String Searching
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Strings

String.
. Sequence of characters over some alphabet.
- binary {0,1}
- ASCII, UNICODE

Some applications.

. Word processors.

. Virus scanning.

. Text information retrieval systems. (Lexis, Nexis)
Digital libraries.
Natural language processing.

. Specialized databases.

. Computational molecular biology.

. Web search engines.
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Parameters.
N = # characters in text.
M = # characters in pattern.
. Typically, N >> M.
-e.g., N=1million, M =1 hundred

Brute Force

Brute force.
. Check for pattern starting at every text position.

Brute Force String Search

int brutesearch(char p[], char t[]) {

int i, j;
int M= strlen(p); /] pattern | ength
int N=strlen(t); /1 text length

for (i =0; i <N i++) {
for (j =0, ] <M j++) {
if (t[i+] '=p[j]) break;

if (j == return i; /1 found at offset i

}

return -1; /1l not found




Analysis of Brute Force How To Save Comparisons

Analysis of brute force. How to avoid recomputation?
Running time depends on pattern and text. . Pre-analyze search pattern.
- can be slow when strings repeat themselves . Ex: suppose that first 5 characters of pattern are all a’s.
. Worst case: MN comparisons. —-1ft[0..4] matches p[ 0. . 4] thent[1..4] matches p[O0..3].
-too slow when M and N are large -noneedtochecki=1,j=0,1,2,3

- saves 4 comparisons
Need better ideas in general.
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KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.

Run FSA on text.

. O(M + N) worst-case running time.
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KMP algorithm.
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KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
. Run FSA on text.
. O(M + N) worst-case running time.
- FSA simulation takes O(N) time
- can build FSA in O(M) time with cleverness

FSA Representation

FSA used in KMP has special property.

. Upon character match, go forward one state.

. Only need to keep track of where to go upon character mismatch.
- go to state next[j ] if character mismatches in state j
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KMP Algorithm

Given the FSA, string search is easy.
. The array next [] contains next FSA state if character mismatches.

KMP String Search

i nt knpsearch(char p[], char t[], int next[]) {

int i, j =0;

int M= strlen(p); // pattern length

int N=strlen(t); /1 text length

for (i =0; i <N i++) {
if (t[i] == p[j]) j++ /1 char match
else j = next[j]; /1 char m smatch
if () == return i — M+1; // found

}

return -1; /I not found

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.
. State6. p[0..5] = aabaaa

- assume you know state for p[ 1. . 5] = abaaa X=2

- if next char is b (match): go forward 6+1=7
- if next char is a (mismatch): go to state for abaaaa X +'a’ =2
- update X to state for p[ 1. . 6] = abaaab X+'b'=3

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.
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FSA construction for KMP.
. FSA builds itself!
Example. Building FSA for aabaaabb.
. State7. p[0..6] = aabaaab
- assume you know state for p[ 1. . 6] = abaaab X=3
- if next char is b (match): go forward 7+1=8
- next char is a (mismatch): go to state for abaaaba X +'a’'=4
- update X to state for p[ 1. . 7] = abaaabb X+'b'=0




FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Crucial insight.
. To compute transitions for state n of FSA, suffices to have:
- FSA for states 0 to n-1
- state X that FSA ends up in with input p[ 1..n-1]

. To compute state X' that FSA ends up in with input p[ 1. . n] , it
suffices to have:
- FSA for states 0 to n-1
- state X that FSA ends up in with input p[ 1..n-1]

FSA Construction for KMP
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FSA Construction for KMP
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FSA Construction for KMP
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FSA Construction for KMP

Code for FSA construction in KMP algorithm.

FSA Construction for KMP

voi d knpinit(char p[],

next[0] = O;

int next[]) {

int j, X=0, M= strlen(p);

for (j =1; j <M j++) {
if (p[X == pl[i]) {
next [ X];

next[j] =
X=X+ 1;

}

el se {
next[j] = X + 1;
X = next[X];

}




Specialized KMP Implementation

Specialized C program for aabaaabb pattern.

