2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- implementing Gale–Shapley
- survey of common running times
2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- implementing Gale–Shapley
- survey of common running times
“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?” — Charles Babbage (1864)
Models of computation: Turing machines

Deterministic Turing machine. Simple and idealistic model.

Running time. Number of steps.
Memory. Number of tape cells utilized.

Caveat. No random access of memory.
 • Single-tape TM requires $\geq n^2$ steps to detect n-bit palindromes.
 • Easy to detect palindromes in $\leq cn$ steps on a real computer.
Models of computation: word RAM

Word RAM.
- Each memory location and input/output cell stores a w-bit integer.
- Primitive operations: arithmetic/logic operations, read/write memory, array indexing, following a pointer, conditional branch, ...

Running time. Number of primitive operations.
Memory. Number of memory cells utilized.

Caveat. At times, need more refined model (e.g., multiplying n-bit integers).
Brute force

Brute force. For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.

- Typically takes 2^n steps (or worse) for inputs of size n.
- Unacceptable in practice.

Ex. Stable matching problem: test all $n!$ perfect matchings for stability.
Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm should slow down by at most some multiplicative constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants $a > 0$ and $b > 0$ such that, for every input of size n, the algorithm performs $\leq a n^b$ primitive computational steps.

Corresponds to $C = 2^b$
Polynomial running time

We say that an algorithm is **efficient** if it has a polynomial running time.

Theory. Definition is (relatively) insensitive to model of computation.

Practice. It really works!

- The poly-time algorithms that people develop have both small constants and small exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms in the wild have galactic constants and/or huge exponents.

Q. Which would you prefer: $20n^{120}$ or $n^{1 + 0.02 \ln n}$?

Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
mthorup@diku.dk

Abstract

Chen, Grigni, and Papadimitriou (WADS ’97 and STOC ’98) have introduced a modified notion of planarity, where two faces are considered adjacent if they share at least one point. The resulting abstract graphs are called map graphs. Chen et al. raised the question of whether map graphs can be recognized in polynomial time. They showed that the decision problem is in NP and presented a polynomial time algorithm for the special case where we allow at most 4 faces to intersect in any point — if only 3 are allowed to intersect in a point, we get the usual planar graphs.

Chen et al. conjectured that map graphs can be recognized in polynomial time, and this paper, their conjecture is settled affirmatively.
Worst-case analysis

Worst case. Running time guarantee for any input of size n.
- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice because the worst-case instances don’t arise.

- simplex algorithm
- Linux grep
- k-means algorithm
Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.

Ex. The expected number of compares to quicksort \(n \) elements is \(\sim 2n \ln n \).

Amortized. Worst-case running time for any sequence of \(n \) operations.

Ex. Starting from an empty stack, any sequence of \(n \) push and pop operations takes \(O(n) \) primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, ...
2. **Algorithm Analysis**

- computational tractability
- asymptotic order of growth
- implementing Gale–Shapley
- survey of common running times
Big O notation

Upper bounds. $f(n)$ is $O(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- $f(n)$ is $O(n^2)$.
 - choose $c = 50, n_0 = 1$
- $f(n)$ is neither $O(n)$ nor $O(n \log n)$.

Typical usage. Insertion sort makes $O(n^2)$ compares to sort n elements.
Let $f(n) = 3n^2 + 17 \, n \, \log_2 n + 1000$. Which of the following are true?

A. $f(n)$ is $O(n^2)$.

B. $f(n)$ is $O(n^3)$.

C. Both A and B.

D. Neither A nor B.
Big O notational abuses

One-way “equality.” $O(g(n))$ is a set of functions, but computer scientists often write $f(n) = O(g(n))$ instead of $f(n) \in O(g(n))$.

Ex. Consider $g_1(n) = 5n^3$ and $g_2(n) = 3n^2$.
 - We have $g_1(n) = O(n^3)$ and $g_2(n) = O(n^3)$.
 - But, do not conclude $g_1(n) = g_2(n)$.

Domain and codomain. f and g are real-valued functions.
 - The domain is typically the natural numbers: $\mathbb{N} \to \mathbb{R}$.
 - Sometimes we extend to the reals: $\mathbb{R}_{\geq 0} \to \mathbb{R}$.
 - Or restrict to a subset.

Bottom line. OK to abuse notation in this way; not OK to misuse it.
Big O notation: properties

Reflexivity. f is $O(f)$.

