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SECTION 2.1



A strikingly modern thought
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“ As soon as an Analytic Engine exists, it will necessarily guide the future 

   course of the science.  Whenever any result is sought by its aid, the question 

   will arise—By what course of calculation can these results be arrived at by 

   the machine in the shortest time? ”    —  Charles Babbage (1864)

Analytic Engine

how many times do you 
have to turn the crank?



Models of computation:  Turing machines

Deterministic Turing machine.  Simple and idealistic model. 

 

 

 

 

 

 

 

 

Running time.  Number of steps. 

Memory.  Number of tape cells utilized. 

 

Caveat.  No random access of memory. 

・Single-tape TM requires ≥ n2 steps to detect n-bit palindromes. 

・Easy to detect palindromes in ≤ cn steps on a real computer.
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Models of computation:  word RAM

Word RAM. 

・Each memory location and input/output cell stores a w-bit integer. 

・Primitive operations: arithmetic/logic operations, read/write memory, 

array indexing, following a pointer, conditional branch, … 

 

 

 

 

 

 

 

 

 

Running time.  Number of primitive operations. 

Memory.  Number of memory cells utilized. 

 

Caveat.  At times, need more refined model (e.g., multiplying n-bit integers).
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…input

output …

. 

. 

.

memory

program

assume w ≥ log2 n

ia[i]

constant-time C-style operations 
(w = 64)



Brute force

Brute force.  For many nontrivial problems, there is a natural brute-force 

search algorithm that checks every possible solution. 

・Typically takes 2n steps (or worse) for inputs of size n. 

・Unacceptable in practice. 

 

 

 

 

 

 

 

 

 

 

 

 

Ex.  Stable matching problem: test all n! perfect matchings for stability.
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Desirable scaling property.  When the input size doubles, the algorithm 

should slow down by at most some multiplicative constant factor C.  

 

 

 

Def.  An algorithm is poly-time if the above scaling property holds.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Polynomial running time
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corresponds 

to C = 2b 

There exist constants a > 0 and b > 0 such that,
for every input of size n, the algorithm performs

≤ a nb primitive computational steps.



Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time. 

 

Theory.  Definition is (relatively) insensitive to model of computation. 

 

Practice.  It really works! 

・The poly-time algorithms that people develop have both 

small constants and small exponents. 

・Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem. 

Exceptions.  Some poly-time algorithms in the wild 

have galactic constants and/or huge exponents. 

 

Q.  Which would you prefer:  20 n120  or  n1 + 0.02 ln n  ? 
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Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-
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Worst-case analysis

Worst case.  Running time guarantee for any input of size n. 

・Generally captures efficiency in practice. 

・Draconian view, but hard to find effective alternative. 

 

 

Exceptions.  Some exponential-time algorithms are used widely in practice 

because the worst-case instances don’t arise.
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simplex algorithm Linux grep k-means algorithm



Other types of analyses

Probabilistic.  Expected running time of a randomized algorithm.  

Ex. The expected number of compares to quicksort n elements is ~ 2n ln n.  

 

 

 

 

Amortized.  Worst-case running time for any sequence of n operations. 

Ex.  Starting from an empty stack, any sequence of n push and pop 

operations takes O(n) primitive computational steps using a resizing array. 

 

 

 

 

 

 

Also.  Average-case analysis, smoothed analysis, competitive analysis, ...
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Big O notation

Upper bounds.  f(n) is O(g(n)) if there exist constants c > 0 and n0  ≥  0 
such that 0 ≤  f(n)  ≤  c · g (n) for all n  ≥  n0. 

 

Ex.  f(n) = 32n2 + 17n + 1. 

・f(n) is O(n2). 

・f(n) is neither O(n) nor O(n log n). 
 

 

Typical usage.  Insertion sort makes O(n2) compares to sort n elements.
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choose c = 50, n0 = 1

c · g(n)

nn0

f(n)
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Let f(n) = 3n2 + 17 n log2 n + 1000. Which of the following are true?

