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Contents

Contents.

■ Maximum flow problem.

■ Minimum cut problem.

■ Max-flow min-cut theorem.

■ Augmenting path algorithm.

■ Capacity-scaling.

■ Shortest augmenting path.
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■ Network reliability.

■ Security of statistical data.

■ Distributed computing.

■ Egalitarian stable matching.

■ Distributed computing.

■ Many many more . . .

Maximum Flow and Minimum Cut

Max flow and min cut.

■ Two very rich algorithmic problems.

■ Cornerstone problem in combinatorial optimization.

■ Beautiful mathematical duality.

Nontrivial applications / reductions.

■ Network connectivity.

■ Bipartite matching.

■ Data mining.

■ Open-pit mining. 

■ Airline scheduling.

■ Image processing.

■ Project selection.

■ Baseball elimination.



4

Max flow network:  G = (V, E, s, t, u) .

■ (V, E) = directed graph, no parallel arcs.

■ Two distinguished nodes:  s = source, t = sink.

■ u(e) = capacity of arc e.

Max Flow Network
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An s-t flow is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0  ≤ f(e)  ≤ u(e) (capacity)

■ For each v ∈ V – {s, t}: (conservation)
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An s-t flow is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0  ≤ f(e)  ≤ u(e) (capacity)

■ For each v ∈ V – {s, t}: (conservation)

MAX FLOW:  find s-t flow that maximizes net flow out of the source. 
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An s-t flow is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0  ≤ f(e)  ≤ u(e) (capacity)

■ For each v ∈ V – {s, t}: (conservation)

MAX FLOW:  find s-t flow that maximizes net flow out of the source. 
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An s-t flow is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0  ≤ f(e)  ≤ u(e) (capacity)

■ For each v ∈ V – {s, t}: (conservation)

MAX FLOW:  find s-t flow that maximizes net flow out of the source. 
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Networks

communication

Network

telephone exchanges,
computers, satellites

Nodes Arcs

cables, fiber optics,
microwave relays

Flow

voice, video,
packets

circuits
gates, registers,
processors

wires current

mechanical joints rods, beams, springs heat, energy

hydraulic
reservoirs, pumping
stations, lakes

pipelines fluid, oil

financial stocks, currency transactions money

transportation
airports, rail yards,
street intersections

highways, railbeds,
airway routes

freight,
vehicles,
passengers

chemical sites bonds energy
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An s-t cut is a node partition (S, T) such that s ∈ S, t ∈ T.

■ The capacity of an s-t cut (S, T) is:

Min s-t cut:  find an s-t cut of minimum capacity.
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An s-t cut is a node partition (S, T) such that s ∈ S, t ∈ T.

■ The capacity of an s-t cut (S, T) is:

Min s-t cut:  find an s-t cut of minimum capacity.
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An s-t cut is a node partition (S, T) such that s ∈ S, t ∈ T.

■ The capacity of an s-t cut (S, T) is:

Min s-t cut:  find an s-t cut of minimum capacity.
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L1.  Let f be a flow, and let (S, T) be a cut.  Then, the net flow sent 
across the cut is equal to the amount reaching t.

Flows and Cuts
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L1.  Let f be a flow, and let (S, T) be a cut.  Then, the net flow sent 
across the cut is equal to the amount reaching t.

Flows and Cuts
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L1. Let f be a flow, and let (S, T) be a cut.  Then, the net flow sent 
across the cut is equal to the amount reaching t.
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Let f be a flow, and let (S, T) be a cut.  Then, 

Proof by induction on |S|.

■ Base case:  S = { s }.

■ Inductive hypothesis:  assume true for |S| < k.
– consider cut (S, T) with |S| = k
– S = S’  ∪ { v } for some v ≠ s, t,  |S’ | = k-1 ⇒ cap(S’, T’) = | f |.
– adding v to S’ increase cut capacity by 

Flows and Cuts
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L2. Let f be a flow, and let (S, T) be a cut.  Then,  | f | ≤ cap(S, T).

Proof.

Corollary. Let f be a flow, and let (S, T) be a cut.  If |f| = cap(S, T), then 
f is a max flow and (S, T) is a min cut.