Constants. If f is $O(g)$ and $c > 0$, then $c f$ is $O(g)$.

Products. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$.

Pf.

- $\exists c_1 > 0$ and $n_1 \geq 0$ such that $0 \leq f_1(n) \leq c_1 \cdot g_1(n)$ for all $n \geq n_1$.
- $\exists c_2 > 0$ and $n_2 \geq 0$ such that $0 \leq f_2(n) \leq c_2 \cdot g_2(n)$ for all $n \geq n_2$.
- Then, $0 \leq f_1(n) \cdot f_2(n) \leq \frac{c_1 \cdot c_2 \cdot g_1(n) \cdot g_2(n)}{n_0} \cdot \max \{ n_1, n_2 \}$. ■

Sums. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max \{ g_1, g_2 \})$.

Transitivity. If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

Ex. $f(n) = 5n^3 + 3n^2 + n + 1234$ is $O(n^3)$.

ignore lower-order terms
Big Omega notation

Lower bounds. $f(n)$ is $\Omega(g(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for all $n \geq n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.
 - $f(n)$ is both $\Omega(n^2)$ and $\Omega(n)$.
 - $f(n)$ is not $\Omega(n^3)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.
Which is an equivalent definition of big Omega notation?

A. $f(n)$ is $\Omega(g(n))$ iff $g(n)$ is $O(f(n))$.

B. $f(n)$ is $\Omega(g(n))$ iff there exists a constant $c > 0$ such that $f(n) \geq c \cdot g(n) \geq 0$ for infinitely many n.

C. Both A and B.

D. Neither A nor B.
Which is an equivalent definition of big Omega notation?

A. \(f(n) \) is \(\Omega(g(n)) \) iff \(g(n) \) is \(O(f(n)) \).

B. \(f(n) \) is \(\Omega(g(n)) \) iff there exist constants \(c > 0 \) such that \(f(n) \geq c \cdot g(n) \geq 0 \) for infinitely many \(n \).

C. Both A and B.

D. Neither A nor B.

\(f(n) \) is \(\Omega(g(n)) \) if there exist constants \(c_1 > 0 \) and \(n_0 \geq 0 \) such that \(f(n) \geq c_1 \cdot g(n) \geq 0 \) for all \(n \geq n_0 \)

\(g(n) \) is \(O(f(n)) \) if there exist constants \(c_2 > 0 \) and \(n_0 \geq 0 \) such that \(0 \leq g(n) \leq c_2 \cdot f(n) \) for all \(n \geq n_0 \)

\[c_1 = \frac{1}{c_2} \]
Big Theta notation

Tight bounds. $f(n)$ is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \geq 0$ such that $0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- $f(n)$ is $\Theta(n^2)$. \(\text{← choose } c_1 = 32, c_2 = 50, n_0 = 1\)
- $f(n)$ is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

between $\frac{1}{2} n \log_2 n$ and $n \log_2 n$
Which is an equivalent definition of big Theta notation?

A. \(f(n) \) is \(\Theta(g(n)) \) iff \(f(n) \) is both \(O(g(n)) \) and \(\Omega(g(n)) \).

B. \(f(n) \) is \(\Theta(g(n)) \) iff \(\lim_{{n \to \infty}} \frac{f(n)}{g(n)} = c \) for some constant \(0 < c < \infty \).

C. Both A and B.

D. Neither A nor B.
Asymptotic bounds and limits

Proposition. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \) for some constant \(0 < c < \infty \) then \(f(n) \) is \(\Theta(g(n)) \).

Pf.
- By definition of the limit, for any \(\varepsilon > 0 \), there exists \(n_0 \) such that

\[
c - \varepsilon \leq \frac{f(n)}{g(n)} \leq c + \varepsilon
\]

for all \(n \geq n_0 \).
- Choose \(\varepsilon = \frac{1}{2} c > 0 \).
- Multiplying by \(g(n) \) yields \(1/2 \cdot g(n) \leq f(n) \leq 3/2 \cdot g(n) \) for all \(n \geq n_0 \).
- Thus, \(f(n) \) is \(\Theta(g(n)) \) by definition, with \(c_1 = \frac{1}{2} c \) and \(c_2 = \frac{3}{2} c \). □

Proposition. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \), then \(f(n) \) is \(O(g(n)) \) but not \(\Omega(g(n)) \).

