. Association ® ot Plaine Comm Fitch Affordable Telecom _ ~rie™/One. Raw Bandwdth
o

Mid-Rivers #—__ ORTel. Association N
. Vermont DPS ° MT Tel - ® EC
brskaPSC irs® Wﬁm Bluegrass Wireless Hiawatha Broadband B |

Mai

.Ho\meTelephone o WyomingPSC Focal Norlight r Integra Telecom Y
PET DA Starpower Globaloom
.hissoula PIanSuppomets 'n giana URC i /'p = : f a Te;cog: EanhLink. .Mpower
Rural Uilities Senvice IS . Dridgesgm ° .
U.S. TelePacific
) Pennsylvama PSC
.Llnoolnvile Networks News Jarsey BPU
Oxdord Telephone ocpsc *
. P Delaware PSC -
FAN
AtContact Communications New York PSC .&d.'d?"
® Virual Geosateliite . ‘
L ]
. Global Crossi
Hot Springs Telephone o M
Q.Ronan Telephone )
pulver.com
® Google
L ]
EPG gliz
@ _ARIC
L] !
e
Al
‘COB::B * Caffipso
.
. / MSV
Bt ), .WildBlue
TeasOPC @
o Public Service Telephone
@' ®  Townes Telecommunications
L ]
Venture Communications Cooperative
Citizens Telephone [ | / DCI Voice Solutions @ South Slope
KKngdorn Telephone [} .
Verizon V) .Centenmal . Busin Telecom lCore Communications State of Hawan
Lauttamus o obso . o ®  SweofAlaske
2 \ American Cellutar KMC Tel *
. no:ldEl;agmg .espire Communications Advisory Counsal
B ATAT Wireless . *._ DS Tel%oom'e' .
S L Alliznce of Rural CMRS Carriers — I - e'e":emuﬂ"e e
a rOne ¢ NTCA =
Telstar Communications ® E Colorado Cellular Bathoff & Rowe O Molalla Corm‘mnmhons > Beaver Creek Telephone
Aventure X\ rubi PCS e
Audiocom : Smith Bagley @ O Emban
. | A . . N ——— 4 w ¥ )
FBN Indiana .Global Conference Partners Essterbrooke Cellular Fa,,pom‘ 7 ,. A OPAST (i% - Mgnt_oeTelephone A ‘Oregon-ldaho Utilities
: 228 Coplerencing lowa Network Services . Midwest Wireless éem? R e A Canby Telephone okt Telephone
Daraga Telephone & ¢ Blue Casa Commurications lowaTeI . Cract Lakek Co R i ' Helix Telephone
South Dakota Network consoheﬁoed Communications t mmunications . Pioneer Telephone e
o ~\\ Onvoy Telsape Communications o SureWest 0\.Omnﬂ'el o Stayton Telephone
. ]

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010


http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange

denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007


http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm

Some graph applications

R

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer

gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
syhapse
protein-protein interaction

bond



Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with A, =1 if (u,v) is an edge.
« Two representations of each edge.
* Space proportional to n2.
* Checking if (u,v) is an edge takes ©(1) time.
* |dentifying all edges takes ©(n2) time.

12345678
1{01100000
2110111000
3(/11001011
4101001000
5101110100
600001000
/700100001
8100100010




Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
« Two representations of each edge. S SR
* Space is O(m + n). /
* Checking if (u,v) is an edge takes O(degree(u)) time.
* ldentifying all edges takes ©(m + n) time.




Paths and connectivity

Def. A path in an undirected graph G=(V,E) is a sequence of nodes
vi, v2, ..., vk With the property that each consecutive pair v, v; is joined
by a different edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes « and v,
there is a path between u and v.

10



Cycles

Def. A cycle is a path vi, va, ..., v« in which v, =v, and k = 2.

Def. A cycle is simple if all nodes are distinct (except for v, and v,).

cycleC =1-2-4-5-3-1

11



Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third:

* G is connected.

* G does not contain a cycle.

* G has n—1 edges.

12



Rooted trees

Civen a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a child of v

a tree the same tree, rooted at 1

13



Phylogeny trees

Describe evolutionary history of species.

gut bacteriaq
trees
mushrooms
fish

mammals
birds
dragonflies

beetles
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GUI containment hierarchy

Describe organization of GUI widgets.

= Converter = IFrame

JPanel
1TextField
1ST1der

1ComboBox

JPanel
JTextField
1571der

| JFrame "

| JPanel {custom content pane) Il

JPanel JPanel
{ConversionPanel) {ConversionPanel)

I I
JPanel | JComboBox Il | JComboBox Il
{custom)

|
15Tider JTgxtFig]d JTextField 1511der "
(DecimalField) {DecimalField)

http://java.sun.com/docs/books/tutorial /uiswing/overview/anatomy.html

JPanel
{custom)
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Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between
sand ¢?

s-t shortest path problem. Given two nodes s and ¢, what is the length of
a shortest path between s and ¢?

Applications.
* Friendster.
« Maze traversal.
« Kevin Bacon number.
« Fewest hops in a communication network.

17



Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one “layer” at a time.

1 L, —  eee L,
BFS algorithm. e — "

¢ LO — { \) }.
« L, = all neighbors of L,.
- L,=all nodes that do not belong to L, or L,, and that have an edge to a

node in L,.
- L., =all nodes that do not belong to an earlier layer, and that have an

edge to a node in L,.

Theorem. For each i, L, consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff r appears in some layer.

18



Breadth-first search

Property. Let T be a BFS tree of G=(V, E), and let (x,y) be an edge of G.
Then, the levels of x and y differ by at most 1.

