# **Maximum Flow**



Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

# Contents

#### Contents.

- Maximum flow problem.
- Minimum cut problem.
- Max-flow min-cut theorem.
- Augmenting path algorithm.
- Capacity-scaling.
- Shortest augmenting path.

# **Maximum Flow and Minimum Cut**

#### Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problem in combinatorial optimization.
- Beautiful mathematical duality.

#### Nontrivial applications / reductions.

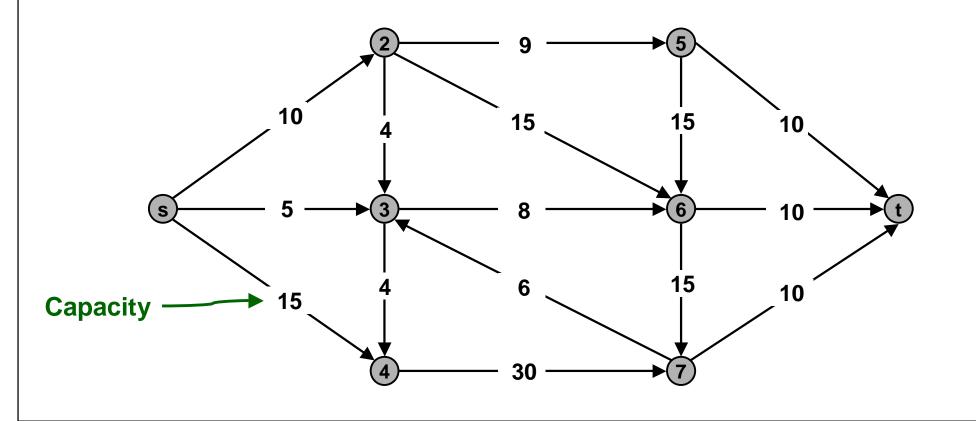
- Network connectivity.
- Bipartite matching.
- Data mining.
- Open-pit mining.
- Airline scheduling.
- Image processing.
- Project selection.
- Baseball elimination.

- Network reliability.
- Security of statistical data.
- Distributed computing.
- Egalitarian stable matching.
- Distributed computing.
- Many many more ...

### **Max Flow Network**

Max flow network: G = (V, E, s, t, u).

- (V, E) = directed graph, no parallel arcs.
- Two distinguished nodes: s = source, t = sink.
- u(e) = capacity of arc e.

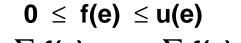


#### An s-t flow is a function f: $E \rightarrow \Re$ that satisfies:

• For each  $e \in E$ :  $0 \leq f(e) \leq u(e)$ (capacity) • For each  $v \in V - \{s, t\}$ :  $\sum f(e) = \sum f(e)$ (conservation) e in to v e out of v  $\sum f(e) := \sum f(v,w)$  $\sum f(e) \coloneqq \sum f(w,v)$ e in to v  $w:(w,v)\in E$ e out of v  $w:(v,w) \in E$ 0 0 10 15 **15 0** 10 0 4 10 S 0 0 **150** 0 6 10 15 Capacity **Flow** 30 0

An s-t flow is a function f:  $E \rightarrow \Re$  that satisfies:

- For each  $e \in E$ :  $0 \leq f(e) \leq u(e)$
- For each  $v \in V \{s, t\}$ :  $\sum f(e) = \sum f(e)$

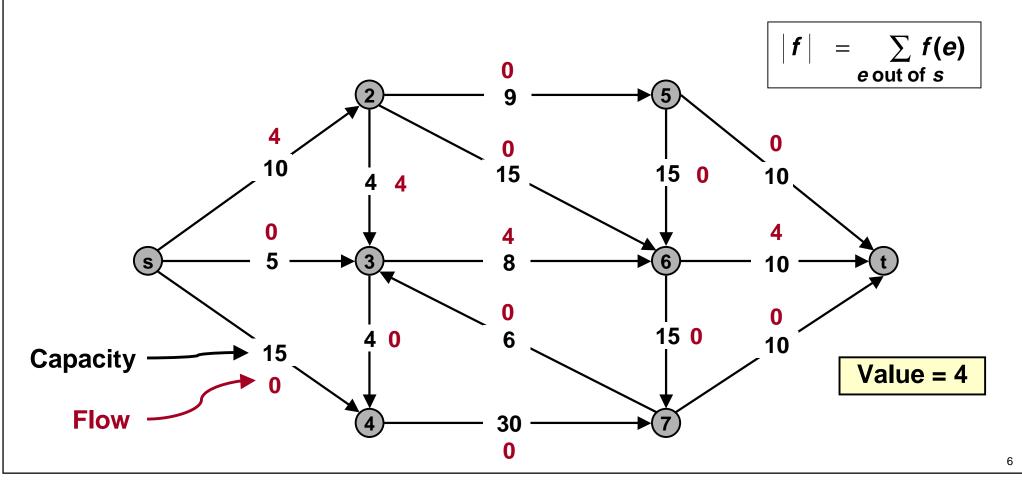


e out of v

(capacity) (conservation)

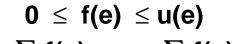
#### MAX FLOW: find s-t flow that maximizes net flow out of the source.

e in to v



An s-t flow is a function f:  $E \rightarrow \Re$  that satisfies:

- For each  $e \in E$ :  $0 \leq f(e) \leq u(e)$
- For each  $v \in V \{s, t\}$ :  $\sum f(e) = \sum f(e)$

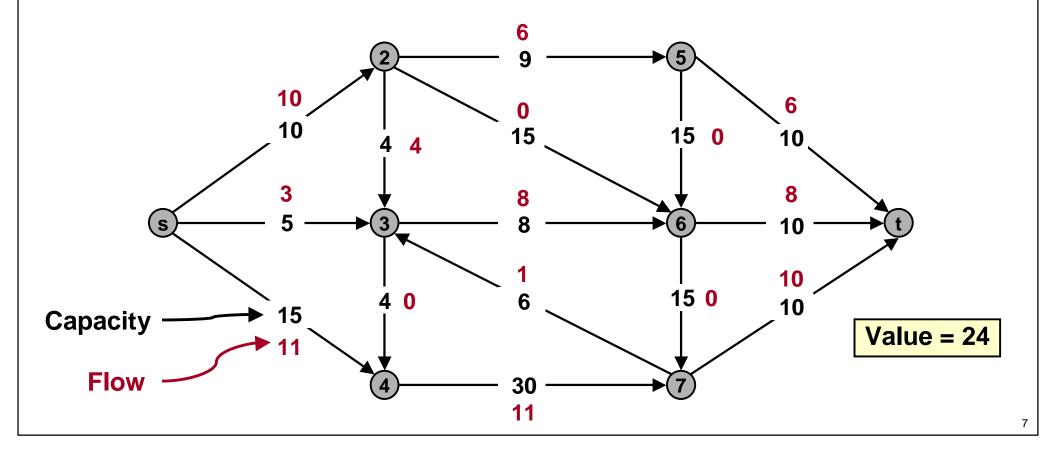


e out of v

(capacity) (conservation)

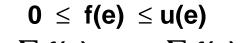
MAX FLOW: find s-t flow that maximizes net flow out of the source.

e in to v



An s-t flow is a function f:  $E \rightarrow \Re$  that satisfies:

- For each  $e \in E$ :  $0 \leq f(e) \leq u(e)$
- For each  $v \in V \{s, t\}$ :  $\sum f(e) = \sum f(e)$

