String Searching

Reference: Chapter 19, Algorithms in C by R. Sedgewick.
Addison Wesley, 1990.

Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne

Strings

String.
. Sequence of characters over some alphabet.
- binary {0,1}
- ASCII, UNICODE

Some applications.

. Word processors.

. Virus scanning.

. Text information retrieval systems. (Lexis, Nexis)
Digital libraries.
Natural language processing.

. Specialized databases.

. Computational molecular biology.

. Web search engines.

String Searching

ninfele|n|l |[e|d|e|n|e|e|n|e|e|d|l |[e|n|l] |d

Search Pattern
nieje|d|l |e

Successful Search

ninjele[n|l[e|d][e|n|e|e NNCHCECEEE || |d|

Parameters.
N = # characters in text.
M = # characters in pattern.
. Typically, N >> M.
-e.g., N=1million, M =1 hundred

Brute Force

Brute force.
. Check for pattern starting at every text position.

Brute Force String Search

int brutesearch(char p[], char t[]) {

int i, j;
int M= strlen(p); /] pattern | ength
int N=strlen(t); /1 text length

for (i =0; i <N i++) {
for (j =0,] <M j++) {
if (t[i+] '=p[j]) break;

if (j == return i; /1 found at offset i

}

return -1; /1l not found

Analysis of Brute Force How To Save Comparisons

Analysis of brute force. How to avoid recomputation?
Running time depends on pattern and text. . Pre-analyze search pattern.
- can be slow when strings repeat themselves . Ex: suppose that first 5 characters of pattern are all a’s.
. Worst case: MN comparisons. —-1ft[0..4] matches p[0. . 4] thent[1..4] matches p[O0..3].
-too slow when M and N are large -noneedtochecki=1,j=0,1,2,3

- saves 4 comparisons
Need better ideas in general.

Search Pattern
alalalalal|b
Search Pattern
Search Text alalalalalb

alalalalalalalala|a|ala|ala|a]a]a|a]a]a]|b
ajajajalafy Search Text
alalal|a|a
alalala|af
alala|a|a[d
alalala|a
[XX] 5
Knuth-Morris-Pratt Knuth-Morris-Pratt
KMP algorithm. KMP algorithm.
Use knowledge of how search pattern repeats itself. . Use knowledge of how search pattern repeats itself.
ﬁ . Build FSA from pattern. . Build FSA from pattern.
Run FSA on text. m) . Run FSA on text.
. O(M + N) worst-case running time. . O(M + N) worst-case running time.

Search Pattern Search Pattern
alalblala]a alalblala]a alalal|/b|lalalb|alalal|b
b
b a
o5 0 ot o o

b
O
= PR
b

accept state accept state

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.

Run FSA on text.

. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

a a

b
Db o
. A

®

accept state

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.

Run FSA on text.

. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.

Run FSA on text.

. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.

Run FSA on text.

. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

®

accept state

b
(a> a a
4 S
b

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

- .

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
Build FSA from pattern.
Run FSA on text.
. O(M + N) worst-case running time.

Search Pattern
alalblala]a

Search Text

Knuth-Morris-Pratt

KMP algorithm.
. Use knowledge of how search pattern repeats itself.
. Build FSA from pattern.
. Run FSA on text.
. O(M + N) worst-case running time.
- FSA simulation takes O(N) time
- can build FSA in O(M) time with cleverness

FSA Representation

FSA used in KMP has special property.

. Upon character match, go forward one state.

. Only need to keep track of where to go upon character mismatch.
- go to state next[j] if character mismatches in state j

. V|
W 1|2|2(4|5]|6
Search Pattern WMOoO|l0|3[0[|0]3
alal|blalala e 0|0|2|0|0]|3

KMP Algorithm

Given the FSA, string search is easy.
. The array next [] contains next FSA state if character mismatches.

KMP String Search

i nt knpsearch(char p[], char t[], int next[]) {

int i, j =0;

int M= strlen(p); // pattern length

int N=strlen(t); /1 text length

for (i =0; i <N i++) {
if (t[i] == p[j]) j++ /1 char match
else j = next[j]; /1 char m smatch
if () == return i — M+1; // found

}

return -1; /I not found

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.
. State6. p[0..5] = aabaaa

- assume you know state for p[1. . 5] = abaaa X=2

- if next char is b (match): go forward 6+1=7
- if next char is a (mismatch): go to state for abaaaa X +'a’ =2
- update X to state for p[1. . 6] = abaaab X+'b'=3

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.

