# **Greed: Shortest Path**



Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

#### **Directed Graph**

Directed graph: G = (V, E).

- V = set of vertices or nodes.
- $\mathbf{E} \subseteq \mathbf{V} \times \mathbf{V}$  = set of edges or arcs.
- n = |V|, m = |E|.
- Directed path: s 2 3 5 t.

- simple

Directed cycle: 5 - 4 - 3 - 5.



### **Networks**

| Network        | Nodes                                         | Arcs                                      | Flow                                |
|----------------|-----------------------------------------------|-------------------------------------------|-------------------------------------|
| communication  | telephone exchanges,<br>computers, satellites | cables, fiber optics,<br>microwave relays | voice, video,<br>packets            |
| circuits       | gates, registers,<br>processors               | wires                                     | current                             |
| mechanical     | joints                                        | rods, beams, springs                      | heat, energy                        |
| hydraulic      | reservoirs, pumping stations, lakes           | pipelines                                 | fluid, oil                          |
| financial      | stocks, currency                              | transactions                              | money                               |
| transportation | airports, rail yards,<br>street intersections | highways, railbeds,<br>airway routes      | freight,<br>vehicles,<br>passengers |

#### **Shortest Path Network**

Shortest path network: (V, E, s, t, c).

- Directed graph (V, E).
- . Source  $s \in ~V,~sink~t \in ~V.$
- Arc costs c(v, w).
- Cost of path = sum of arc costs in path.

Cost of path s - 2 - 3 - 5 - t = 9 + 23 + 2 + 16= 48.



### **Shortest Path**

#### Shortest path problem. (CLR 25.1-25.2)

- Shortest path network (V, E, s, t, c).
- Find shortest directed path from s to t.

#### Assumptions.

- Network contains directed path from s to every other node.
- Network does not contain a negative cost cycle.

#### Application.

• Online directions.



### **Shortest Path: Existence**

Existence. If some path from s to v contains a negative cost cycle, there does not exist a shortest path. Otherwise, there exists a shortest s-v that is simple.

 $\Rightarrow$  If negative cycle, can produce arbitrarily negative path by traversing cycle enough times.



 $\leftarrow$  If no negative cycle, can remove cycles without increasing cost.

### **Shortest Path: Properties**

Optimal substructure property. All sub-paths of shortest paths are shortest paths.

- Let P<sub>1</sub> be x-y sub-path of shortest s-v path P.
- Let P<sub>2</sub> be any x-y path.
- c(P<sub>1</sub>) ≤ c(P<sub>2</sub>), otherwise P not shortest s-v path.



#### Triangle inequality.

- Let d\*(v, w) be the length of the shortest path from v to w.
- Then,  $d^{*}(v, w) \leq d^{*}(v, x) + d^{*}(x, w)$



### **Dijkstra's Algorithm**

#### Upon termination.

- $\pi(v)$  = distance of shortest s-v path.
- pred(v) gives shortest path.

```
Dijkstra's Algorithm
                    for each \mathbf{v} \in \mathbf{V}
                         \pi(\mathbf{v}) \leftarrow \infty
                         pred(v) \leftarrow nil
                    \pi(s) \leftarrow 0
                    \mathbf{S} \leftarrow \mathbf{\phi}
                    init(Q)
                    for each \mathbf{v} \in \mathbf{V}
                         insert(v, Q)
                    while (Q \neq \phi)
                         v = delete-min(Q)
                         S \leftarrow S \cup \{v\}
                         for each w s.t (v,w) \in E
                              if \pi(w) > \pi(v) + c(v,w)
decrease-key
                                   \pi(w) \leftarrow \pi(v) + c(v,w)
                                   pred(w) \leftarrow v
```

## Dijkstra's Algorithm: Proof of Correctness

Invariant. For each vertex  $v \in S$ ,  $\pi(v) = d^*(s, v)$ .

- Proof by induction on |S|.
- Base case: |S| = 0 is trivial.



- Induction step:
  - suppose Dijkstra's algorithm adds vertex v to S
  - $\pi(v)$  is the length of the some path from s to v
  - if  $\pi(v)$  is not the length of the shortest s-v path, then let P\* be a shortest s-v path

- P\* must use an edge that leaves S, say (x, y)

- then 
$$\pi(v) > d^*(s, v)$$
assumption= d^\*(s, x) + d(x, y) + d^\*(y, v)optimal substructure $\geq d^*(s, x) + d(x, y)$ nonnegative lengths=  $\pi(x) + d(x, y)$ inductive hypothesis $\geq \pi(y)$ algorithm

so Dijkstra's algorithm would have selected y instead of v

# Priority Queues and Heaps (CLR 20, 21)

|              |             | Heaps  |          |             |         |
|--------------|-------------|--------|----------|-------------|---------|
| Operation    | Linked List | Binary | Binomial | Fibonacci * | Relaxed |
| make-heap    | 1           | 1      | 1        | 1           | 1       |
| insert       | 1           | log N  | log N    | 1           | 1       |
| find-min     | N           | 1      | log N    | 1           | 1       |
| delete-min   | Ν           | log N  | log N    | log N       | log N   |
| union        | 1           | N      | log N    | 1           | 1       |
| decrease-key | 1           | log N  | log N    | 1           | 1       |
| delete       | N           | log N  | log N    | log N       | log N   |
| is-empty     | 1           | 1      | 1        | 1           | 1       |
| $\wedge$     |             |        | <b>^</b> |             |         |



### **Shortest Path Extensions**

#### Variants of shortest path:

- Undirected graph.
  - O(m + n) using Thorup's algorithm
- Negative weights but no negative cycles.
  - O(mn) using Bellman-Ford
- Unit weights.
  - O(m + n) using breadth first search
- Integer weights between 0 and constant C.
- DAGs.
  - O(m + n) using topological sort
- . All-pairs.
  - O(n<sup>3</sup>) using Floyd-Warshall
  - O(mn + n log log n) using Pettie's algorithm