19



Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Pf.
* Easy to prove O(n?) running time:
- at most n lists L[]
- each node occurs on at most one list; for loop runs <n times
- when we consider node u, there are <n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is 2 ., degree(u) = 2m. =

T

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

20



Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 ={1,2,3,4,5,6,7,8 }.

21



Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

« Node: pixel.

« Edge: two neighboring lime pixels.

« Blob: connected component of lime pixels.

recolor lime green blob to blue

‘@0 N Tux Paint g

a— & "
.:.l

aint  Stamp RainbowSparkles

ol >

Lines Shapes Mirror * Flip

Blur ' Blocks

Abe

&\ /4 o\
Undo Redo Negative Fade
Eraser ' New Chalk Drip
Open Thick * Thin

ave
é Quit

ﬂ Blue!
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Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

« Node: pixel.

- Edge: two neighboring lime pixels.

« Blob: connected component of lime pixels.

recolor lime green blob to blue
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Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile it’s safe to add v

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
« DFS = explore in a different way.

24
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Bipartite graphs

Def. An undirected graph G =(V, E) is bipartite if the nodes can be colored
blue or white such that every edge has one white and one blue end.

Applications.
- Stable matching: med-school residents = blue, hospitals = white.

« Scheduling: machines = blue, jobs = white.

a bipartite graph

26



Testing bipartiteness

Many graph problems become:
« Easier if the underlying graph is bipartite (matching).
- Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure
of bipartite graphs.

a bipartite graph G another drawing of G

27



An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

28



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

/% %

L, L Ly L L, Ls

Case (i) Case (ii)

29



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
« Suppose no edge joins two nodes in same layer.
- By BFS property, each edge joins two nodes in adjacent levels.
 Bipartition: white = nodes on odd levels, blue = nodes on even levels.

O

30



Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
» Suppose (x,y) is an edge with x, y in same level L.

Let L. be level containing z.

Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.

Its lengthis 1 + (j—i) + (j—i), whichis odd. =
o LayerL]-

(X, y) path from path from
y to z Z to X

Let z = lca(x, y) = lowest common ancestor. z =lca(x, y)

31



The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

() o

<«—— 5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Directed graphs

Notation. G=(V,E).
* Edge (u,v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

« QOrientation of edges is crucial.
« Modern web search engines exploit hyperlink structure to rank web

pages by importance.

34



World wide web

Web graph.
 Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
« Modern search engines exploit hyperlink structure to rank web pages
by importance.

cnn.com

nhetscape.com novell.com cnnsi.com timewarner.com

 /
hbo.com
A

gameofthrones.com

35



Road network

Node = intersection; edge = one-way street.
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Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
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Ecological food web

Food web graph.
 Node = species.
« Edge = from prey to predator.

northerm copperbelly
water snake

awnls
hae i

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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blue-gill fish

shrew

algae (magnified)




Some directed graph applications

directed graph “ directed edge

transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from

control flow code block jump



Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s~t shortest path problem. Given two nodes s and ¢,
what is the length of a shortest path from s to ¢?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

40



Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. —= Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~u path. =

N

ok if paths overlap

41



Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
* Pick any node s.
Run BFS from s in G. reverse orientation of every edge in G
Run BFS from s in Greverse,
Return true iff all nodes reached in both BFS executions.

Correctness follows immediately from previous lemma. =

VAVANERNAVAN

strongly connected not strongly connected

42



Strong components

Def. A strong component is a maximal subset of mutually reachable
nodes.

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

SIAM J. CompuUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANt

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k, , k,, and k5, where V'is the number of vertices and E is the number
of edges of the graph being examined.
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Directed acyclic graphs

Def. A DACG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G=(V, E) is an ordering of its
hodes as v, v,, ...,v, so that for every edge (v;, v) we have i <j.

@ C——

~—

a DAG a topological ordering

45



Precedence constraints

Precedence constraints. Edge (v, v) means task v; must occur before v,

Applications.
» Course prerequisite graph: course v; must be taken before v..
+ Compilation: module v; must be compiled before v..
- Pipeline of computing jobs: output of job v, needed to determine input
of job v..

46



Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
« Suppose that G has a topological order v,,v,, ...,v, and that G also has a

directed cycle C. Let's see what happens.
» Let v, be the lowest-indexed node in C, and let v; be the node just

before v; thus (v, v) is an edge.
* By our choice of i, we have i <.
* On the other hand, since (v;,v) is an edge and v, v,, ..., v, is a topological

order, we must have j<i, a contradiction. =

the directed cycle C

© 0 oo 0P 0 6@

the supposed topological order: vy, ..., v,

47



Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

48



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

Suppose that G is a DAG and every node has at least one entering edge.

Let’s see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (1, v) we can walk backward to u.
Then, since u has at least one entering edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive

visits to w. C is a cycle. =

Qﬁ—@—@—@—@—@

49



Directed acyclic graphs

Lemma. If Gis a DAG, then G has a topological ordering.

Pf.

[by induction on #] >

Base case: true if n=1.

Given DAG on n > 1 nodes, find a node v with no entering edges.
G-{v}is aDAG, since deleting v cannot create cycles.

By inductive hypothesis, G- {v } has a topological ordering.

Place v first in topological ordering; then append nodes of G- { v}
in topological order. This is valid since v has no entering edges. =

To compute a topological ordering of G: DAG
Find a node v with no incoming edges and order it first
Delete v from G \klff

Recursively compute a topological ordering of G-—{v}

and append this order after v

50



Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

« Maintain the following information:

- count(w) = remaining number of incoming edges

- §=set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single scan through graph.
* Update: to delete v

- remove v from S

- decrement count(w) for all edges from v to w;

and add w to S if count(w) hits 0
- this is O(1) per edge =

51