A.  f(n) is O(n2).  

B.  f(n) is O(n3).  

C.  Both A and B.  

D.  Neither A nor B.

Analysis of algorithms: quiz 1

choose c = 1020, n0 = 1

choose c = 1020, n0 = 1



Big O notational abuses

One-way “equality.”  O(g(n)) is a set of functions, but computer scientists 

often write f(n) = O(g(n)) instead of f(n)  ∈  O(g(n)). 
 

Ex.  Consider  g1(n) = 5n3  and g2(n) = 3n2. 

・We have g1(n) = O(n3) and g2(n) = O(n3). 

・But, do not conclude g1(n) = g2(n). 
 

 

Domain and codomain.  f and g are real-valued functions. 

・The domain is typically the natural numbers:  ℕ → ℝ. 

・Sometimes we extend to the reals:  ℝ≥ 0 → ℝ.

・Or restrict to a subset. 

 

 

Bottom line.  OK to abuse notation in this way; not OK to misuse it.
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plotting, limits, calculus

input size, recurrence relations



Big O notation:  properties

Reflexivity.  f  is O( f). 
 

Constants.  If f  is O(g) and c > 0, then c f  is O(g). 
 

Products.  If f1 is O(g1) and f2 is O(g2), then  f1 f2 is O(g1 g2). 
Pf.  

・∃ c1 > 0 and n1 ≥  0 such that 0 ≤  f1(n)  ≤  c1 · g1(n) for all n  ≥  n1. 

・∃ c2 > 0 and n2 ≥  0 such that 0 ≤  f2(n)  ≤  c2 · g2(n) for all n  ≥  n2. 

・Then, 0 ≤  f1(n) · f2(n)  ≤  c1 · c2 · g1(n) · g2(n) for all n  ≥  max { n1, n2 }.  ▪ 
 

Sums.  If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max {g1, g2}). 
 

Transitivity.  If f  is O(g) and g is O(h), then f  is O(h). 
 

 

Ex.  f(n) = 5n3 + 3n2 + n + 1234 is O(n3).

15

c n0

ignore lower-order terms



Big Omega notation

Lower bounds.  f(n) is Ω(g(n)) if there exist constants c > 0 and n0  ≥  0 
such that f(n)  ≥  c · g(n)  ≥  0  for all n  ≥  n0. 

 

Ex.  f(n) = 32n2 + 17n + 1. 

・f(n) is both Ω(n2) and Ω(n). 

・f(n) is not Ω(n3). 
 

 

Typical usage.  Any compare-based sorting algorithm requires Ω(n log n) 
compares in the worst case. 

 

 

Vacuous statement.  Any compare-based sorting algorithm requires 

at least O(n log n) compares in the worst case.
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choose c = 32, n0 = 1

f(n)

nn0

c · g(n)
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Which is an equivalent definition of big Omega notation?

A.  f(n) is Ω(g(n)) iff g (n) is O( f(n)).  

B. f(n) is Ω(g(n)) iff there exists a constant c > 0 such that f(n)  ≥  c · g(n)  ≥  0  
for infinitely many n.  

C.  Both A and B.  

D.  Neither A nor B.

Analysis of algorithms: quiz 2
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Which is an equivalent definition of big Omega notation?

A.  f(n) is Ω(g(n)) iff g (n) is O( f(n)).  

B. f(n) is Ω(g(n)) iff there exist constants c > 0 such that f(n)  ≥  c · g(n)  ≥  0  
for infinitely many n.  

C.  Both A and B.  

D.  Neither A nor B.

Analysis of algorithms: quiz 2

why not use this definition instead?

g (n) is O( f(n)) if there exist constants c2 > 0 and n0  ≥  0 

such that 0 ≤  g (n)  ≤  c2 · f(n)  for all n  ≥  n0

f(n) is Ω(g(n)) if there exist constants c1 > 0 and n0  ≥  0 

such that f(n)  ≥  c1 · g(n)  ≥  0  for all n  ≥  n0

c1  =  1 / c2



Big Theta notation

Tight bounds.  f(n) is Θ(g(n)) if there exist constants c1 > 0, c2 > 0, and n0  ≥  0 
such that 0 ≤  c1 · g(n)  ≤  f(n)  ≤  c2 · g(n)  for all n  ≥  n0.  