Proposition. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f(n) \) is \(\Omega(g(n)) \) but not \(O(g(n)) \).
Asymptotic bounds for some common functions

Polynomials. Let \(f(n) = a_0 + a_1 n + \ldots + a_d n^d \) with \(a_d > 0 \). Then, \(f(n) \) is \(\Theta(n^d) \).

Pf. \[
\lim_{n \to \infty} \frac{a_0 + a_1 n + \ldots + a_d n^d}{n^d} = a_d > 0
\]

Logarithms. \(\log_a n \) is \(\Theta(\log_b n) \) for every \(a > 1 \) and every \(b > 1 \).

Pf. \[
\frac{\log_a n}{\log_b n} = \frac{1}{\log_b a}
\]

no need to specify base (assuming it is a constant)

Logarithms and polynomials. \(\log_a n \) is \(O(n^d) \) for every \(a > 1 \) and every \(d > 0 \).

Pf. \[
\lim_{n \to \infty} \frac{\log_a n}{n^d} = 0
\]

Exponentials and polynomials. \(n^d \) is \(O(r^n) \) for every \(r > 1 \) and every \(d > 0 \).

Pf. \[
\lim_{n \to \infty} \frac{n^d}{r^n} = 0
\]

Factorials. \(n! \) is \(2^{\Theta(n \log n)} \).

Pf. Stirling’s formula: \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \)
Big O notation with multiple variables

Upper bounds. $f(m, n)$ is $O(g(m, n))$ if there exist constants $c > 0$, $m_0 \geq 0$, and $n_0 \geq 0$ such that $0 \leq f(m, n) \leq c \cdot g(m, n)$ for all $n \geq n_0$ or $m \geq m_0$.

Ex. $f(m, n) = 32mn^2 + 17mn + 32n^3$.

* $f(m, n)$ is both $O(mn^2 + n^3)$ and $O(mn^3)$.

* $f(m, n)$ is $O(n^3)$ if a precondition to the problem implies $m \leq n$.

* $f(m, n)$ is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. In the worst case, breadth-first search takes $O(m + n)$ time to find a shortest path from s to t in a digraph with n nodes and m edges.
2. Algorithm Analysis

- computational tractability
- asymptotic order of growth
- implementing Gale–Shapley
- survey of common running times
Efficient implementation

Goal. Implement Gale–Shapley to run in $O(n^2)$ time.

Gale–Shapley (*preference lists for n hospitals and n students*)

Initialize M to empty matching.

While (some hospital h is unmatched)

$s \leftarrow$ first student on h’s list to whom h has not yet proposed.

If (s is unmatched)

Add h–s to matching M.

Else If (s prefers h to current partner h')

Replace h'–s with h–s in matching M.

Else

s rejects h.

Return stable matching M.
Efficient implementation

Goal. Implement Gale–Shapley to run in $O(n^2)$ time.

Representing hospitals and students. Index hospitals and students 1, ..., n.

Representing the matching.
- Maintain two arrays $\text{student}[h]$ and $\text{hospital}[s]$.
 - if h matched to s, then $\text{student}[h] = s$ and $\text{hospital}[s] = h$
 - use value 0 to designate that hospital or student is unmatched
- Can add/remove a pair from matching in $O(1)$ time.

- Maintain set of unmatched hospitals in a queue (or stack).
- Can find an unmatched hospital in $O(1)$ time.
Hospital makes a proposal.

- Key operation: find hospital’s next favorite student.
- For each hospital: maintain a list of students, ordered by preference.
- For each hospital: maintain a pointer to student for next proposal.

Bottom line. Making a proposal takes $O(1)$ time.
Data representation: accepting/rejecting a proposal

Student accepts/rejects a proposal.

• Does student s prefer hospital h to hospital h'?
• For each student, create inverse of preference list of hospitals.

<table>
<thead>
<tr>
<th>pref[]</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

student prefers hospital 4 to 6 since $\text{rank}[4] < \text{rank}[6]$

<table>
<thead>
<tr>
<th>rank[]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4th</td>
<td>8th</td>
<td>2nd</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td>3rd</td>
<td>1st</td>
</tr>
</tbody>
</table>

\[
\text{for } i = 1 \text{ to } n \\
\text{rank}[\text{pref}[i]] = i
\]

Bottom line. After $\Theta(n^2)$ preprocessing time (to create the n ranking arrays), it takes $O(1)$ time to accept/reject a proposal.
Stable matching: summary

Theorem. Can implement Gale–Shapley to run in $O(n^2)$ time.

