
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 4/1/19 10:09 PM

3.  GRAPHS

‣ basic definitions and applications 

‣ graph connectivity and graph traversal 

‣ testing bipartiteness 

‣ connectivity in directed graphs 

‣ DAGs and topological ordering



3.  GRAPHS

‣ basic definitions and applications 

‣ graph connectivity and graph traversal 

‣ testing bipartiteness 

‣ connectivity in directed graphs 

‣ DAGs and topological ordering



Undirected graphs
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Notation.  G = (V, E) 

・V = nodes (or vertices). 

・E = edges (or arcs) between pairs of nodes. 

・Captures pairwise relationship between objects. 

・Graph size parameters:  n = | V |, m = | E |.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8 } 

m = 11, n = 8
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One week of Enron emails
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The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm
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Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the 
previous time point (t); and most pertinent, the 
alter’s obesity status at times t and t + 1.25 We 
used generalized estimating equations to account 
for multiple observations of the same ego across 
examinations and across ego–alter pairs.26 We 
assumed an independent working correlation 
structure for the clusters.26,27

The use of a time-lagged dependent variable 
(lagged to the previous examination) eliminated 
serial correlation in the errors (evaluated with a 
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and 
any intrinsic, stable predisposition to obesity. The 
use of a lagged independent variable for an alter’s 
weight status controlled for homophily.25 The 
key variable of interest was an alter’s obesity at 
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight 
affected an ego’s weight or that an ego and an 
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego 
and the alter affected the association between the 
ego’s obesity and the alter’s obesity. For example, 
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity, 
then the directionality of friendship should not 
have been relevant.

We evaluated the role of a possible spread in 
smoking-cessation behavior as a contributor to 
the spread of obesity by adding variables for the 
smoking status of egos and alters at times t and 
t + 1 to the foregoing models. We also analyzed 
the role of geographic distance between egos 
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social 
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle 
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status: 
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the 
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange 
denotes a familial tie.

http://www.cmu.edu/joss/content/issues/2010jossviz/5_deVries.htm
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Some graph applications

graph node edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation street intersection, airport highway, airway route

internet class C network connection

game board position legal move

social relationship person, actor friendship, movie cast

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond
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Graph representation:  adjacency matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge. 

・Two representations of each edge. 

・Space proportional to n2. 

・Checking if (u, v) is an edge takes Θ(1) time.  

・Identifying all edges takes Θ(n2) time.

   1 2 3 4 5 6 7 8 
1  0 1 1 0 0 0 0 0 
2  1 0 1 1 1 0 0 0 
3  1 1 0 0 1 0 1 1 
4  0 1 0 0 1 0 0 0 
5  0 1 1 1 0 1 0 0 
6  0 0 0 0 1 0 0 0 
7  0 0 1 0 0 0 0 1 
8  0 0 1 0 0 0 1 0
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Graph representation:  adjacency lists

Adjacency lists.  Node-indexed array of lists. 

・Two representations of each edge. 

・Space is Θ(m + n). 

・Checking if (u, v) is an edge takes O(degree(u)) time. 

・Identifying all edges takes Θ(m + n) time.

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7
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Paths and connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence of nodes  
v1, v2, …, vk with the property that each consecutive pair vi–1, vi is joined  
by a different edge in E. 

Def.  A path is simple if all nodes are distinct. 

Def.  An undirected graph is connected if for every pair of nodes u and v, 
there is a path between u and v.
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Cycles

Def.  A cycle is a path v1, v2, …, vk in which v1 = vk and k ≥ 2. 

Def.  A cycle is simple if all nodes are distinct (except for v1 and vk ). 

cycle C = 1-2-4-5-3-1
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Trees

Def.  An undirected graph is a tree if it is connected and does not contain 
a cycle. 

Theorem.  Let G be an undirected graph on n nodes. Any two of the 

following statements imply the third: 

・G is connected. 

・G does not contain a cycle. 

・G has n – 1 edges.
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Rooted trees

Given a tree T, choose a root node r and orient each edge away from r. 

Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

the parent of v

a child of v

root r



 14

Phylogeny trees

Describe evolutionary history of species. 



Describe organization of GUI widgets.
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GUI containment hierarchy

http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
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Connectivity

s-t connectivity problem.  Given two nodes s and t, is there a path between  
s and t ? 

s-t shortest path problem.  Given two nodes s and t, what is the length of  
a shortest path between s and t ? 

Applications. 

・Friendster. 

・Maze traversal. 

・Kevin Bacon number. 

・Fewest hops in a communication network.
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Breadth-first search

BFS intuition.  Explore outward from s in all possible directions, adding 

nodes one “layer” at a time. 