Flows and Cuts
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Max Flow and Min Cut

Corollary. Let f be a flow, and let (S, T) be a cut.  If |f| = cap(S, T), then 
f is a max flow and (S, T) is a min cut.
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Max-Flow Min-Cut Theorem

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): In any 
network, the value of the max flow is equal to the value of the min cut.

■ "Good characterization."

■ Proof IOU.
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Towards an Algorithm

Find an s-t path where each arc has u(e) > f(e) and "augment" flow 
along the path.
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Towards an Algorithm

Find an s-t path where each arc has u(e) > f(e) and "augment" flow 
along the path.

■ Repeat until you get stuck.
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Towards an Algorithm

Find an s-t path where each arc has u(e) > f(e) and "augment" flow 
along the path.

■ Repeat until you get stuck.

■ Greedy algorithm fails.
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Residual Arcs

Original graph G = (V, E).

■ Flow f(e).

■ Arc e = (v, w)  ∈ E.

Residual graph: Gf = (V, Ef ).

■ Residual arcs e = (v, w) and eR = (w, v).

■ "Undo" flow sent.

v w17
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6

Residual capacity
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Residual Graph and Augmenting Paths

Residual graph:  Gf = (V, Ef ).

■ Ef = {e : f(e) < u(e)}  ∪ {eR : f(e) > 0}.
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Augmenting Path

Augmenting path = path in residual graph.
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Augmenting Path

Augmenting path = path in residual graph.

■ Max flow  ⇔ no augmenting paths ???
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Max-Flow Min-Cut Theorem

Augmenting path theorem (Ford-Fulkerson, 1956):  A flow f is a max 
flow if and only if there are no augmenting paths. 

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): the value of 
the max flow is equal to the value of the min cut.

We prove both simultaneously by showing the TFAE:

(i) f is a max flow.

(ii) There is no augmenting path relative to f.

(iii) There exists a cut (S, T) such that |f| = cap(S, T).
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Proof of Max-Flow Min-Cut Theorem

We prove both simultaneously by showing the TFAE:

(i) f is a max flow.

(ii) There is no augmenting path relative to f.

(iii) There exists a cut (S, T) such that |f| = cap(S, T).

(i)  ⇒ (ii)

■ We show contrapositive.

■ Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

(iii)  ⇒ (i)

■ Next slide.

(iii)  ⇒ (i)

■ This was the Corollary to Lemma 2.
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Proof of Max-Flow Min-Cut Theorem

We prove both simultaneously by showing the TFAE:

(i) f is a max flow.

(ii) There is no augmenting path relative to f.

(iii) There exists a cut (S, T) such that |f| = cap(S, T).

(ii)  ⇒ (iii)

■ Let f be a flow with no augmenting paths.

■ Let S be set of vertices reachable from s in residual graph.
– clearly s ∈ S, and t ∉ S by definition of f
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Augmenting Path Algorithm

b ← bottleneck(P) 
FOREACH e ∈ P

IF (e ∈ E) // forward arc
f(e) ← f(e) + b

ELSE // backwards arc
f(eR) ← f(e) - b

RETURN f

Augment (f, P)

FOREACH e ∈ E
f(e) ← 0

Gf ← residual graph

WHILE (there exists augmenting path P)
f ← augment(f, P)
update Gf

RETURN f

FordFulkerson (V, E, s, t)
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Running Time

Assumption:  all capacities are integers between 0 and U.

Invariant:  every flow value f(e) and every residual capacities uf (e) 
remains an integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | ≤ nU iterations.

Corollary: if U = 1, then algorithm runs in O(mn) time.

Integrality theorem: if all arc capacities are integers, then there exists 
a max flow f for which every flow value f(e) is an integer.

Note: algorithm may not terminate on some pathological instances
(with irrational capacities).  Moreover, flow value may not even
converge to correct answer.
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

■ Some choices lead to exponential algorithms.

■ Clever choices lead to polynomial algorithms.

Goal:  choose augmenting paths so that:

■ Can find augmenting paths efficiently.

■ Few iterations.

Edmonds-Karp (1972):  choose augmenting path with

■ Max bottleneck capacity. (fat path)

■ Sufficiently large capacity. (capacity-scaling)

■ Fewest number of arcs. (shortest path)
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Capacity Scaling

Intuition:  choosing path with highest bottleneck capacity increases 
flow by max possible amount.

■ Don’t worry about finding exact highest bottleneck path.

■ Maintain scaling parameter ∆.