 

Ex.  f(n) = 32n2 + 17n + 1. 

・f(n) is Θ(n2). 

・f(n) is neither Θ(n) nor Θ(n3). 
 

 

 

 

Typical usage.  Mergesort makes Θ(n log n) compares to sort n elements.
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choose c1 = 32, c2 = 50, n0 = 1

f(n)

nn0

c1 · g(n)

c2 · g(n)

between ½ n log2 n
and n log2 n



Which is an equivalent definition of big Theta notation?

A. f(n) is Θ(g(n)) iff f(n) is both O(g (n)) and Ω(g (n)).  

B. f(n) is Θ(g(n)) iff                         for some constant 0  <  c  <  ∞. 

C.  Both A and B.  

D.  Neither A nor B.
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Analysis of algorithms: quiz 3

lim
n��

f(n)

g(n)
= c > 0

f(n) =

�
2n B7 n Bb 2p2M
3n B7 n Bb Q//

g(n) = n

f(n) is O(n) but limit does not exist 

counterexample



Asymptotic bounds and limits

Proposition.  If                       for some constant 0  <  c  <  ∞ then f(n) is Θ(g(n)). 
 

Pf. 

・By definition of the limit, for any ε > 0, there exists n0 such that 

 

 

 

for all n  ≥  n0. 

・Choose ε = ½ c  >  0. 

・Multiplying by g(n) yields  1/2 c · g(n)  ≤  f(n)  ≤  3/2 c · g(n)  for all n  ≥  n0. 

・Thus, f(n) is Θ(g(n)) by definition, with c1 = 1/2 c and c2 = 3/2 c.  ▪ 

 

Proposition.  If                       , then f(n) is O(g(n)) but not Ω(g(n)). 
 

Proposition.  If                         , then f(n) is Ω(g(n)) but not O(g(n)).
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n��

f(n)

g(n)
= c > 0

c � � � f(n)

g(n)
� c + �
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Asymptotic bounds for some common functions

Polynomials.  Let f(n) = a0 + a1 n + … + ad nd  with ad  >  0. Then, f(n) is Θ(nd). 
Pf. 

  
 
Logarithms.  loga n is Θ(logb n) for every a  > 1 and every b  >  1. 
Pf. 
 
 
Logarithms and polynomials.  loga n is O(nd) for every a  > 1 and every d  > 0. 
Pf. 
 
 
Exponentials and polynomials.  nd  is O(rn) for every r  > 1 and every d  > 0. 
Pf. 
 
 
Factorials.  n! is 2Θ(n log n). 
Pf.  Stirling’s formula:
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no need to specify base 
(assuming it is a constant)

lim
n��

a0 + a1n + . . . + adnd

nd
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logb n
=

1

logb a
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Big O notation with multiple variables

Upper bounds.  f(m, n) is O(g(m, n)) if there exist constants c > 0, m0  ≥  0, 

and n0 ≥  0 such that 0 ≤  f(m, n)  ≤  c · g (m, n)  for all n  ≥  n0 or m  ≥  m0. 

 

Ex.  f(m, n) = 32mn2 + 17mn + 32n3. 

・f(m, n) is both O(mn2 + n3) and O(mn3). 

・f(m, n) is O(n3) if a precondition to the problem implies m ≤  n. 

・f(m, n) is neither O(n3) nor O(mn2). 

Typical usage.  In the worst case, breadth-first search takes O(m + n) time 

to find a shortest path from s to t in a digraph with n nodes and m edges.
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Efficient implementation

Goal.  Implement Gale–Shapley to run in O(n 2) time.
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GALE–SHAPLEY (preference lists for n hospitals and n students)                          

____________________________________________________________________________________________________________________

INITIALIZE  M to empty matching.

WHILE  (some hospital h is unmatched)

    s  ← first student on h’s list to whom h has not yet proposed.