BFS algorithm. 

・L0 = { s }. 

・L1 = all neighbors of L0. 

・L2 = all nodes that do not belong to L0 or L1, and that have an edge to a 

node in L1. 

・Li+1 = all nodes that do not belong to an earlier layer, and that have an 

edge to a node in Li. 

Theorem.  For each i, Li consists of all nodes at distance exactly i 
from s.  There is a path from s to t iff t appears in some layer.

s L1 L2 Ln–1
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Breadth-first search

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G.  
Then, the levels of x and y differ by at most 1.

L0

L1

L2

L3
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Breadth-first search:  analysis

Theorem.  The above implementation of BFS runs in O(m + n) time if the 

graph is given by its adjacency representation. 

Pf. 

・Easy to prove O(n2) running time: 
- at most n lists L[i] 
- each node occurs on at most one list; for loop runs ≤ n times 
- when we consider node u, there are ≤ n incident edges (u, v),  

and we spend O(1) processing each edge 

・Actually runs in O(m + n) time: 
- when we consider node u, there are degree(u) incident edges (u, v) 
- total time processing edges is Σu∈V  degree(u)  =  2m.    ▪

each edge (u, v) is counted exactly twice 
in sum: once in degree(u) and once in degree(v)
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Connected component

Connected component.  Find all nodes reachable from s. 

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Flood fill

Flood fill.  Given lime green pixel in an image, change color of entire blob of 

neighboring lime pixels to blue. 

・Node:  pixel. 

・Edge:  two neighboring lime pixels. 

・Blob:  connected component of lime pixels.
recolor lime green blob to blue
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Flood fill

Flood fill.  Given lime green pixel in an image, change color of entire blob of 

neighboring lime pixels to blue. 

・Node:  pixel. 

・Edge:  two neighboring lime pixels. 

・Blob:  connected component of lime pixels.
recolor lime green blob to blue
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Connected component

Connected component.  Find all nodes reachable from s. 

Theorem.  Upon termination, R is the connected component containing s. 

・BFS = explore in order of distance from s. 

・DFS = explore in a different way.

s

u v

R

it’s safe to add v
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Bipartite graphs

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be colored 

blue or white such that every edge has one white and one blue end. 

Applications. 

・Stable matching:  med-school residents = blue, hospitals = white. 

・Scheduling:  machines = blue, jobs = white.

a bipartite graph
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Testing bipartiteness

Many graph problems become: 

・Easier if the underlying graph is bipartite (matching). 

・Tractable if the underlying graph is bipartite (independent set). 

Before attempting to design an algorithm, we need to understand structure 

of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An obstruction to bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an odd-length cycle. 

Pf.  Not possible to 2-color the odd-length cycle, let alone G.

bipartite 
(2-colorable)

not bipartite 
(not 2-colorable)
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Bipartite graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers produced 

by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an  
   odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3



 30

Bipartite graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers produced 

by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an  
   odd-length cycle (and hence is not bipartite). 

Pf.  (i) 

・Suppose no edge joins two nodes in same layer. 

・By BFS property, each edge joins two nodes in adjacent levels. 

・Bipartition:  white = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3
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Bipartite graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers produced 

by BFS starting at node s.  Exactly one of the following holds. 

(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 

(ii)  An edge of G joins two nodes of the same layer, and G contains an  
   odd-length cycle (and hence is not bipartite). 

Pf.  (ii) 

・Suppose (x, y) is an edge with x, y in same level Lj. 

・Let z = lca(x, y) = lowest common ancestor. 

・Let Li be level containing z. 

・Consider cycle that takes edge from x to y, 
then path from y to z, then path from z to x. 

・Its length is    1    +   (j – i)  +  (j – i),  which is odd.  ▪

z = lca(x, y)

(x, y) path from 
y to z

path from 
z to x
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The only obstruction to bipartiteness

Corollary.  A graph G is bipartite iff it contains no odd-length cycle.

5-cycle C

bipartite 
(2-colorable)

not bipartite 
(not 2-colorable)



3.  GRAPHS

‣ basic definitions and applications 

‣ graph connectivity and graph traversal 

‣ testing bipartiteness 

‣ connectivity in directed graphs 

‣ DAGs and topological ordering



 34

Directed graphs

Notation.  G = (V, E). 

・Edge (u, v) leaves node u and enters node v. 

Ex.  Web graph:  hyperlink points from one web page to another. 

・Orientation of edges is crucial. 

・Modern web search engines exploit hyperlink structure to rank web 

pages by importance.



Web graph. 

・Node:  web page. 

・Edge:  hyperlink from one page to another (orientation is crucial). 