■ Let Gf (∆) be the subgraph of the residual graph consisting of only 
arcs with capacity at least ∆.
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Capacity Scaling

Intuition:  choosing path with highest bottleneck capacity increases 
flow by max possible amount.

■ Don’t worry about finding exact highest bottleneck path.

■ Maintain scaling parameter ∆.

■ Let Gf (∆) be the subgraph of the residual graph consisting of only 
arcs with capacity at least ∆.

FOREACH e ∈ E, f(e) ← 0
∆ ← smallest power of 2 greater than or equal to U

WHILE (∆ ≥ 1)
Gf(∆) ← ∆-residual graph
WHILE (there exists augmenting path P in Gf(∆))

f ← augment(f, P)
update Gf(∆)

∆ ← ∆ / 2
RETURN f

ScalingMaxFlow(V, E, s, t)
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Capacity Scaling:  Analysis

L1.  If all arc capacities are integers, then throughout the algorithm, all 
flow and residual capacity values remain integers. 

■ Thus, ∆ = 1  ⇒ Gf(∆) = Gf , so upon termination f is a max flow.

L2.  The outer while loop repeats 1 + log2 U times.

■ Initially U ≤ ∆ < 2U, and ∆ decreases by a factor of 2 each iteration.

L3.  Let f be the flow at the end of a ∆-scaling phase. Then value of the 
maximum flow is at most | f | + m ∆.

L4.  There are at most 2m augmentations per scaling phase.

■ Let f be the flow at the end of the previous scaling phase.

■ L3  ⇒ |f*|  ≤ | f | + m (2∆).

■ Each augmentation in a ∆-phase increases | f | by at least ∆.

Theorem.  The algorithm runs in O(m2 log (2U) ) time.
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Capacity Scaling:  Analysis

L3.  Let f be the flow at the end of a ∆-scaling phase. Then value of the 
maximum flow is at most |f| + m ∆.

■ We show that at the end of a ∆-phase, there exists a cut (S, T) such 
that cap(S, T)  ≤ | f | + m ∆.

■ Choose S to be the set of nodes reachable from s in Gf(∆).
– clearly s ∈ S, and t ∉ S by definition of S
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

■ Some choices lead to exponential algorithms.

■ Clever choices lead to polynomial algorithms.

Goal:  choose augmenting paths so that:

■ Can find augmenting paths efficiently.

■ Few iterations.

Edmonds-Karp (1972):  choose augmenting path with

■ Max bottleneck capacity. (fat path)

■ Sufficiently large capacity. (capacity-scaling)

■ Fewest number of arcs. (shortest path)
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Shortest Augmenting Path

Intuition:  choosing path via breadth first search.

■ Easy to implement.
– may implement by coincidence!

■ Finds augmenting path with fewest number of arcs. 

FOREACH e ∈ E
f(e) ← 0

Gf ← residual graph

WHILE (there exists augmenting path)
find such a path P by BFS
f ← augment(f, P)
update Gf

RETURN f

ShortestAugmentingPath(V, E, s, t)
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Shortest Augmenting Path:  Overview of Analysis

L1.  Throughout the algorithm, the length of the shortest path never 
decreases.

■ Proof ahead.

L2.   After at most m shortest path augmentations, the length of the 
shortest augmenting path strictly increases.

■ Proof ahead.

Theorem.  The shortest augmenting path algorithm runs in O(m2n) 
time.

■ O(m+n)  time to find shortest augmenting path via BFS.

■ O(m) augmentations for paths of exactly k arcs.

■ If there is an augmenting path, there is a simple one.
⇒ 1 ≤ k < n
⇒ O(mn) augmentations.



45

Shortest Augmenting Path:  Analysis

Level graph of (V, E, s).

■ For each vertex v, define l(v) to be the length (number of arcs) of 
shortest path from s to v.

■ LG = (V, EG) is subgraph of G that contains only those arcs
(v,w) ∈ E with l(w) = l(v) + 1.
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Shortest Augmenting Path:  Analysis

Level graph of (V, E, s).

■ For each vertex v, define l(v) to be the length (number of arcs) of 
shortest path from s to v.

■ L = (V, F) is subgraph of G that contains only those arcs
(v,w) ∈ E with l(w) = l(v) + 1.

■ Compute in O(m+n) time using BFS, deleting back and side arcs.

