Linear Time Selection

These lecture slides are adapted
from CLRS 10.3.

Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne

Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road
parallel to x-axis to minimize construction cost of building driveways?
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Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road
parallel to x-axis to minimize construction cost of building driveways?

. n;=nodes on top.
. n,=nodes on bottom.
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Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road
parallel to x-axis to minimize construction cost of building driveways?

. n;=nodes on top.
. n,=nodes on bottom.
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Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road
parallel to x-axis to minimize construction cost of building driveways?

. N, =nodes on top.
. N, =nodes on bottom.
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Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road
parallel to x-axis to minimize construction cost of building driveways?

Solution: put street at median of y coordinates.
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Order Statistics

Given N linearly ordered elements, find ith smallest element.
. Min: i=1
. Max: i=N
. Median: i=[N+1)/20and QN+1) /20
. O(N) for min or max.
. O(Nlog N) comparisons by sorting.
. O(N log i) with heaps.

Can we do in worst-case O(N) comparisons?
. Surprisingly, yes. (Blum, Floyd, Pratt, Rivest, Tarjan, 1973)

Assumption to make presentation cleaner.
. All items have distinct values.

Select
Similar to quicksort, but throw away useless "half" at each iteration.
. Select ith smallest element from a;, a,, . . ., a.
Select (it", N, a;, a,, . . ., ay)
X « Partition(N, a;, a, ..., ay <::< X = partition element
k < rank(x)

if (i == k) Want to choose x so that
return x x is (roughly) the ith largest.

elseif (i <k)
b[] < all itens of a[] less than x
return Select(ith, k-1, by, b,, ..., b.,)

elseif (i > k)
c[] <« all itens of a[] greater than x
return Select((i-k)th, Nk, ¢, €, ..., Cyy)
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Partition

Partition().
Divide N elements into IN/50groups of 5 elements each, plus extra.
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Partition

Partition().
. Divide N elements into [N/50groups of 5 elements each, plus extra.
Brute force sort each of the 5-element groups.
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Partition

Partition().
. Divide N elements into IN/50groups of 5 elements each, plus extra.
. Brute force sort each of the 5-element groups.

Find x ="median of medians" by Sel ect () on IN/50medians.

DIOIOIOIGIOIIGIDIOIO
@O0 O®
> JOLOIOLOROIOIOICLO)C)
OO OOOO®
©Oe0OOOE

®®

Select

Select (i", N, a;, a,, . . ., &)

if (Nis small) use nergesort

Divide a[] into groups of 5, and |let

m, m, ..., mysbe [ist of nedians.
X < Select(N10, m, m, ..., mMys) <::: median of medians
k < rank(x)
if (i == k) /1l Case 1
return x
elseif (i <k) // Case 2
b[] < all items of a[] less than x
return Select(ith, k-1, b, b,, ..., b.,)

elseif (i >k) // Case 3
c[] < all itens of a[] greater than x
return Select((i-k)th, Nk, ¢, €, ..., Cyy)




Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.
m) . Atleast 1/2 of 5 element medians < x
—at least OIN / 500/ 20= [N / 1000 medians < x
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Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.
. Atleast 1/2 of 5 element medians < x
—at least OIN / 500/ 20= [N / 100 medians < x
m) . Atleast 3[N/100 elements < x.
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Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.
. Atleast 1/2 of 5 element medians < x
—at least OIN / 500/ 20= [N / 100 medians < x
. Atleast 3[N/100elements < x.
m) - At least 3 N/ 1000 elements = X.
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Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.
. Atleast 1/2 of 5 element medians < x
—at least OIN / 500/ 20= [N / 1000 medians < x
. Atleast 3[N/100elements < x.
. Atleast 3[N/100elements = x.

0 Sel ect() called recursively (Case 2 or 3) with at most
N - 3 [N/ 100elements.

C(N) = # comparisons on a file of size N.

CN) < c(mN/50) + C.(N-3[N/100) +  O(N)

insertion sort

median of medians recursive select

Now, solve recurrence.

. Apply master theorem?

. Assume N is a power of 2?

. Assume C(N) is monotone non-decreasing?




Selection Analysis

Analysis of selection recurrence.
. T(N) =# comparisons on afile of size< N.
. T(N) is monotone, but C(N) is not!

020cN if N<50
T(N) = O )
OT(IN/50) + T(N-3[ON/10[) + cN otherwise

Claim: T(N) < 20cN.
. Basecase: N <50.
. Inductive hypothesis: assume true for1,2,...,N-1.
. Induction step: for N =50, we have:

T(N) < T(IN/50)+T(N-3[N/10[)+cN
< 20c [N/5[#20c( N-3 [N/100)+cN For n = 50,
< 20¢(N/5)+20c(N)-20c(N/4)+cN 3[IN/100 =N/ 4.

20cN

Linear Time Selection Postmortem

Practical considerations.

. Constant (currently) too large to be useful.

. Practical variant: choose random partition element.
- O(N) expected running time ala quicksort.

. Open problem: guaranteed O(N) with better constant.

Quicksort.
. Worst case O(N log N) if always partition on median.
. Justifies practical variants: median-of-3, median-of-5.