    IF  (s is unmatched)

Add h–s to matching M.

ELSE IF  (s prefers h to current partner hʹ)

Replace hʹ–s with h–s in matching M.

ELSE

s rejects h.

RETURN stable matching M.

____________________________________________________________________________________________________________________



Efficient implementation

Goal.  Implement Gale–Shapley to run in O(n 2) time. 

 

Representing hospitals and students.  Index hospitals and students 1, …, n. 

 

Representing the matching. 

・Maintain two arrays student[h] and hospital[s]. 
- if h matched to s, then student[h] = s and hospital[s] = h
- use value 0 to designate that hospital or student is unmatched 

・Can add/remove a pair from matching in O(1) time. 

・Maintain set of unmatched hospitals in a queue (or stack). 

・Can find an unmatched hospital in O(1) time. 

26



Data representation:  making a proposal

Hospital makes a proposal. 

・Key operation:  find hospital’s next favorite student. 

・For each hospital:  maintain a list of students, ordered by preference. 

・For each hospital:  maintain a pointer to student for next proposal.  

 

 

 

 

 

 

 

 

 

 

Bottom line.  Making a proposal takes O(1) time.

27

next proposal to

3 4 1 5hospital h 2 null

favorite least favorite



Student accepts/rejects a proposal. 

・Does student s prefer hospital h to hospital hʹ ? 

・For each student, create inverse of preference list of hospitals. 

 

 

 

 

 

 

 

 

 

 

 

Bottom line.  After Θ(n2) preprocessing time (to create the n ranking arrays), 

it takes O(1) time to accept/reject a proposal.

1st 2nd 3rd 4th 5th 6th 7th 8th

8 3 7 1 4 5 6 2

pref[]

Data representation:  accepting/rejecting a proposal

28

for i = 1 to n 
    rank[pref[i]] = i

student prefers hospital 4 to 6

1 2 3 4 5 6 7 8

4th 8th 2nd 5th 6th 7th 3rd 1st
rank[]

since rank[4] < rank[6]



Stable matching:  summary

Theorem.  Can implement Gale–Shapley to run in O(n2) time. 

Pf. 

・Θ(n2) preprocessing time to create the n ranking arrays. 

・There are O(n2) proposals; processing each proposal takes O(1) time.  ▪ 
 

Theorem.  In the worst case, any algorithm to find a stable matching must 

query the hospital’s preference list Ω(n2) times.
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Constant time

Constant time.  Running time is O(1). 
 

Examples. 

・Conditional branch. 

・Arithmetic/logic operation. 

・Declare/initialize a variable. 

・Follow a link in a linked list. 

・Access element i in an array. 

・Compare/exchange two elements in an array. 

・…

31

bounded by a constant, 
which does not depend on input size n



Linear time

Linear time.  Running time is O(n). 

Merge two sorted lists.  Combine two sorted linked lists A = a1, a2, …, an and 

B = b1, b2, …, bn  into a sorted whole. 

 

O(n) algorithm.  Merge in mergesort.

32

i  ← 1;  j  ← 1.

WHILE  (both lists are nonempty)

IF  (ai  ≤  bj)  append ai to output list and increment i.

ELSE         append bj to output list and increment j.

Append remaining elements from nonempty list to output list.
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TARGET SUM

TARGET-SUM.  Given a sorted array of n distinct integers and an integer T, 

find two that sum to exactly T ?

−20 10 20 30 35 40 60 70 T = 60

i j

input
(sorted)
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TARGET SUM

TARGET-SUM.  Given a sorted array of n distinct integers and an integer T, 

find two that sum to exactly T ? 
 

O(n2) algorithm.  Try all pairs. 

 

O(n) algorithm.  Exploit sorted order. 

 

 

 

 

 

 

 

Invariant.  No element to the left of i or right of j in pair that sums to T.

−20 10 20 30 35 40 60 70input
(sorted) T = 60

i j



Logarithmic time

Logarithmic time.  Running time is O(log n). 
 