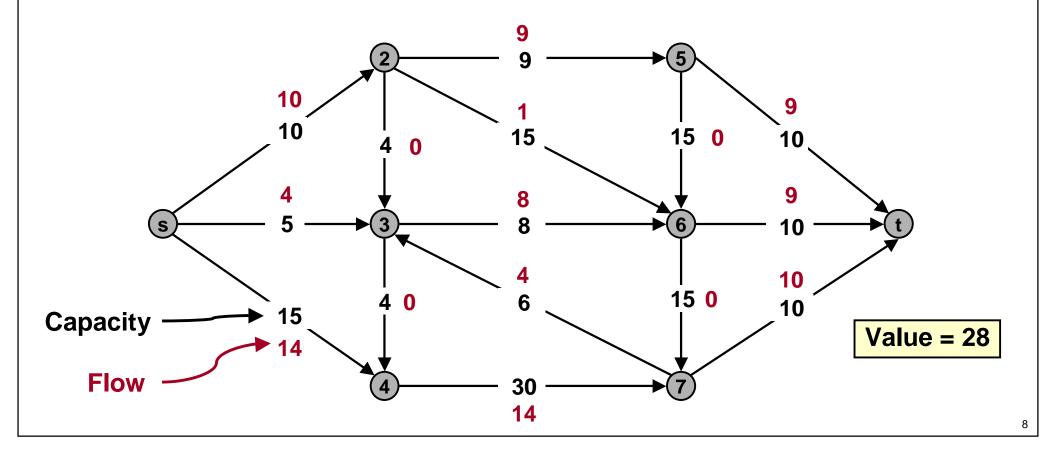


e out of v

(capacity) (conservation)

MAX FLOW: find s-t flow that maximizes net flow out of the source.

e in to v



# **Networks**

| Network        | Nodes                                         | Arcs                                      | Flow                                |
|----------------|-----------------------------------------------|-------------------------------------------|-------------------------------------|
| communication  | telephone exchanges,<br>computers, satellites | cables, fiber optics,<br>microwave relays | voice, video,<br>packets            |
| circuits       | gates, registers, processors                  | wires                                     | current                             |
| mechanical     | joints                                        | rods, beams, springs                      | heat, energy                        |
| hydraulic      | reservoirs, pumping stations, lakes           | pipelines                                 | fluid, oil                          |
| financial      | stocks, currency                              | transactions                              | money                               |
| transportation | airports, rail yards,<br>street intersections | highways, railbeds,<br>airway routes      | freight,<br>vehicles,<br>passengers |
| chemical       | sites                                         | bonds                                     | energy                              |

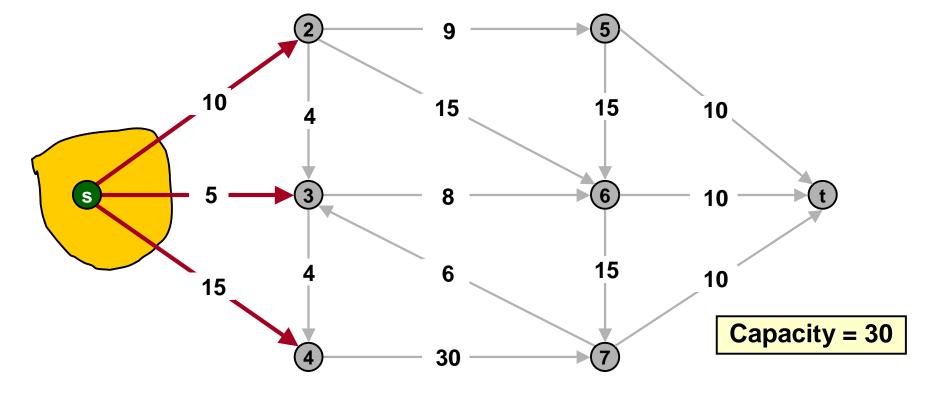
### Cuts

#### An s-t cut is a node partition (S, T) such that $s \in S, t \in T$ .

• The capacity of an s-t cut (S, T) is:

$$\sum_{e \text{ out of } S} u(e) := \sum_{\substack{(v,w) \in E \\ v \in S, w \in T}} u(v,w).$$

Min s-t cut: find an s-t cut of minimum capacity.



### Cuts

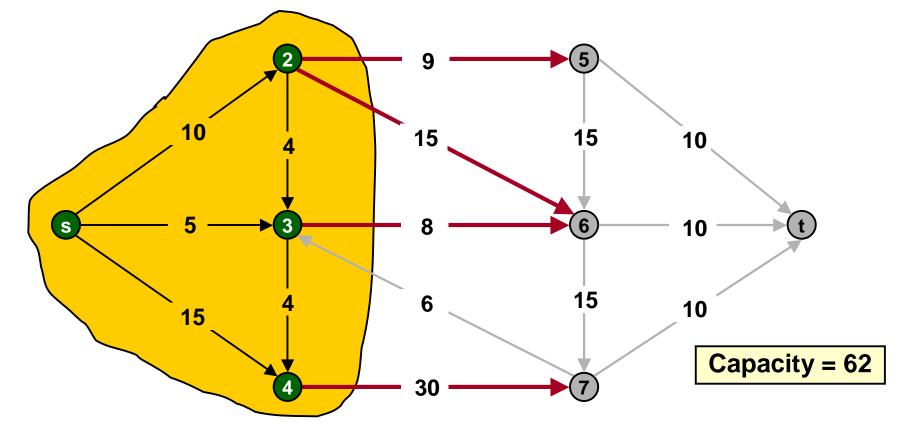
#### An s-t cut is a node partition (S, T) such that $s \in S, t \in T$ .

• The capacity of an s-t cut (S, T) is:

$$\sum_{e \text{ out of } S} u(e) := (v, v)$$

$$\sum_{\substack{(v,w)\in E\\v\in S, w\in T}} u(v,w).$$

Min s-t cut: find an s-t cut of minimum capacity.



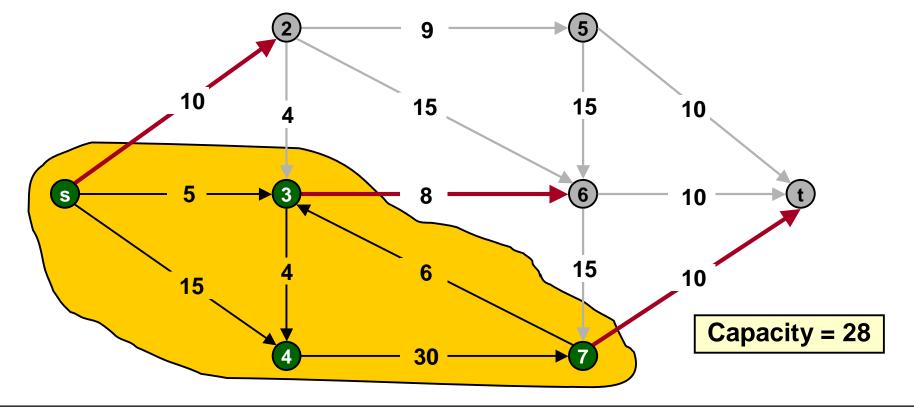
### Cuts

#### An s-t cut is a node partition (S, T) such that $s \in S, t \in T$ .

• The capacity of an s-t cut (S, T) is:

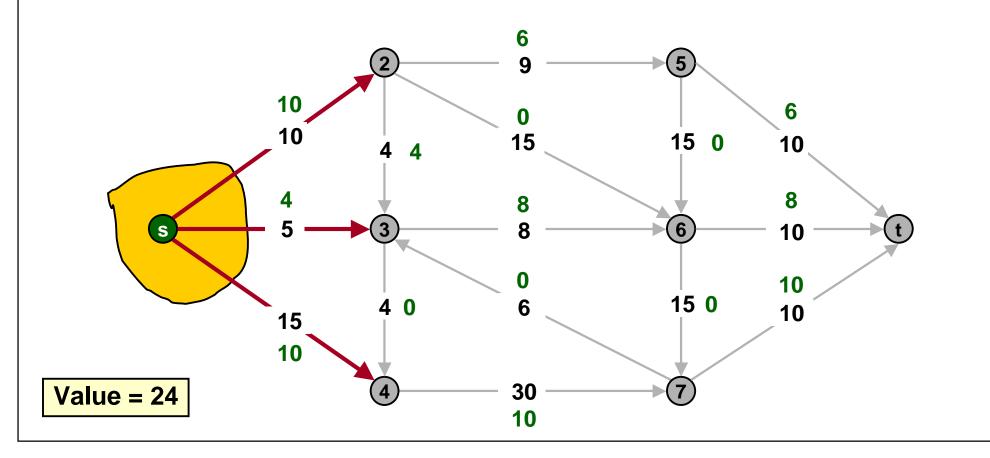
$$\sum_{e \text{ out of } S} u(e) := \sum_{\substack{(v,w) \in E \\ v \in S, w \in T}} u(v,w).$$

Min s-t cut: find an s-t cut of minimum capacity.

