

Where to Build a Road?

Given (x,y) coordinates of N houses, where should you build road parallel to x-axis to minimize construction cost of building driveways?

- n_1 = nodes on top.
- n_2 = nodes on bottom.

Where to Build a Road?

Order Statistics

Given N linearly ordered elements, find ith smallest element.

- Min: i = 1
- Max: i = N
- Median: $i = \lfloor (N+1)/2 \rfloor$ and $\lceil (N+1)/2 \rceil$
- O(N) for min or max.
- O(N log N) comparisons by sorting.
- O(N log i) with heaps.

Can we do in worst-case O(N) comparisons?

Surprisingly, yes. (Blum, Floyd, Pratt, Rivest, Tarjan, 1973)

Assumption to make presentation cleaner.

All items have distinct values.

Select

Similar to quicksort, but throw away useless "half" at each iteration.

• Select ith smallest element from a_1, a_2, \ldots, a_N .

Partition

Partition().

■ Divide N elements into N/5 groups of 5 elements each, plus extra.

N = 54

Partition

Partition().

- Divide N elements into N/5 groups of 5 elements each, plus extra.
- Brute force sort each of the 5-element groups.

Partition

Partition().

- Divide N elements into N/5 groups of 5 elements each, plus extra.
- Brute force sort each of the 5-element groups.
- Find x = "median of medians" by Select() on [N/5] medians.

- 29 (39) (50) (26) (53) (30) (41) (46) (33) (49) (21)
- 45 44 52 37 54 53 48 47 34 51

Select

```
Select (ith, N, a_1, a_2, ..., a_N)
if (N is small) use mergesort
Divide a[] into groups of 5, and let
m_1, m_2, ..., m_{N/5} be list of medians.
x \leftarrow Select(N/10, m_1, m_2, \ldots, m_{N/5})
                                              median of medians
k \leftarrow rank(x)
                    // Case 1
if (i == k)
   return x
else if (i < k) // Case 2
   b[] \leftarrow all items of a[] less than x
   return Select(i^{th}, k-1, b_1, b_2, ..., b_{k-1})
else if (i > k) // Case 3
   c[] ← all items of a[] greater than x
   return Select((i-k)<sup>th</sup>, N-k, c_1, c_2, ..., c_{N-k})
```

10

Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.

- At least 1/2 of 5 element medians ≤ x
 - at least [N/5]/2 = N/10 medians $\leq x$
- At least 3 N / 10 elements ≤ x.
- At least 3 N / 10 elements ≥ x.

Selection Analysis

Crux of proof: delete roughly 30% of elements by partitioning.

- At least 1/2 of 5 element medians ≤ x
 - at least $\lfloor \lfloor N/5 \rfloor / 2 \rfloor = \lfloor N/10 \rfloor$ medians ≤ x
- At least 3 [N/10] elements $\leq x$.
- At least 3 | N / 10 | elements $\ge x$.
 - ⇒ Select() called recursively (Case 2 or 3) with at most N 3 | N / 10 | elements.

C(N) = # comparisons on a file of size N.

$$C(N) \le C(\lfloor N/5 \rfloor) + C_{\le}(N-3 \lfloor N/10 \rfloor) + O(N)$$
median of medians recursive select insertion sort

Now, solve recurrence.

- Apply master theorem?
- Assume N is a power of 2?
- Assume C(N) is monotone non-decreasing?

14

16

Selection Analysis

Analysis of selection recurrence.

- T(N) = # comparisons on a file of size $\le N$.
- T(N) is monotone, but C(N) is not!

$$T(N) \le \begin{cases} 20cN & \text{if } N < 50 \\ T(\lfloor N/5 \rfloor) + T(N-3\lfloor N/10 \rfloor) + cN & \text{otherwise} \end{cases}$$

Claim: $T(N) \leq 20cN$.

- Base case: N < 50.
- Inductive hypothesis: assume true for 1, 2, ..., N-1.
- Induction step: for $N \ge 50$, we have:

$$T(N) \leq T(\lfloor N/5 \rfloor) + T(N-3 \lfloor N/10 \rfloor) + cN$$

$$\leq 20c \lfloor N/5 \rfloor + 20c(N-3 \lfloor N/10 \rfloor) + cN$$

$$\leq 20c(N/5) + 20c(N) - 20c(N/4) + cN$$

$$= 20cN$$

For $n \ge 50$, $3 \lfloor N / 10 \rfloor \ge N / 4$.

Linear Time Selection Postmortem

Practical considerations.

- Constant (currently) too large to be useful.
- Practical variant: choose random partition element.
 - O(N) expected running time ala quicksort.
- Open problem: guaranteed O(N) with better constant.

Quicksort.

- Worst case O(N log N) if always partition on median.
- Justifies practical variants: median-of-3, median-of-5.

18