Search in a sorted array.  Given a sorted array A of n distinct integers and an 

integer x, find index of x in array. 

 

O(log n) algorithm.  Binary search. 

・Invariant: If x is in the array, then x is in A[lo .. hi]. 

・After k iterations of WHILE loop, (hi − lo + 1)  ≤  n / 2k   ⇒  k  ≤  1 + log2 n.

35

lo  ← 1; hi  ← n.

WHILE  (lo  ≤  hi)

mid  ← ⎣(lo + hi) / 2⎦.

IF (x  <  A[mid])  hi  ← mid − 1.

ELSE IF (x  >  A[mid])  lo  ← mid + 1.

ELSE  RETURN mid.

RETURN −1.

remaining elements



Logarithmic time

36
https://www.facebook.com/pg/npcompleteteens

O(log n)
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SEARCH IN A SORTED ROTATED ARRAY

SEARCH-IN-SORTED-ROTATED-ARRAY.  Given a rotated sorted array of n distinct 

integers and an element x, determine if x is in the array. 

 

 

 

 

sorted circular array

80 85 90 95 20 30 35 50 60 65 67 75

1 2 3 4 5 6 7 8 9 10 11 12

sorted rotated array

20 30

35
5

0
60

65
6775

80
8

5
90

95
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SEARCH IN A SORTED ROTATED ARRAY

SEARCH-IN-SORTED-ROTATED-ARRAY.  Given a rotated sorted array of n distinct 

integers and an element x, determine if x is in the array. 

 

O(log n) algorithm. 

・Find index k of smallest element. 

・Binary search for x in either A[1 .. k−1] or A[k .. n].

lo  ← 1; hi  ← n.

IF  (A[lo]  ≤  A[hi])  RETURN  0

WHILE  (lo + 2  ≤  hi)

mid  ← ⎣(lo + hi) / 2⎦.

IF  (A[mid]  < A[hi])  hi  ← mid.

ELSE IF  (A[mid]  > A[hi])   lo  ← mid.

RETURN  hi

loop invariant 
A[lo] > A[hi]

at least 3 elements

find index of smallest element

sorted



Linearithmic time

Linearithmic time.  Running time is O(n log n). 
 

Sorting.  Given an array of n elements, rearrange them in ascending order. 

 

O(n log n) algorithm.  Mergesort.

39Trace of merge results for top-down mergesort

                                                    a[]
                                    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
                                    M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E
        merge(a, aux,  0,  0,  1)   E  M  R  G  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a, aux,  2,  2,  3)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a, aux,  0,  1,  3)     E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a, aux,  4,  4,  5)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a, aux,  6,  6,  7)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a, aux,  4,  5,  7)     E  G  M  R  E  O  R  S  T  E  X  A  M  P  L  E  
    merge(a, aux,  0,  3,  7)       E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E  
        merge(a, aux,  8,  8,  9)   E  E  G  M  O  R  R  S  E  T  X  A  M  P  L  E  
        merge(a, aux, 10, 10, 11)   E  E  G  M  O  R  R  S  E  T  A  X  M  P  L  E  
      merge(a, aux,  8,  9, 11)     E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, aux, 12, 12, 13)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, aux, 14, 14, 15)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  E  L  
      merge(a, aux, 12, 13, 15)     E  E  G  M  O  R  R  S  A  E  T  X  E  L  M  P 
    merge(a, aux,  8, 11, 15)       E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X  
  merge(a, aux,  0,  7, 15)         A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X 

lo hi
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LARGEST EMPTY INTERVAL

LARGEST-EMPTY-INTERVAL.  Given n timestamps x1, …, xn on which copies of a 

file arrive at a server, what is largest interval when no copies of file arrive?
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LARGEST EMPTY INTERVAL

LARGEST-EMPTY-INTERVAL.  Given n timestamps x1, …, xn on which copies of a 

file arrive at a server, what is largest interval when no copies of file arrive? 

 

O(n log n) algorithm.  

・Sort the array a. 

・Scan the sorted list in order, identifying the maximum gap between 

successive timestamps.