Hardwired FSA for aabaaabb

int knpsearch(char t[]) {
int i = 0;

sO: if (t[i++] !'="a) goto sO; Y

sl: if (t[i++] !="a) goto sO;

s2: if (t[i++] !="Db") goto s2;

s3: if (t[i++] !="a) goto sO;

s4: if (t[i++] !='a’) goto sO; 7| next[]
s5: if (t[i++] !'="a) goto s3;

s6: if (t[i++] !="Db") goto s2;

s7: if (t[i++] !'="Db") goto s4; )

return i - 8;

Ultimate search program for aabaaabb pattern.
. Machine language version of above.

Summary of KMP

KMP summary.

. Build FSA from pattern.

. Run FSA on text.

. O(M + N) worst case string search.

. Good efficiency for patterns and texts with much repetition.

- binary files

- graphics formats
. Less useful for text strings.
. On-line algorithm.

- virus scanning

- Internet spying

History of KMP

History of KMP.

. Inspired by theorem of Cook that says O(M + N) algorithm should
be possible.

. Discovered in 1976 independently by two groups.
. Knuth-Pratt.
. Morris was hacker trying to build an editor.

—annoying problem that you needed a buffer when performing
text search

Resolved theoretical and practical problems.
. Surprise when it was discovered.
. In hindsight, seems like right algorithm.

Boyer-Moore

Boyer-Moore algorithm (1974).
=) . Right-to-left scanning.
- find offset i in text by moving left to right.

- compare pattern to text by moving right to left.
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Mismatch

Match

No comparison
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Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."

- upon mismatch of text character ¢, look up g
j = index[c]

—increase offset i so thatj th character of pattern lines up
with text character c
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Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."
- extremely effective for English text
Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior
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Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."
- extremely effective for English text
Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior
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Boyer-Moore

Boyer-Moore analysis.
. O(N/ M) average case if given letter usually doesn’t occur in string.
- English text: 10 character search string, 26 char alphabet
- time decreases as pattern length increases
- sublinear in input size!
. O(M + N) worst-case with Galil variant.
- proof is quite difficult




Karp-Rabin

Idea: use hashing.
. Compute hash function for each text position.
No explicit hash table!
- just compare with pattern hash

Search Pattern
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Example.
Hash "table" size = 97.
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3[1]41]5 31415 %97 = 84
14l1]5]9 14159 %97 = 94
4[1]5]9]2 41592 %97 = 76
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Karp-Rabin

Idea: use hashing.
. Compute hash function for each text position.

Problems.
Need full compare on hash match to guard against collisions.
-59265 %97 = 95
-59362 %97 = 95

Hash function depends on M characters.
- running time on search miss = MN

Karp-Rabin

Key idea: fastto compute hash function of adjacent substrings.
Use previous hash to compute next hash.
. O(1) time per hash, except first one.

Example.
Pre-compute: 10000 %97 = 9
Previous hash: 41592 %97 = 76
Next hash: 15926 % 97

Observation.
15926
15926 % 97

(41592 — (4*10000)) * 10 + 6
(41592 — (4 *10000)) * 10 + 6
(76— 4*9)*10+6
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Karp-Rabin (Sedgewick, p. 290)

#define g 3355439 /1 table size
#define d 256 /1 radix

int rksearch(char p[], char t[]) {
int i, j, dM=1, hl =0, h2 = 0;
int M= strlen(p), N = strlen(t);

for (j =1;, ] <M j++) /'l preconmpute d"M % q
dM = (d * dM %q;

for (1 =0; j <M j++) {
hl = (h1*d + p[j]) %aq; /1 hash of pattern
h2 = (h2*d + t[j]) %aq; /1 hash of text

}

for (i =M i <N i++) {
if (hl == h2) returni - M; /I match found

h2 = (h2 — a[i-M]*dM) % q;
h2 = (h2*d + afi]) %q;

/I remove high order digit
/l'insert low order digit

}

return -1; /I not found




Karp-Rabin

Karp-Rabin algorithm.
Choose table size at RANDOM to be huge prime.
Expected running time is O(M + N).
. O(MN) worst-case, but this is (unbelievably) unlikely.

Randomized algorithms.
Monte Carlo: don’t check for collisions.
—algorithm can be wrong but running time guaranteed linear
Las Vegas: if collision, start over with new random table size.
- algorithm always correct, but running time is expected linear

Advantages.
Extends to 2d patterns and other generalizations.