■ P is a shortest s-v path in G if and only if it is an s-v path L.
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Shortest Augmenting Path:  Analysis

L1.  Throughout the algorithm, the length of the shortest path never 
decreases.

■ Let f and f’ be flow before and after a shortest path augmentation.

■ Let L and L’ be level graphs of Gf and Gf ’

■ Only back arcs added to Gf ’

– path with back arc has length greater than previous length
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Shortest Augmenting Path:  Analysis

L2.   After at most m shortest path augmentations, the length of the 
shortest augmenting path strictly increases.

■ At least one arc (the bottleneck arc) is deleted from L after each 
augmentation.

■ No new arcs added to L until length of shortest path strictly 
increases.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

L

s

2

3

5

6 t

L’



49

Shortest Augmenting Path:  Review of Analysis

L1.  Throughout the algorithm, the length of the shortest path never 
decreases.

L2.   After at most m shortest path augmentations, the length of the 
shortest augmenting path strictly increases.

Theorem.  The shortest augmenting path algorithm runs in O(m2n) 
time.

■ O(m+n)  time to find shortest augmenting path via BFS.

■ O(m) augmentations for paths of exactly k arcs.

■ O(mn) augmentations.

Note:  Θ(mn) augmentations necessary on some networks.

■ Try to decrease time per augmentation instead.

■ Dynamic trees  ⇒ O(mn log n)  Sleator-Tarjan, 1983

■ Simple idea ⇒ O(mn2) 
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Shortest Augmenting Path:  Improved Version

Two types of augmentations.

■ Normal augmentation:  length of shortest path doesn’t change.

■ Special augmentation:  length of shortest path strictly increases.

L3.  Group of normal augmentations takes O(mn) time.

■ Explicitly maintain level graph - it changes by at most 2n arcs after 
each normal augmentation.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete at least one arc
– if get stuck, delete node
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Shortest Augmenting Path:  Improved Version
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augment

augment

delete 3
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Shortest Augmenting Path:  Improved Version

s

2 5

6 t

LG

s

2 5

6 t

LG

STOP:  length of shortest path must have 
strictly increased

augment
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Shortest Augmenting Path:  Improved Version

ARRAY pred[v ∈ V]
LG ← level graph of Gf
v ← s, pred[v] ← nil

REPEAT
WHILE (there exists (v,w) ∈ LG)

pred[w] ← v, v ← w
IF (v = t)

P ← path defined by pred[]
f ← augment(f, P)
update LG
v ← s, pred[v] ← nil

delete v from LG
UNTIL (v = s)

RETURN f

AdvanceRetreat(V, E, f, s, t)

advance

retreat

augment
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Shortest Augmenting Path:  Improved Version

Two types of augmentations.

■ Normal augmentation:  length of shortest path doesn’t change.

■ Special augmentation:  length of shortest path strictly increases.

L3.  Group of normal augmentations takes O(mn) time.

■ Explicitly maintain level graph - it changes by at most 2n arcs after 
each normal augmentation.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete at least one arc
– if get stuck, delete node
– at most n advance steps before one of above events

Theorem.  Algorithm runs in O(mn2) time.

■ O(mn) time between special augmentations. 

■ At most n special augmentations.
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Choosing Good Augmenting Paths:  Summary

First 4 rules assume arc capacities are between 0 and U.

Method Augmentations

Augmenting path nU

Max capacity m log U

Capacity scaling m log U

Shortest path mn

Running time

mnU

m log U (m + n log n)

m2 log U

m2n

Improved shortest path mn mn2

Improved capacity scaling m log U mn log U
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History

Dantzig

Discoverer

Simplex

Method Big-Oh

mn2U1951

Year

Ford, Fulkerson Augmenting path mnU1955

Edmonds-Karp Shortest path m2n1970

Dinitz Shortest path mn21970

Edmonds-Karp, Dinitz Capacity scaling m2 log U1972

Dinitz-Gabow Capacity scaling mn log U1973

Karzanov Preflow-push n31974

Sleator-Tarjan Dynamic trees mn log n1983

Goldberg-Tarjan FIFO preflow-push mn log (n2 / m)1986

. . . . . . . . .. . .

Goldberg-Rao Length function
m3/2 log (n2 / m) log U

mn2/3 log (n2 / m) log U
1997