Pf.

- $\Theta(n^2)$ preprocessing time to create the n ranking arrays.
- There are $O(n^2)$ proposals; processing each proposal takes $O(1)$ time.

Theorem. In the worst case, any algorithm to find a stable matching must query the hospital’s preference list $\Omega(n^2)$ times.
2. **Algorithm Analysis**

- computational tractability
- asymptotic order of growth
- implementing Gale–Shapley
- survey of common running times
Constant time

Constant time. Running time is $O(1)$.

Examples.

- Conditional branch.
- Arithmetic/logic operation.
- Declare/initiate a variable.
- Follow a link in a linked list.
- Access element i in an array.
- Compare/exchange two elements in an array.
- ...

bounded by a constant, which does not depend on input size n
Linear time

Linear time. Running time is $O(n)$.

Merge two sorted lists. Combine two sorted linked lists $A = a_1, a_2, \ldots, a_n$ and $B = b_1, b_2, \ldots, b_n$ into a sorted whole.

$O(n)$ algorithm. Merge in mergesort.

\[
i \leftarrow 1; \quad j \leftarrow 1.
\]

\[\text{WHILE (both lists are nonempty)}\]
\[
\text{IF } (a_i \leq b_j) \quad \text{append } a_i \text{ to output list and increment } i.
\]
\[
\text{ELSE } \quad \text{append } b_j \text{ to output list and increment } j.
\]

Append remaining elements from nonempty list to output list.
TARGET-SUM. Given a sorted array of n distinct integers and an integer T, find two that sum to exactly T?

<table>
<thead>
<tr>
<th>input (sorted)</th>
<th>-20</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 60$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TARGET-SUM. Given a sorted array of \(n \) distinct integers and an integer \(T \), find two that sum to exactly \(T \)?

\(O(n^2) \) algorithm. Try all pairs.

\(O(n) \) algorithm. Exploit sorted order.

<table>
<thead>
<tr>
<th>input (sorted)</th>
<th>(-20)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
</table>

\(T = 60 \)

Invariant. No element to the left of \(i \) or right of \(j \) in pair that sums to \(T \).
Logarithmic time

Logarithmic time. Running time is $O(\log n)$.

Search in a sorted array. Given a sorted array A of n distinct integers and an integer x, find index of x in array.

$O(\log n)$ algorithm. Binary search.

- Invariant: If x is in the array, then x is in $A[lo .. hi]$.
- After k iterations of WHILE loop, $(hi - lo + 1) \leq n / 2^k \Rightarrow k \leq 1 + \log_2 n$.

```
lo ← 1; hi ← n.

WHILE (lo ≤ hi)
    mid ← [(lo + hi) / 2].
    IF (x < A[mid]) hi ← mid - 1.
    ELSE IF (x > A[mid]) lo ← mid + 1.
    ELSE RETURN mid.
RETURN −1.
```
Logarithmic time

$O(\log n)$
Search in a Sorted Rotated Array

Search-In-Sorted-Rotated-Array. Given a rotated sorted array of \(n \) distinct integers and an element \(x \), determine if \(x \) is in the array.

![Sorted Circular Array](image)

![Sorted Rotated Array](image)
SEARCH-IN-SORTED-ROTATED-ARRAY. Given a rotated sorted array of n distinct integers and an element x, determine if x is in the array.

$O(\log n)$ algorithm.

- Find index k of smallest element.
- Binary search for x in either $A[1..k-1]$ or $A[k..n]$.

find index of smallest element

$$lo \leftarrow 1; hi \leftarrow n.$$

IF $(A[lo] \leq A[hi])$ **RETURN** 0

WHILE $(lo + 2 \leq hi)$

mid $\leftarrow \lceil(lo + hi) / 2\rceil$.

IF $(A[mid] < A[hi])$

$hi \leftarrow mid$.

ELSE **IF** $(A[mid] > A[hi])$

$lo \leftarrow mid$.

RETURN hi
Linearithmic time

Linearithmic time. Running time is $O(n \log n)$.

Sorting. Given an array of n elements, rearrange them in ascending order.