・Modern search engines exploit hyperlink structure to rank web pages 

by importance.
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World wide web

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

gameofthrones.com
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Road network

Node = intersection; edge = one-way street.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.



Node = political blog; edge = link.
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Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4
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Ecological food web

Food web graph. 

・Node = species.  

・Edge = from prey to predator.

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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Some directed graph applications

directed graph node directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump
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Graph search

Directed reachability.  Given a node s, find all nodes reachable from s. 

Directed s↝t shortest path problem.  Given two nodes s and t,  
what is the length of a shortest path from s to t ? 

Graph search.  BFS extends naturally to directed graphs. 

Web crawler.  Start from web page s. Find all web pages linked from s, 
either directly or indirectly.
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Strong connectivity

Def.  Nodes u and v are mutually reachable if there is both a path from u to v 
and also a path from v to u. 

Def.  A graph is strongly connected if every pair of nodes is mutually 

reachable. 

Lemma.  Let s be any node. G is strongly connected iff every node is 

reachable from s, and s is reachable from every node. 

Pf.  ⇒  Follows from definition. 

Pf.  ⇐  Path from u to v: concatenate u↝s path with s↝v path. 
            Path from v to u: concatenate v↝s path with s↝u path.   ▪

s

v

u

ok if paths overlap
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Strong connectivity: algorithm

Theorem.  Can determine if G is strongly connected in O(m + n) time. 

Pf. 

・Pick any node s. 

・Run BFS from s in G. 

・Run BFS from s in G reverse. 

・Return true iff all nodes reached in both BFS executions. 

・Correctness follows immediately from previous lemma.   ▪

reverse orientation of every edge in G

strongly connected not strongly connected
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Strong components

Def.  A strong component is a maximal subset of mutually reachable 

nodes. 

 
 
 
 
 
 
 
 
Theorem.  [Tarjan 1972]  Can find all strong components in O(m + n) time.

A digraph and its strong components

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.
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Directed acyclic graphs

Def.  A DAG is a directed graph that contains no directed cycles. 

Def.  A topological order of a directed graph G = (V, E) is an ordering of its 

nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence constraints

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj. 

Applications. 

・Course prerequisite graph:  course vi must be taken before vj. 

・Compilation:  module vi must be compiled before vj. 

・Pipeline of computing jobs:  output of job vi needed to determine input 

of job vj.
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Directed acyclic graphs

Lemma.  If G has a topological order, then G is a DAG. 

Pf.  [by contradiction] 

・Suppose that G has a topological order v1, v2, …, vn and that G also has a 

directed cycle C.  Let’s see what happens. 

・Let vi be the lowest-indexed node in C, and let vj be the node just 
before vi; thus (vj, vi) is an edge. 

・By our choice of i, we have i < j. 

・On the other hand, since (vj, vi) is an edge and v1, v2, …, vn is a topological 

order, we must have j < i, a contradiction.   ▪

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C
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Directed acyclic graphs

Lemma.  If G has a topological order, then G is a DAG. 

Q.  Does every DAG have a topological ordering? 

Q.  If so, how do we compute one?
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Directed acyclic graphs

Lemma.  If G is a DAG, then G has a node with no entering edges. 

Pf.  [by contradiction] 

・Suppose that G is a DAG and every node has at least one entering edge.  

Let’s see what happens. 

・Pick any node v, and begin following edges backward from v.  Since v 
has at least one entering edge (u, v) we can walk backward to u. 

・Then, since u has at least one entering edge (x, u), we can walk 

backward to x. 

・Repeat until we visit a node, say w, twice. 

・Let C denote the sequence of nodes encountered between successive 

visits to w. C is a cycle.   ▪

w x u v
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Directed acyclic graphs

Lemma.  If G is a DAG, then G has a topological ordering. 

Pf.  [by induction on n] 

・Base case: true if n = 1. 

・Given DAG on n  > 1 nodes, find a node v with no entering edges. 

・G – { v } is a DAG, since deleting v cannot create cycles. 

・By inductive hypothesis, G – { v } has a topological ordering. 

・Place v first in topological ordering; then append nodes of G – { v } 

・in topological order. This is valid since v has no entering edges.   ▪

DAG

v



 51

Topological sorting algorithm:  running time

Theorem.  Algorithm finds a topological order in O(m + n) time. 

Pf.   

・Maintain the following information: 
- count(w) = remaining number of incoming edges 
- S = set of remaining nodes with no incoming edges 

・Initialization:  O(m + n) via single scan through graph. 

・Update:  to delete v 
- remove v from S 
- decrement count(w) for all edges from v to w; 

and add w to S if count(w) hits 0 
- this is O(1) per edge    ▪