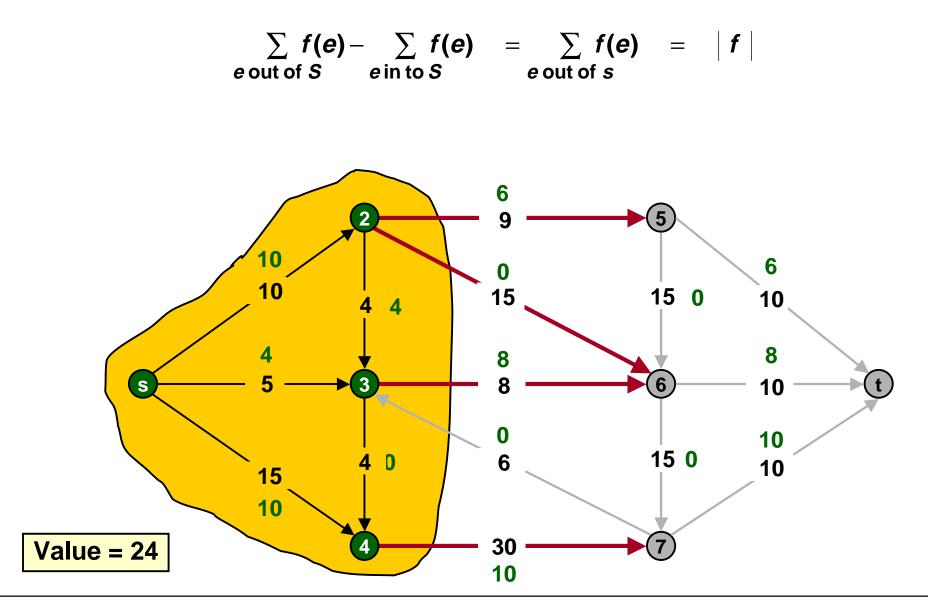


L1. Let f be a flow, and let (S, T) be a cut. Then, the net flow sent across the cut is equal to the amount reaching t.

 $\sum_{e \text{ out of } S} \frac{f(e)}{e \text{ in to } S} - \sum_{e \text{ in to } S} \frac{f(e)}{e \text{ out of } s} = \int_{e \text{ out of } s} \frac{f(e)}{e \text{ out of } s} = \int_{e \text{ out of } s} \frac{f(e)}{e \text{ out of } s}$ 

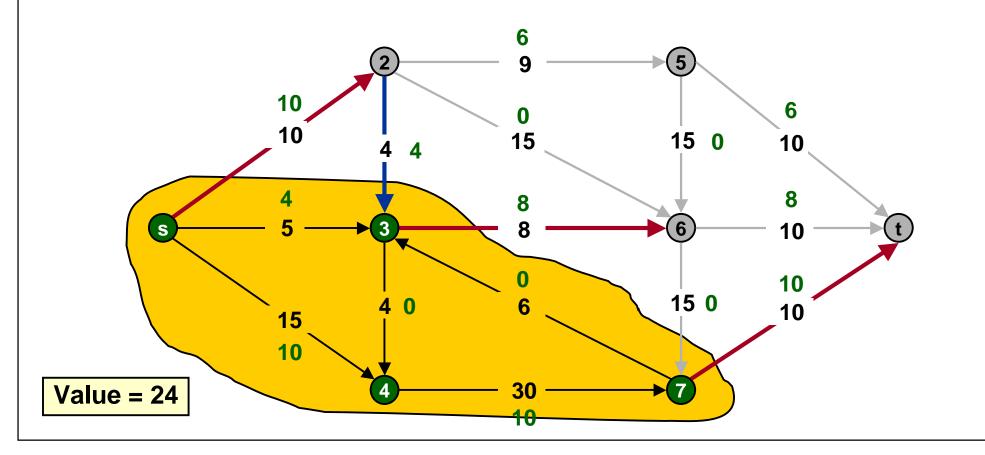


L1. Let f be a flow, and let (S, T) be a cut. Then, the net flow sent across the cut is equal to the amount reaching t.



L1. Let f be a flow, and let (S, T) be a cut. Then, the net flow sent across the cut is equal to the amount reaching t.

$$\sum_{e \text{ out of } S} \frac{f(e)}{e \text{ in to } S} - \sum_{e \text{ out of } s} \frac{f(e)}{e \text{ out of } s} = \int_{e} \frac{f(e)}{e \text{ out of } s} = \int_{e$$



Let f be a flow, and let (S, T) be a cut. Then,

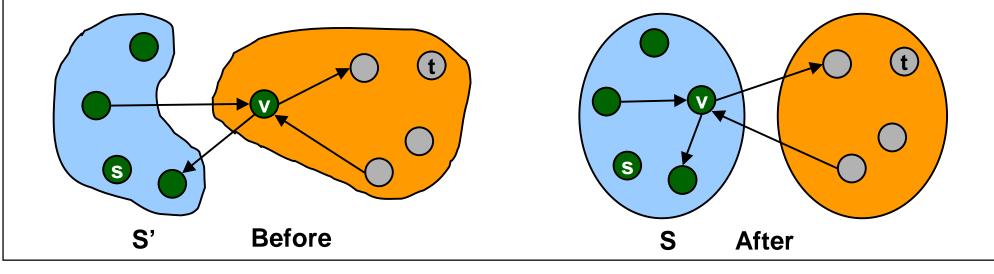
$$\sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e) = |f|.$$

#### Proof by induction on |S|.

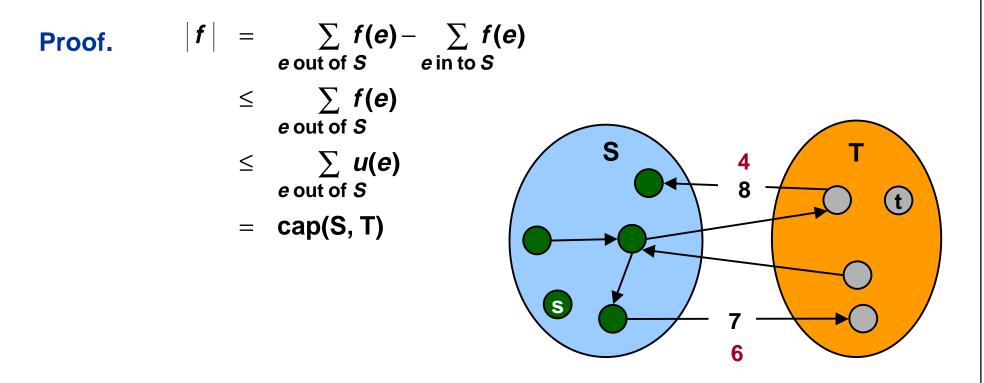
- Base case: S = { s }.
- Inductive hypothesis: assume true for |S| < k.</p>
  - consider cut (S, T) with |S| = k
  - $-S = S' \cup \{v\} \text{ for some } v \neq s, t, |S'| = k-1 \implies cap(S', T') = |f|.$

- adding v to S' increase cut capacity by

$$\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) = 0$$



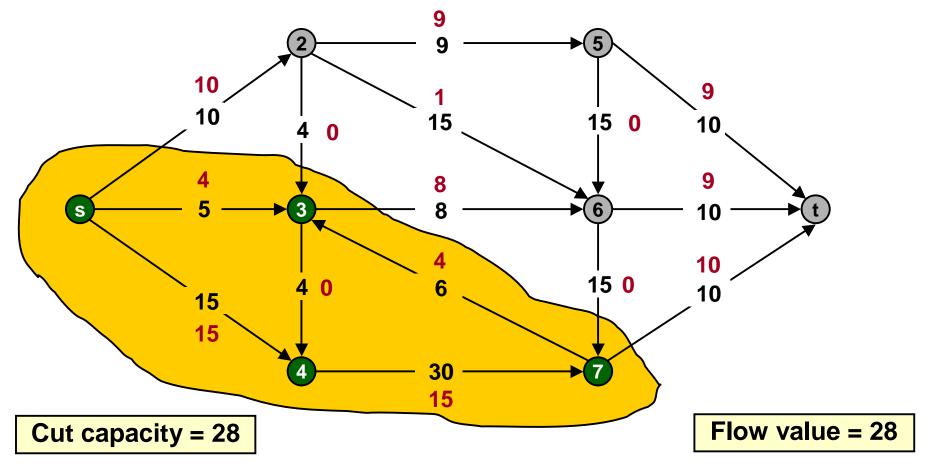
**L2.** Let f be a flow, and let (S, T) be a cut. Then,  $|f| \le cap(S, T)$ .