4
FSA Construction for KMP
FSA construction for KMP.
. FSA builds itself!
Example. Building FSA for aabaaabb.
. State7. p[0..6] = aabaaab
- assume you know state for p[1. . 6] = abaaab X=3
- if next char is b (match): go forward 7+1=8
- next char is a (mismatch): go to state for abaaaba X +'a’'=4
- update X to state for p[1. . 7] = abaaabb X+'b'=0

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Example. Building FSA for aabaaabb.

FSA Construction for KMP

FSA construction for KMP.
. FSA builds itself!

Crucial insight.
. To compute transitions for state n of FSA, suffices to have:
- FSA for states 0 to n-1
- state X that FSA ends up in with input p[1..n-1]

. To compute state X' that FSA ends up in with input p[1. . n] , it
suffices to have:
- FSA for states 0 to n-1
- state X that FSA ends up in with input p[1..n-1]

FSA Construction for KMP

Search Pattern
alalblajaja|b]|b

Co——@

FSA Construction for KMP

Search Pattern j pattern[1..j] X next
alalblalala|b]|b ﬁ (0] 0 0

|

> @

b
Co—a@

FSA Construction for KMP

Search Pattern j pattern[1..j] X next
ala|lb|lalala|b|b 0] 0 0
=) BN a 1| o0
0
Wl 1|2
ol O | O
b
a a
Clo—"@@
b

FSA Construction for KMP

Search Pattern pattern[1..j] X
a 1 0
=) a|b 0 2
0
W 1(2|2
o 0|03

FSA Construction for KMP

pattern[1..j] X
0 0
a 1 0
5 alb 0 2
Ni(22|4 =Elalb[a 110
o0 0|30

FSA Construction for KMP

pattern[1..j] X
0 0
a 1 0
5 y alb 0 2
alb|a 1 0
W 1(2|2|4|5
0 o030l o ﬁ alblala 2 0

FSA Construction for KMP

Search Pattern
alalblalaja|b]|b

Q

O =
N
N
NS
(6]
(o))

pattern[1..j]

DY D || D

NN O|FR| O Pe

o|T|T|T
3]
QD

FSA Construction for KMP

Search Pattern
alalblalaja|b]|b

Q

O =
N
N
NS
(6]
(o))
N

pattern[1..j] X

0 0
a 1 0
alb 0 2
alb|a 1 0
alblala 2 0
alblalala 2 3
albjlajlajalb 3 2

FSA Construction for KMP

Q

O =
N
N
S
(6]
(o))
N
N

~No o~ wWwNPE o

pattern[1..j] X

0 0
a 1 0
alb 0 2
alb|a 1 0
alblala 2 0
alblalala 2 3
albjlajlajalb 3 2
alblalala|b|b| O 4

FSA Construction for KMP

Code for FSA construction in KMP algorithm.

FSA Construction for KMP

voi d knpinit(char p[],

next[0] = O;

int next[]) {

int j, X=0, M= strlen(p);

for (j =1; j <M j++) {
if (p[X == pl[i]) {
next [X];

next[j] =
X=X+ 1;

}

el se {
next[j] = X + 1;
X = next[X];

}

Specialized KMP Implementation

Specialized C program for aabaaabb pattern.

Hardwired FSA for aabaaabb

int knpsearch(char t[]) {
int i = 0;

sO: if (t[i++] !'="a) goto sO; Y

sl: if (t[i++] !="a) goto sO;

s2: if (t[i++] !="Db") goto s2;

s3: if (t[i++] !="a) goto sO;

s4: if (t[i++] !='a’) goto sO; 7| next[]
s5: if (t[i++] !'="a) goto s3;

s6: if (t[i++] !="Db") goto s2;

s7: if (t[i++] !'="Db") goto s4;)

return i - 8;

Ultimate search program for aabaaabb pattern.
. Machine language version of above.

Summary of KMP

KMP summary.

. Build FSA from pattern.

. Run FSA on text.

. O(M + N) worst case string search.

. Good efficiency for patterns and texts with much repetition.

- binary files

- graphics formats
. Less useful for text strings.
. On-line algorithm.

- virus scanning

- Internet spying

History of KMP

History of KMP.

. Inspired by theorem of Cook that says O(M + N) algorithm should
be possible.

. Discovered in 1976 independently by two groups.
. Knuth-Pratt.
. Morris was hacker trying to build an editor.

