
Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

Greed: Shortest Path

s

3

t

2

6

7

4
5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

2

1

3

8

2

6

7

4
5

Directed Graph

Directed graph: G = (V, E) .

■ V = set of vertices or nodes.

■ E ⊆ V × V = set of edges or arcs.

■ n = |V|, m = |E|.

■ Directed path: s - 2 - 3 - 5 - t.
– simple

■ Directed cycle: 5 - 4 - 3 - 5.

3

Networks

communication

Network

telephone exchanges,
computers, satellites

Nodes Arcs

cables, fiber optics,
microwave relays

Flow

voice, video,
packets

circuits
gates, registers,
processors

wires current

mechanical joints rods, beams, springs heat, energy

hydraulic
reservoirs, pumping
stations, lakes

pipelines fluid, oil

financial stocks, currency transactions money

transportation
airports, rail yards,
street intersections

highways, railbeds,
airway routes

freight,
vehicles,
passengers

4

Shortest Path Network

Shortest path network: (V, E, s, t, c) .

■ Directed graph (V, E).

■ Source s ∈ V, sink t ∈ V.

■ Arc costs c(v, w).

■ Cost of path = sum of arc costs in path.
Cost of path s - 2 - 3 - 5 - t

= 9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

5

Shortest Path

Shortest path problem. (CLR 25.1-25.2)

■ Shortest path network (V, E, s, t, c).

■ Find shortest directed path from s to t.

Assumptions.

■ Network contains directed path from s to every other node.

■ Network does not contain a negative cost cycle.

Application.

■ Online directions.

3

45

-6

7

-4

6

Shortest Path: Existence

Existence. If some path from s to v contains a negative cost cycle,
there does not exist a shortest path. Otherwise, there exists a shortest
s-v that is simple.

⇒ If negative cycle, can produce arbitrarily negative path by
traversing cycle enough times.

⇐ If no negative cycle, can remove cycles without increasing cost.

s v
C

c(C) < 0

7

Shortest Path: Properties

Optimal substructure property. All sub-paths of shortest paths are
shortest paths.

■ Let P1 be x-y sub-path of shortest s-v path P.

■ Let P2 be any x-y path.

■ c(P1) ≤ c(P2), otherwise P
not shortest s-v path.

Triangle inequality.

■ Let d*(v, w) be the length of the shortest path from v to w.

■ Then, d*(v, w) ≤ d*(v, x) + d*(x, w)

v w

x

s v

P2

P1
y

x

8

Dijkstra’s Algorithm

Upon termination.

■ π(v) = distance of shortest s-v path.

■ pred(v) gives shortest path.

for each v ∈ V
π(v) ← ∞
pred(v) ← nil

π(s) ← 0
S ← φ
init(Q)
for each v ∈ V

insert(v, Q)
while (Q ≠ φ)

v = delete-min(Q)
S ← S ∪ {v}
for each w s.t (v,w) ∈ E

if π(w) > π(v) + c(v,w)
π(w) ← π(v) + c(v,w)
pred(w) ← v

Dijkstra’s Algorithm

decrease-key

9

Dijkstra’s Algorithm: Proof of Correctness

Invariant. For each vertex v ∈ S, π(v) = d*(s, v).

■ Proof by induction on |S|.

■ Base case: |S| = 0 is trivial.

■ Induction step:
– suppose Dijkstra’s algorithm adds vertex v to S
– π(v) is the length of the some path from s to v
– if π(v) is not the length of the shortest s-v path, then let P* be a

shortest s-v path
– P* must use an edge that leaves S, say (x, y)
– then π(v) > d*(s, v) assumption

= d*(s, x) + d(x, y) + d*(y, v) optimal substructure
≥ d*(s, x) + d(x, y) nonnegative lengths
= π(x) + d(x, y) inductive hypothesis
≥ π(y) algorithm

so Dijkstra’s algorithm would have selected y instead of v

S

s

y

v

x

P*

10

Dijkstra
1 make-heap
n insert
n delete-min
m decrease-key

Priority Queues and Heaps (CLR 20, 21)

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary

log N

1

log N

N

log N

log N

1

Binomial

log N

log N

log N

log N

log N

log N

1

Fibonacci *

1

1

log N

1

1

log N

1

Relaxed

1

1

log N

1

1

log N

1

Linked List

1

N

N

1

1

N

n (n) + m(1) = O(n2)

n (log n) + m(log n) =
O(m log n)

n (log n) + m(1) =
O(m + n log n)

is-empty 1 1 1 11

Heaps

11

Shortest Path Extensions

Variants of shortest path:

■ Undirected graph.
– O(m + n) using Thorup’s algorithm

■ Negative weights but no negative cycles.
– O(mn) using Bellman-Ford

■ Unit weights.
– O(m + n) using breadth first search

■ Integer weights between 0 and constant C.

■ DAGs.
– O(m + n) using topological sort

■ All-pairs.
– O(n3) using Floyd-Warshall
– O(mn + n log log n) using Pettie’s algorithm