**Corollary.** Let f be a flow, and let (S, T) be a cut. If |f| = cap(S, T), then f is a max flow and (S, T) is a min cut.

### **Max Flow and Min Cut**

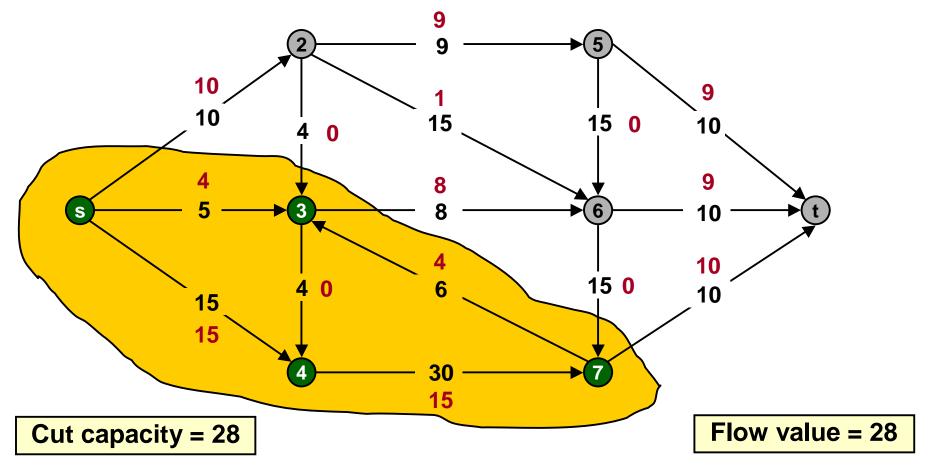
**Corollary.** Let f be a flow, and let (S, T) be a cut. If |f| = cap(S, T), then f is a max flow and (S, T) is a min cut.



## **Max-Flow Min-Cut Theorem**

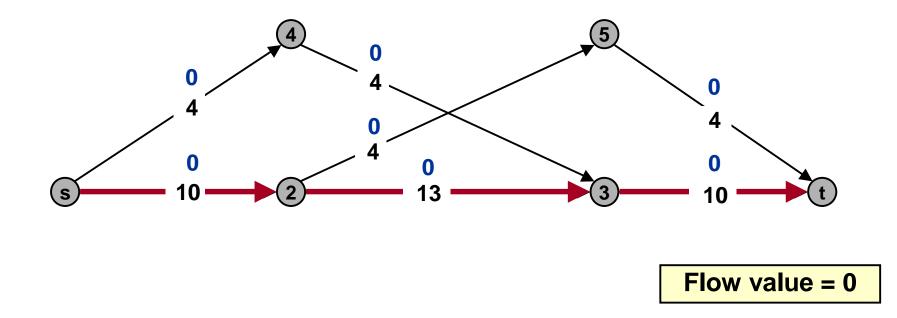
**MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956):** In any network, the value of the max flow is equal to the value of the min cut.

- Good characterization."
- Proof IOU.



### **Towards an Algorithm**

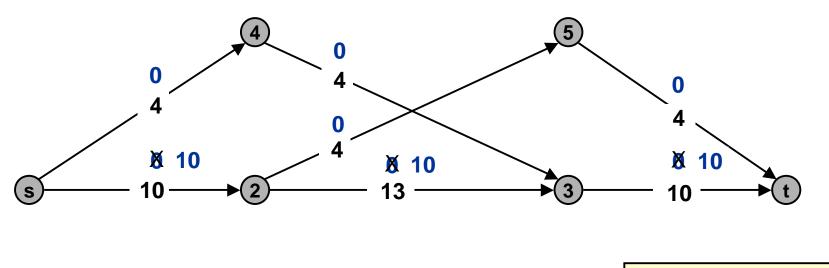
Find an s-t path where each arc has u(e) > f(e) and "augment" flow along the path.



### **Towards an Algorithm**

Find an s-t path where each arc has u(e) > f(e) and "augment" flow along the path.

• Repeat until you get stuck.

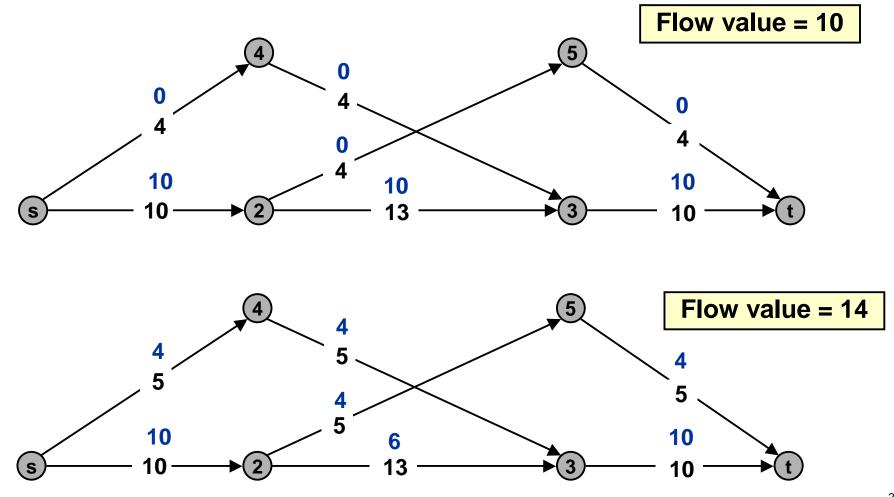


Flow value = 10

### **Towards an Algorithm**

Find an s-t path where each arc has u(e) > f(e) and "augment" flow along the path.

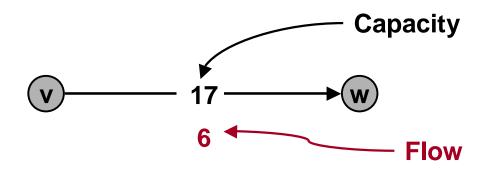
- Repeat until you get stuck.
- Greedy algorithm fails.



### **Residual Arcs**

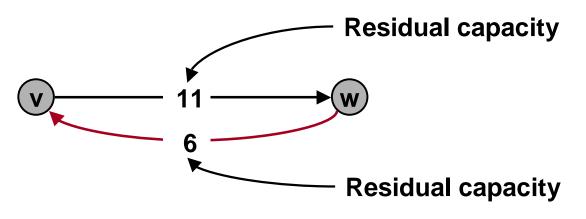
#### Original graph G = (V, E).

- Flow f(e).
- Arc  $e = (v, w) \in E$ .