—annoying problem that you needed a buffer when performing
text search

Resolved theoretical and practical problems.
. Surprise when it was discovered.
. In hindsight, seems like right algorithm.

Boyer-Moore

Boyer-Moore algorithm (1974).
=) . Right-to-left scanning.
- find offset i in text by moving left to right.

- compare pattern to text by moving right to left.

[s[t]i[n]g]

=

Mismatch

Match

No comparison
40

=

Boyer-Moore

Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."

- upon mismatch of text character ¢, look up g
j = index[c]

—increase offset i so thatj th character of pattern lines up
with text character c

= |lwn ||~

Mismatch
Match
No comparison

=

Boyer-Moore

Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."
- extremely effective for English text
Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior

X[X |X[X[X|[X[XxX[bla|[b|X|[X|X|X[X[X|X|[X[X[X|X|X[xX]|X

o

a
x|cla|b|d|a|b|d]|a]b]

bad character heuristic

=

Boyer-Moore

Boyer-Moore algorithm (1974).
Right-to-left scanning.
Heuristic 1: advance offset i using "bad character rule."
- extremely effective for English text
Heuristic 2: use KMP-like suffix rule.
- effective with small alphabets
- different rules lead to different worst-case behavior

X[X |X[X[X|[X[X[bla|[b|X|[X|X|X[X[X|X|[X[X[X]|X|X[X]|X
a
x|cla|b|d[a]b]d[a]b]

o

strong good suffix

Boyer-Moore

Boyer-Moore analysis.
. O(N/ M) average case if given letter usually doesn’t occur in string.
- English text: 10 character search string, 26 char alphabet
- time decreases as pattern length increases
- sublinear in input size!
. O(M + N) worst-case with Galil variant.
- proof is quite difficult

Karp-Rabin

Idea: use hashing.
. Compute hash function for each text position.
No explicit hash table!
- just compare with pattern hash

Search Pattern
5(9(2|6|5 59265 % 97 = 95

Example.
Hash "table" size = 97.

3l1f4af1|5]9f2|6|5|3[5][8|9]7[9]3][2]3][8[4]6
3[1]41]5 31415 %97 = 84
14l1]5]9 14159 %97 = 94
4[1]5]9]2 41592 %97 = 76
1/5]/9]2]s6 15926 %97 = 18
5/9/2[6|5]| 59265 %97 = 95

Karp-Rabin

Idea: use hashing.
. Compute hash function for each text position.

Problems.
Need full compare on hash match to guard against collisions.
-59265 %97 = 95
-59362 %97 = 95

Hash function depends on M characters.
- running time on search miss = MN

Karp-Rabin

Key idea: fastto compute hash function of adjacent substrings.
Use previous hash to compute next hash.
. O(1) time per hash, except first one.

Example.
Pre-compute: 10000 %97 = 9
Previous hash: 41592 %97 = 76
Next hash: 15926 % 97

Observation.
15926
15926 % 97

(41592 — (4*10000)) * 10 + 6
(41592 — (4 *10000)) * 10 + 6
(76— 4*9)*10+6

406

18

Karp-Rabin (Sedgewick, p. 290)

#define g 3355439 /1 table size
#define d 256 /1 radix

int rksearch(char p[], char t[]) {
int i, j, dM=1, hl =0, h2 = 0;
int M= strlen(p), N = strlen(t);

for (j =1;,] <M j++) /'l preconmpute d"M % q
dM = (d * dM %q;

for (1 =0; j <M j++) {
hl = (h1*d + p[j]) %aq; /1 hash of pattern
h2 = (h2*d + t[j]) %aq; /1 hash of text

}

for (i =M i <N i++) {
if (hl == h2) returni - M; /I match found

h2 = (h2 — a[i-M]*dM) % q;
h2 = (h2*d + afi]) %q;

/I remove high order digit
/l'insert low order digit

}

return -1; /I not found

Karp-Rabin

Karp-Rabin algorithm.
Choose table size at RANDOM to be huge prime.
Expected running time is O(M + N).
. O(MN) worst-case, but this is (unbelievably) unlikely.

Randomized algorithms.
Monte Carlo: don’t check for collisions.
—algorithm can be wrong but running time guaranteed linear
Las Vegas: if collision, start over with new random table size.
- algorithm always correct, but running time is expected linear

Advantages.
Extends to 2d patterns and other generalizations.