$O(n \log n)$ algorithm. Mergesort.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>E</td>
<td>R</td>
<td>G</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>M</td>
<td>R</td>
<td>G</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>M</td>
<td>G</td>
<td>R</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>E</td>
<td>T</td>
<td>A</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>E</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
</tbody>
</table>
LARGEST-EMPTY-INTERVAL. Given n timestamps x_1, \ldots, x_n on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?
LARGEST EMPTY INTERVAL

LARGEST-EMPTY-INTERVAL. Given n timestamps x_1, \ldots, x_n on which copies of a file arrive at a server, what is largest interval when no copies of file arrive?

$O(n \log n)$ algorithm.
- Sort the array a.
- Scan the sorted list in order, identifying the maximum gap between successive timestamps.
Quadratic time

Quadratic time. Running time is $O(n^2)$.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest to each other.

$O(n^2)$ algorithm. Enumerate all pairs of points (with $i < j$).

\[
{\begin{align*}
\text{min} & \leftarrow \infty. \\
\text{FOR} & \quad i = 1 \text{ TO } n \\
\quad & \text{FOR} \quad j = i + 1 \text{ TO } n \\
\quad & \quad d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2. \\
\quad & \quad \text{IF} \quad (d < \text{min}) \\
\quad & \quad \quad \text{min} \leftarrow d.
\end{align*}}
\]

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. [see §5.4]
Cubic time

Cubic time. Running time is $O(n^3)$.

3-Sum. Given an array of n distinct integers, find three that sum to 0.

$O(n^3)$ algorithm. Enumerate all triples (with $i < j < k$).

```
FOR i = 1 TO n
    FOR j = i + 1 TO n
        FOR k = j + 1 TO n
            IF (a_i + a_j + a_k = 0)
                RETURN (a_i, a_j, a_k).
```

Remark. $\Omega(n^3)$ seems inevitable, but $O(n^2)$ is not hard. [see next slide]
3-Sum. Given an array of n distinct integers, find three that sum to 0.

$O(n^3)$ algorithm. Try all triples.

$O(n^2)$ algorithm.
3-Sum. Given an array of n distinct integers, find three that sum to 0.

$O(n^3)$ algorithm. Try all triples.

$O(n^2)$ algorithm.
- Sort the array a.
- For each integer a_i: solve TARGET-SUM on the array containing all elements except a_i with the target sum $T = -a_i$.

Best-known algorithm. $O(n^2 / (\log n / \log \log n))$.

Conjecture. No $O(n^{2-\varepsilon})$ algorithm for any $\varepsilon > 0$.
Polynomial time

Polynomial time. Running time is $O(n^k)$ for some constant $k > 0$.

Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.

$O(n^k)$ algorithm. Enumerate all subsets of k nodes.

```
FOREACH subset $S$ of $k$ nodes:
    Check whether $S$ is an independent set.
    IF (S is an independent set)
        RETURN $S$.
```

- Check whether S is an independent set of size k takes $O(k^2)$ time.
- Number of k-element subsets $= \binom{n}{k} = \frac{n(n-1)(n-2) \times \cdots \times (n-k+1)}{k(k-1)(k-2) \times \cdots \times 1} \leq \frac{n^k}{k!}$
- $O(k^2 \frac{n^k}{k!}) = O(n^k)$.

k is a constant
Exponential time

Exponential time. Running time is $O(2^{nk})$ for some constant $k > 0$.

Independent set. Given a graph, find independent set of max size.

$O(n^2 2^n)$ algorithm. Enumerate all subsets of n elements.

\[
S^* \leftarrow \emptyset.
\]

FOR EACH subset S of n nodes:

Check whether S is an independent set.

IF (S is an independent set and $|S| > |S^*|$)

\[
S^* \leftarrow S.
\]

RETURN S^*.

independent set of max size
Exponential time

Exponential time. Running time is $O(2^{nk})$ for some constant $k > 0$.

Euclidean TSP. Given n points in the plane, find a tour of minimum length.

$O(n \times n!)$ algorithm. Enumerate all permutations of length n.

\[
\pi^* \leftarrow \emptyset.
\]

FOR EACH permutation π of n points:

Compute length of tour corresponding to π.

IF (length(π) < length(π^*))

$\pi^* \leftarrow \pi$.

RETURN π^*.

for simplicity, we'll assume Euclidean distances are rounded to nearest integer (to avoid issues with infinite precision)
Which is an equivalent definition of exponential time?

A. $O(2^n)$

B. $O(2^{cn})$ for some constant $c > 0$.

C. Both A and B.

D. Neither A nor B.