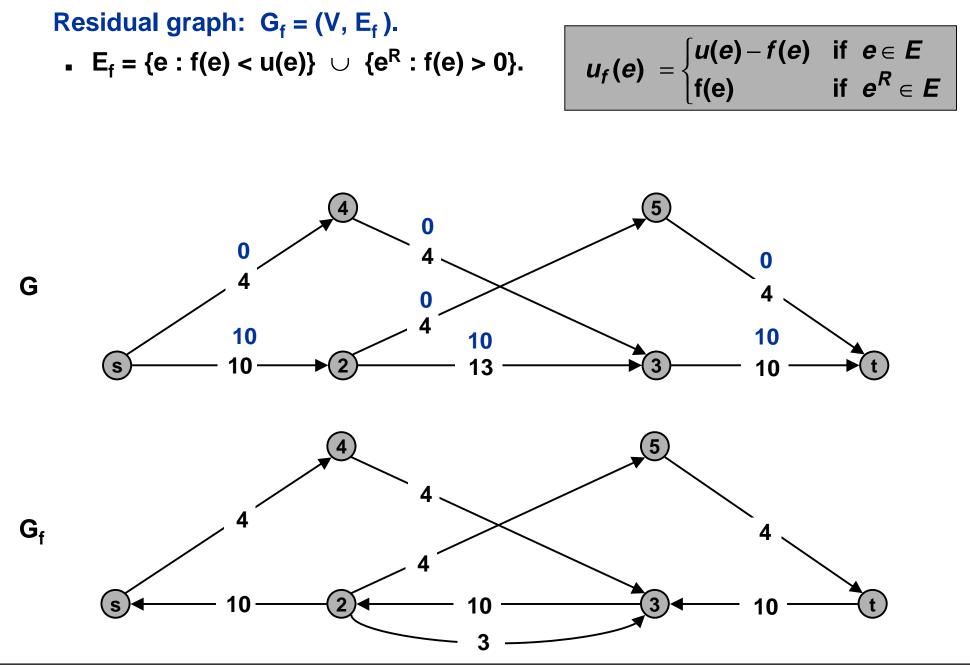


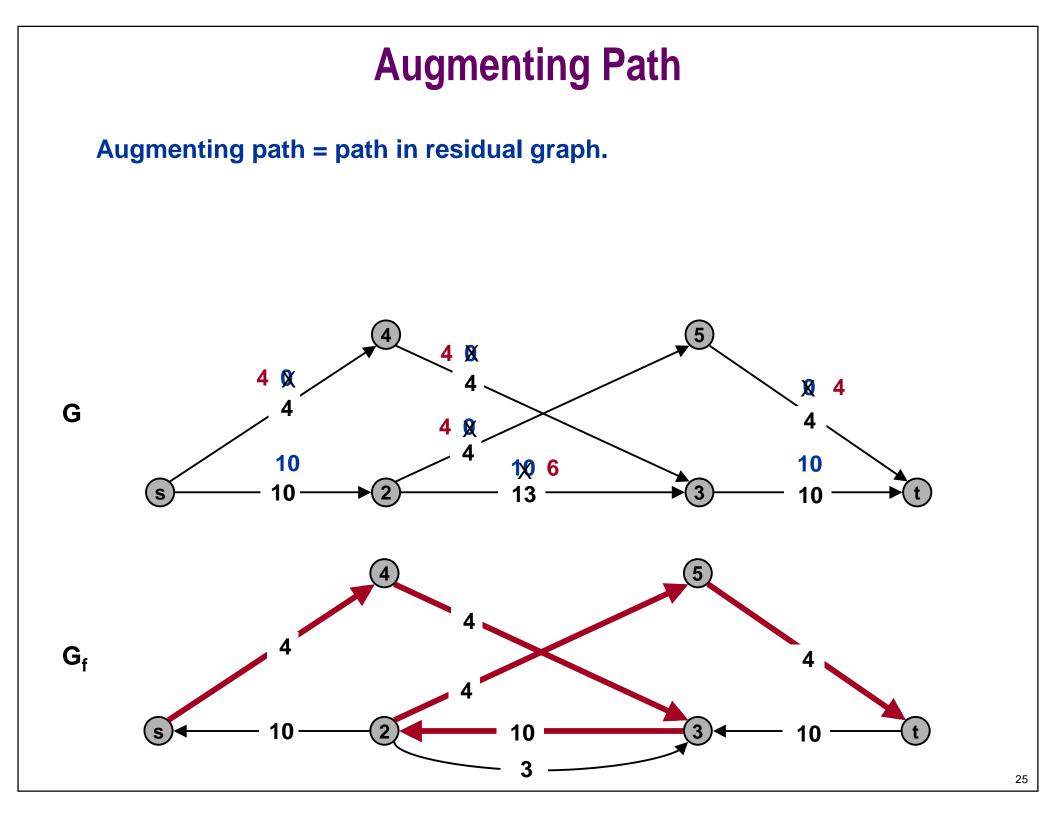
#### Residual graph: $G_f = (V, E_f)$ .

- Residual arcs e = (v, w) and  $e^{R} = (w, v)$ .
- Undo" flow sent.



### **Residual Graph and Augmenting Paths**

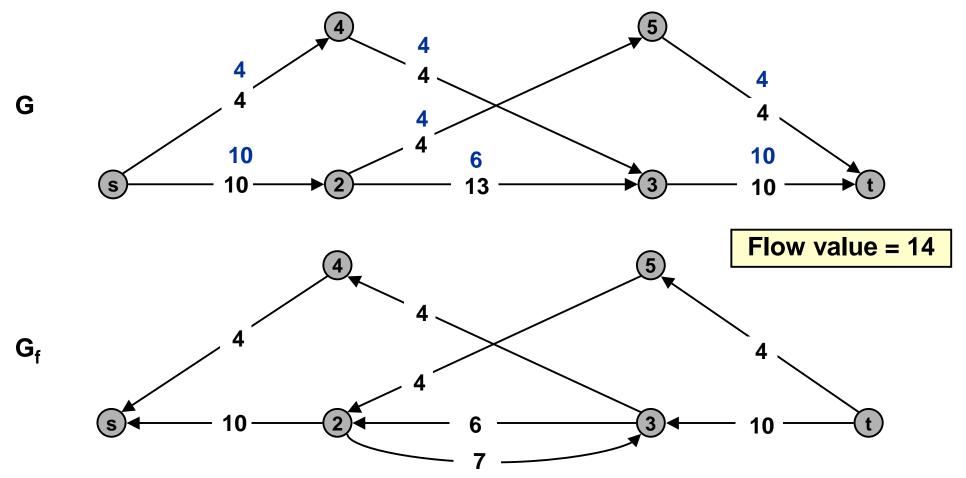




# **Augmenting Path**

Augmenting path = path in residual graph.

■ Max flow ⇔ no augmenting paths ???



### **Max-Flow Min-Cut Theorem**

Augmenting path theorem (Ford-Fulkerson, 1956): A flow f is a max flow if and only if there are no augmenting paths.

**MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956):** the value of the max flow is equal to the value of the min cut.

We prove both simultaneously by showing the TFAE:

- (i) f is a max flow.
- (ii) There is no augmenting path relative to f.
- (iii) There exists a cut (S, T) such that |f| = cap(S, T).

# **Proof of Max-Flow Min-Cut Theorem**

#### We prove both simultaneously by showing the TFAE:

- (i) f is a max flow.
- (ii) There is no augmenting path relative to f.
- (iii) There exists a cut (S, T) such that |f| = cap(S, T).

#### (i) $\Rightarrow$ (ii)

- . We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

(iii)  $\Rightarrow$  (i)

• Next slide.

#### (iii) $\Rightarrow$ (i)

• This was the Corollary to Lemma 2.

# **Proof of Max-Flow Min-Cut Theorem**

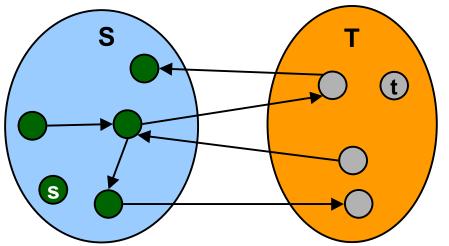
#### We prove both simultaneously by showing the TFAE:

- (i) f is a max flow.
- (ii) There is no augmenting path relative to f.
- (iii) There exists a cut (S, T) such that |f| = cap(S, T).

(ii) ⇒ (iii)

- Let f be a flow with no augmenting paths.
- Let S be set of vertices reachable from s in residual graph.
  - clearly s  $\in\,$  S, and t  $\not\in\,$  S by definition of f

$$|f| = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e)$$
$$= \sum_{e \text{ out of } S} u(e)$$
$$= cap(S, T)$$



#### **Original Network**

# **Augmenting Path Algorithm**

| Augment (                                                                                                                           | f, P)                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $b \leftarrow bottleneck(P)$ FOREACH e \in P IF (e \in E) // for f(e) \leftarrow f(e) + ELSE // bac f(e^R) \leftarrow f(e) RETURN f | - b<br>ckwards arc                                   |
| KEIUKN L                                                                                                                            | FordFulkerson (V, E, s, t)                           |
|                                                                                                                                     | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

# **Running Time**

Assumption: all capacities are integers between 0 and U.