Quadratic time

Quadratic time.  Running time is O(n2). 
 

Closest pair of points.  Given a list of n points in the plane (x1, y1), …, (xn, yn), 
find the pair that is closest to each other. 

 

O(n2) algorithm.  Enumerate all pairs of points (with i < j). 
 

 

 

 

 

 

 

 

 

Remark.  Ω(n2) seems inevitable, but this is just an illusion.  [see §5.4]
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min  ← ∞. 

FOR  i = 1 TO n

FOR  j = i + 1 TO n

d  ← (xi − xj)2 + (yi − yj)2. 

IF  (d  <  min)

min  ← d.



Cubic time

Cubic time.  Running time is O(n3). 
 

3-SUM.  Given an array of n distinct integers, find three that sum to 0. 

 

O(n3) algorithm.  Enumerate all triples (with i < j < k). 
 

 

 

 

 

 

 

 

 

 

Remark.  Ω(n3) seems inevitable, but O(n2) is not hard.  [see next slide]
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FOR  i  = 1  TO  n

FOR  j  =  i + 1  TO  n

FOR  k =  j + 1  TO  n

IF  (ai + aj + ak =  0)

RETURN  (ai, aj, ak).
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3-SUM

3-SUM.  Given an array of n distinct integers, find three that sum to 0. 

 

O(n3) algorithm.  Try all triples. 

 

O(n2) algorithm. 
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3-SUM

3-SUM.  Given an array of n distinct integers, find three that sum to 0. 

 

O(n3) algorithm.  Try all triples. 

 

O(n2) algorithm. 

・Sort the array a. 

・For each integer ai : solve TARGET-SUM on the array containing all 

elements except ai with the target sum T = −ai. 

 

 

 

Best-known algorithm.  O(n2 / (log n / log log n)).  
Conjecture.  No O(n2−ε) algorithm for any ε > 0.



Polynomial time

Polynomial time.  Running time is O(nk) for some constant k > 0. 

 

Independent set of size k.  Given a graph, find k nodes such that no two 

are joined by an edge. 

 

O(nk) algorithm.  Enumerate all subsets of k nodes. 

 

 

 

 

 

 

・Check whether S is an independent set of size k takes O(k2) time. 

・Number of k-element subsets =  

・O(k2 nk / k!) = O(nk).

46poly-time for k = 17, but not practical

k is a constant

�
n

k

�
=

n(n � 1)(n � 2) � · · · � (n � k + 1)

k(k � 1)(k � 2) � · · · � 1
� nk

k!

FOREACH  subset S of k nodes:

Check whether S is an independent set.

IF  (S is an independent set)

RETURN  S.
independent set of size 3



Exponential time

Exponential time.  Running time is O(2nk ) for some constant k > 0. 

 

Independent set.  Given a graph, find independent set of max size. 

 

O(n2 2n) algorithm.  Enumerate all subsets of n elements.
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S*  ← ∅.

FOREACH  subset S of n nodes:

Check whether S is an independent set.

IF  (S is an independent set and ⎢S⎟ > ⎢S*⎟)

S*  ← S.

RETURN  S*.
independent set of max size



Exponential time

Exponential time.  Running time is O(2nk ) for some constant k > 0. 

 

Euclidean TSP.  Given n points in the plane, find a tour of minimum length. 

 

O(n 𐄂 n!) algorithm.  Enumerate all permutations of length n.
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π*  ← ∅.

FOREACH  permutation π of n points:

Compute length of tour corresponding to π.

IF  (length(π) < length(π*))

π*  ← π.

RETURN  π*.
for simplicity, we’ll assume Euclidean 

distances are rounded to nearest integer 
(to avoid issues with infinite precision)
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Which is an equivalent definition of exponential time?

A.  O(2n)  

B. O(2cn) for some constant c > 0.  

C.  Both A and B.  

D.  Neither A nor B.

Analysis of algorithms: quiz 4

doesn’t include 3n

includes 3n but doesn’t include n! =  2Θ(n log n)