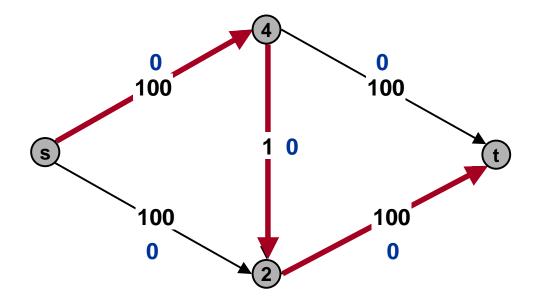
Invariant: every flow value f(e) and every residual capacities  $u_f(e)$  remains an integer throughout the algorithm.

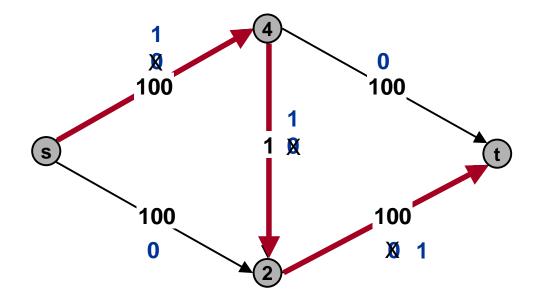
**Theorem:** the algorithm terminates in at most  $| f^* | \le nU$  iterations.

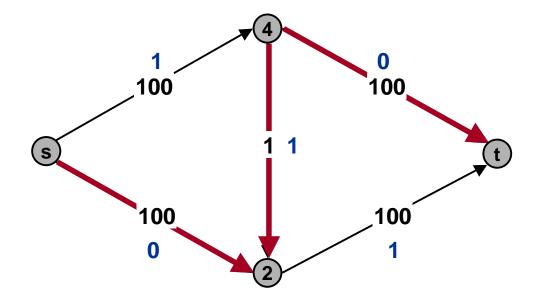
**Corollary:** if U = 1, then algorithm runs in O(mn) time.

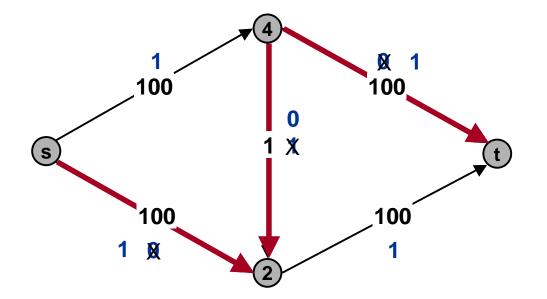
**Integrality theorem:** if all arc capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Note: algorithm may not terminate on some pathological instances (with irrational capacities). Moreover, flow value may not even converge to correct answer.

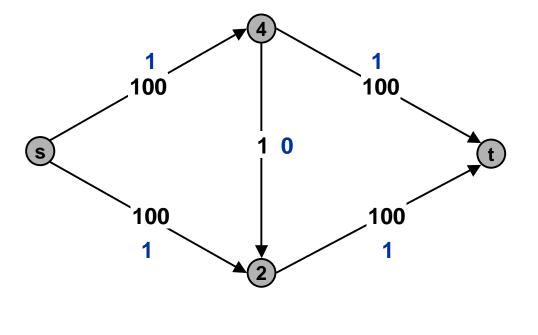








#### Use care when selecting augmenting paths.



200 iterations possible.

# **Choosing Good Augmenting Paths**

#### Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.

### Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

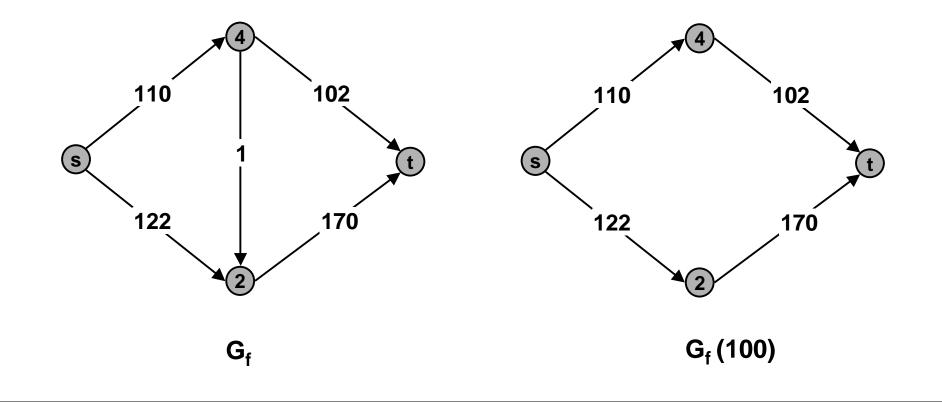
### Edmonds-Karp (1972): choose augmenting path with

- Max bottleneck capacity. (fat path)
- Sufficiently large capacity. (capacity-scaling)
- Fewest number of arcs. (shortest path)

# **Capacity Scaling**

Intuition: choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- . Maintain scaling parameter  $\boldsymbol{\Delta}.$
- . Let  $G_f(\Delta)$  be the subgraph of the residual graph consisting of only arcs with capacity at least  $\Delta$ .



# **Capacity Scaling**

Intuition: choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- . Maintain scaling parameter  $\boldsymbol{\Delta}.$
- Let  $G_f(\Delta)$  be the subgraph of the residual graph consisting of only arcs with capacity at least  $\Delta$ .

#### ScalingMaxFlow(V, E, s, t)

```
\begin{array}{l} \mbox{FOREACH } e \in \mbox{E, } f(e) \leftarrow 0 \\ \Delta \leftarrow \mbox{ smallest power of 2 greater than or equal to U} \\ \mbox{WHILE } (\Delta \geq 1) \\ G_{f}(\Delta) \leftarrow \Delta \mbox{-residual graph} \\ \mbox{WHILE (there exists augmenting path P in } G_{f}(\Delta)) \\ f \leftarrow \mbox{augment}(f, \mbox{P}) \\ \mbox{update } G_{f}(\Delta) \\ \Delta \leftarrow \Delta \ / \ 2 \\ \mbox{RETURN } f \end{array}
```

# **Capacity Scaling: Analysis**

L1. If all arc capacities are integers, then throughout the algorithm, all flow and residual capacity values remain integers.

- Thus,  $\Delta = 1 \implies G_f(\Delta) = G_f$ , so upon termination f is a max flow.
- L2. The outer while loop repeats  $1 + \lfloor \log_2 U \rfloor$  times.
  - . Initially U  $\leq \Delta$  < 2U, and  $\Delta$  decreases by a factor of 2 each iteration.

L3. Let f be the flow at the end of a  $\triangle$ -scaling phase. Then value of the maximum flow is at most | f | + m  $\triangle$ .

L4. There are at most 2m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L3  $\Rightarrow$   $|f^*| \leq |f| + m (2\Delta)$ .
- Each augmentation in a  $\Delta$ -phase increases | f | by at least  $\Delta$ .

#### Theorem. The algorithm runs in $O(m^2 \log (2U))$ time.

# **Capacity Scaling: Analysis**

L3. Let f be the flow at the end of a  $\triangle$ -scaling phase. Then value of the maximum flow is at most  $|f| + m \triangle$ .

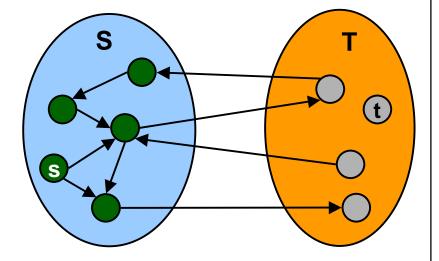
- We show that at the end of a  $\triangle$ -phase, there exists a cut (S, T) such that cap(S, T)  $\leq$  | f | + m  $\triangle$ .
- Choose S to be the set of nodes reachable from s in  $G_f(\Delta)$ .
  - clearly s  $\in$  S, and t  $\notin$  S by definition of S

$$|f| = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e)$$

$$\geq \sum_{e \text{ out of } S} (u(e) - \Delta) - \sum_{e \text{ in to } S} \Delta$$

$$= \sum_{e \text{ out of } S} u(e) - \sum_{e \text{ out of } S} \Delta - \sum_{e \text{ in to } S} \Delta$$

$$= cap(S, T) - m\Delta$$



**Original Network** 

# **Choosing Good Augmenting Paths**

#### Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.

### Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

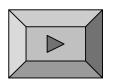
### Edmonds-Karp (1972): choose augmenting path with

- Max bottleneck capacity.
- Sufficiently large capacity. (capacity-scaling)
- Fewest number of arcs. (shortest path)
- (fat path)

# **Shortest Augmenting Path**

Intuition: choosing path via breadth first search.

• Easy to implement.



- may implement by coincidence!
- Finds augmenting path with fewest number of arcs.

ShortestAugmentingPath(V, E, s, t)

```
FOREACH e \in E
f(e) \leftarrow 0
G<sub>f</sub> \leftarrow residual graph
WHILE (there exists augmenting path)
find such a path P by BFS
f \leftarrow augment(f, P)
update G<sub>f</sub>
RETURN f
```

# **Shortest Augmenting Path: Overview of Analysis**

L1. Throughout the algorithm, the length of the shortest path never decreases.

• Proof ahead.

L2. After at most m shortest path augmentations, the length of the shortest augmenting path strictly increases.

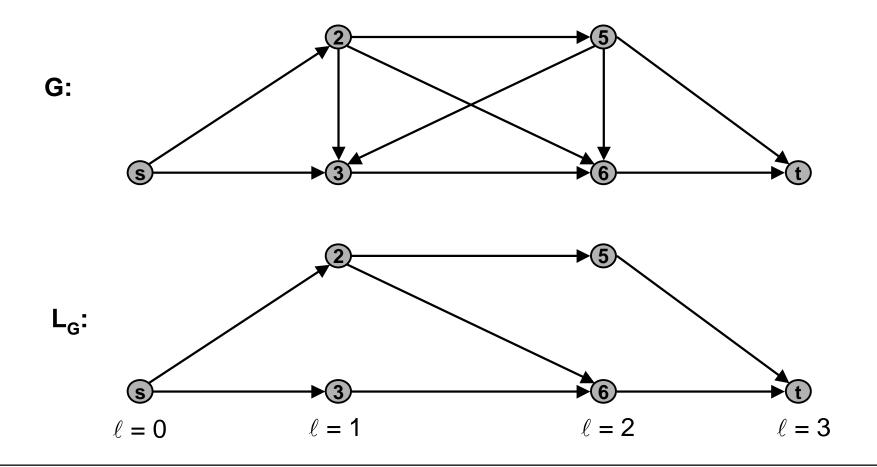
Proof ahead.

Theorem. The shortest augmenting path algorithm runs in O(m<sup>2</sup>n) time.

- O(m+n) time to find shortest augmenting path via BFS.
- O(m) augmentations for paths of exactly k arcs.
- If there is an augmenting path, there is a simple one.
  - $\Rightarrow$  1 ≤ k < n
  - $\Rightarrow$  O(mn) augmentations.

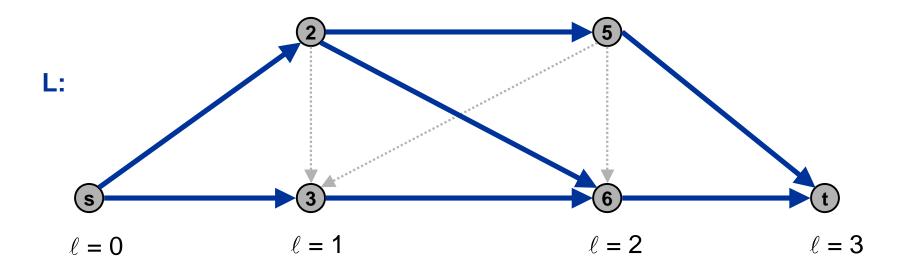
#### Level graph of (V, E, s).

- For each vertex v, define  $\ell(v)$  to be the length (number of arcs) of shortest path from s to v.
- L<sub>G</sub> = (V, E<sub>G</sub>) is subgraph of G that contains only those arcs (v,w) ∈ E with ℓ(w) = ℓ(v) + 1.



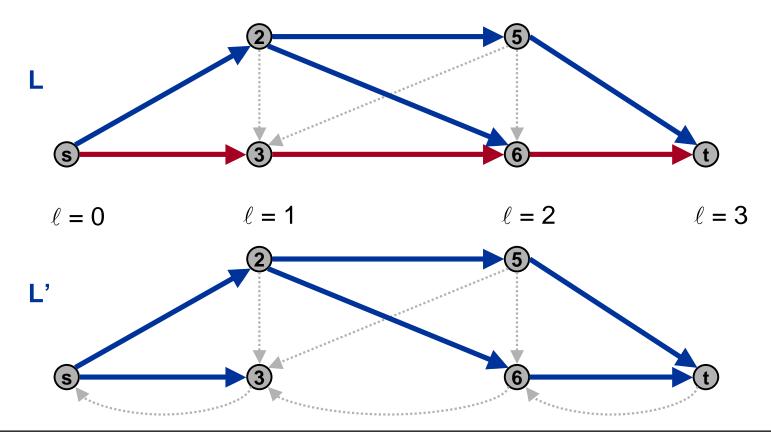
### Level graph of (V, E, s).

- For each vertex v, define  $\ell(v)$  to be the length (number of arcs) of shortest path from s to v.
- L = (V, F) is subgraph of G that contains only those arcs (v,w) ∈ E with ℓ(w) = ℓ(v) + 1.
- Compute in O(m+n) time using BFS, deleting back and side arcs.
- P is a shortest s-v path in G if and only if it is an s-v path L.



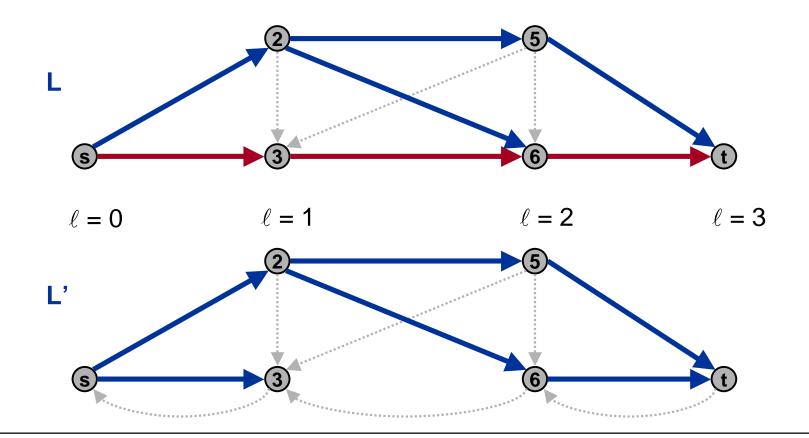
L1. Throughout the algorithm, the length of the shortest path never decreases.

- Let f and f' be flow before and after a shortest path augmentation.
- . Let L and L' be level graphs of  $G_f$  and  $G_f$ .
- Only back arcs added to G<sub>f</sub>
  - path with back arc has length greater than previous length



L2. After at most m shortest path augmentations, the length of the shortest augmenting path strictly increases.

- At least one arc (the bottleneck arc) is deleted from L after each augmentation.
- No new arcs added to L until length of shortest path strictly increases.



## **Shortest Augmenting Path: Review of Analysis**

L1. Throughout the algorithm, the length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m<sup>2</sup>n) time.

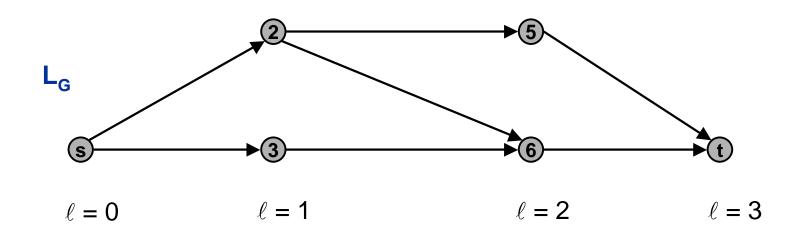
- O(m+n) time to find shortest augmenting path via BFS.
- O(m) augmentations for paths of exactly k arcs.
- O(mn) augmentations.

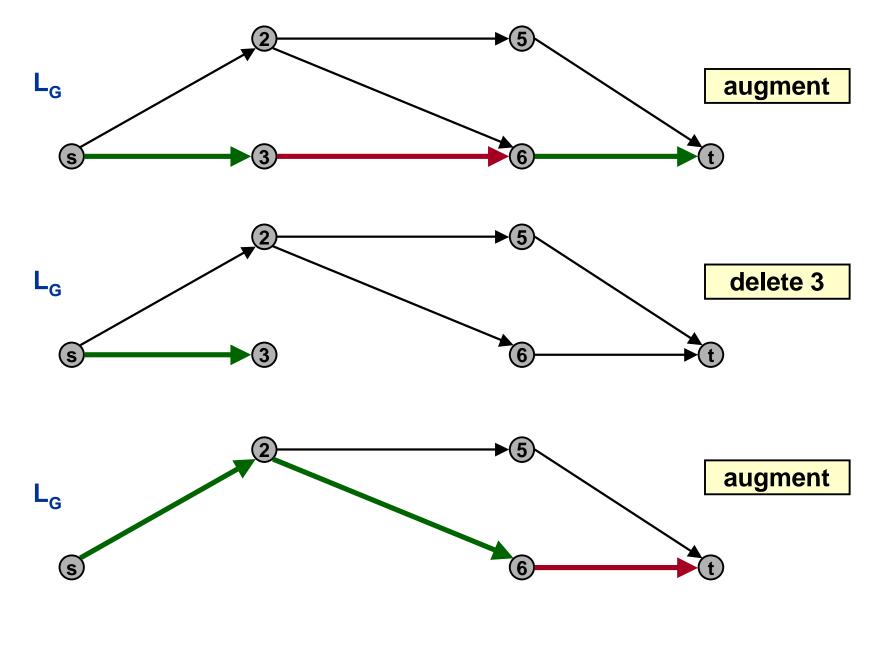
Note:  $\Theta(mn)$  augmentations necessary on some networks.

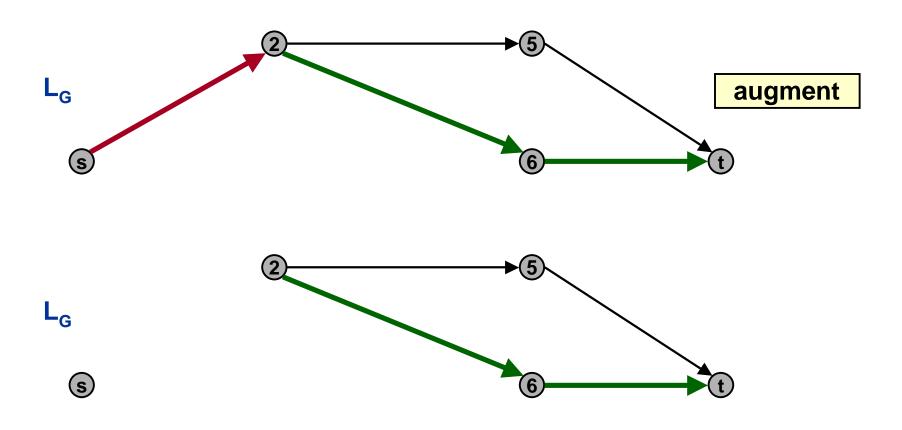
- Try to decrease time per augmentation instead.
- Dynamic trees  $\Rightarrow$  O(mn log n) Sleator-Tarjan, 1983
- Simple idea  $\Rightarrow$  O(mn<sup>2</sup>)

#### Two types of augmentations.

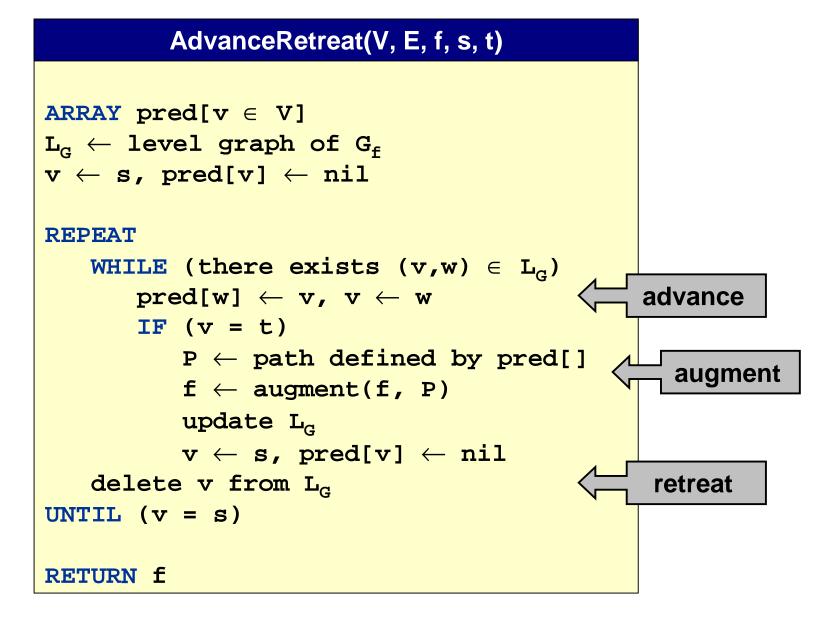
- Normal augmentation: length of shortest path doesn't change.
- Special augmentation: length of shortest path strictly increases.
- L3. Group of normal augmentations takes O(mn) time.
- Explicitly maintain level graph it changes by at most 2n arcs after each normal augmentation.
- Start at s, advance along an arc in L<sub>G</sub> until reach t or get stuck.
  - if reach t, augment and delete at least one arc
  - if get stuck, delete node







# **STOP: length of shortest path must have strictly increased**



#### Two types of augmentations.

- Normal augmentation: length of shortest path doesn't change.
- Special augmentation: length of shortest path strictly increases.
- L3. Group of normal augmentations takes O(mn) time.
  - Explicitly maintain level graph it changes by at most 2n arcs after each normal augmentation.
  - Start at s, advance along an arc in L<sub>G</sub> until reach t or get stuck.
    - if reach t, augment and delete at least one arc
    - if get stuck, delete node
    - at most n advance steps before one of above events

### Theorem. Algorithm runs in O(mn<sup>2</sup>) time.

- O(mn) time between special augmentations.
- At most n special augmentations.

# **Choosing Good Augmenting Paths: Summary**

| Method                    | Augmentations | Running time          |
|---------------------------|---------------|-----------------------|
| Augmenting path           | nU            | mnU                   |
| Max capacity              | m log U       | m log U (m + n log n) |
| Capacity scaling          | m log U       | m <sup>2</sup> log U  |
| Improved capacity scaling | m log U       | mn log U              |
| Shortest path             | mn            | m²n                   |
| Improved shortest path    | mn            | mn <sup>2</sup>       |

First 4 rules assume arc capacities are between 0 and U.

# History

| Year | Discoverer           | Method            | Big-Oh                                                                                              |
|------|----------------------|-------------------|-----------------------------------------------------------------------------------------------------|
| 1951 | Dantzig              | Simplex           | mn²U                                                                                                |
| 1955 | Ford, Fulkerson      | Augmenting path   | mnU                                                                                                 |
| 1970 | Edmonds-Karp         | Shortest path     | m²n                                                                                                 |
| 1970 | Dinitz               | Shortest path     | mn <sup>2</sup>                                                                                     |
| 1972 | Edmonds-Karp, Dinitz | Capacity scaling  | m <sup>2</sup> log U                                                                                |
| 1973 | Dinitz-Gabow         | Capacity scaling  | mn log U                                                                                            |
| 1974 | Karzanov             | Preflow-push      | n <sup>3</sup>                                                                                      |
| 1983 | Sleator-Tarjan       | Dynamic trees     | mn log n                                                                                            |
| 1986 | Goldberg-Tarjan      | FIFO preflow-push | mn log (n²/m)                                                                                       |
|      |                      |                   |                                                                                                     |
| 1997 | Goldberg-Rao         | Length function   | m <sup>3/2</sup> log (n <sup>2</sup> / m) log U<br>mn <sup>2/3</sup> log (n <sup>2</sup> / m) log U |