Binary and Binomial Heaps

These lecture slides are adapted
from CLRS, Chapters 6, 19.

Princeton University « COS 423 « Theory of Algorithms ¢ Spring 2002 « Kevin Wayne

Priority Queues

Supports the following operations.
Insert element x.
Return min element.
Return and delete minimum element.
Decrease key of element x to k.

Applications.
Dijkstra’s shortest path algorithm.
Prim’s MST algorithm.
Event-driven simulation.
Huffman encoding.
Heapsort.

Priority Queues in Action

Dijkstra’s Shortest Path Algorithm

PQ nit()
for each v OO0V
key(v) « o

PQ nsert (v)

key(s) < O
while (! PQ senpty())
v = PQdel mi n()
for each wl Qs.t (v,w 0OE
if m(w > mv) + c(v,w

PQdecrease(w, m(v) + c(v,w))

Priority Queues

Heaps

Operation Linked List Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
Is-empty 1 1 1 1 1

T akeroan O(E] log V1) O(E] + V] Tog |VI)

V| insert
|V| delete-min
|E| decrease-key

Binary Heap: Definition
Binary heap.

. Almost complete binary tree.
— filled on all levels, except last, where filled from left to right

. Min-heap ordered.
- every child greater than (or equal to) parent

D
(14 (25)

OO OO
(89) (D) @ €9 (99 (4

Binary Heap: Properties

Properties.
. Min elementis in root.
. Heap with N elements has height = log, NLI

@ N =14
Height =3
(14 (#5)

OO OO
(89) (D) @ €9 (99 (4

Binary Heaps: Array Implementation

Implementing binary heaps.
. Use an array: no need for explicit parent or child pointers.

—Parent (i) = 0O/ 20
—Left (i) = 2i
~Right(i) =2 +1
(14 (35,
2 3
(8) (8 @ (3
4 5 6 7

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it’'s heap ordered.
— Peter principle: nodes rise to level of incompetence

D
(14, (25)

@ @ @ @ @ @ @ 42 <:::nextfreeslot

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it’'s heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(14, (25)
OO OO
(89) D) @D &) (9 & €

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it’'s heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(1 (35,
(78) (18) (47) 42
@ @ e @ @ @ @ C3

10

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it’'s heap ordered.

— Peter principle: nodes rise to level of incompetence

. O(log N) operations.

D
(14,

stop: heap ordered

42

B WE @ @ @ @ G

11

Binary Heap: Decrease Key

Decrease key of element x to k.
. Bubble up until it’'s heap ordered.
. O(log N) operations.

D
(1 (22,

OO OO
(89 (D G @ @)) @) 3

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it’'s heap ordered.
— power struggle principle: better subordinate is promoted

OO OO
(89 (D G @ @)) @) 3

13

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it’'s heap ordered.
— power struggle principle: better subordinate is promoted

OO OO
B WE @ @ @ @ 0

14

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it’'s heap ordered.
— power struggle principle: better subordinate is promoted

exchange with left child

OO OO
(89) (D) @ €9 (99 (4

15

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it’'s heap ordered.
— power struggle principle: better subordinate is promoted

@ exchange with right child

53 @
OO OO
(89) (D) @ €9 (99 (4

16

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.

. Bubble root down until it’'s heap ordered.
— power struggle principle: better subordinate is promoted
. O(log N) operations.

@ stop: heap ordered

© (22,
® @ @ @
@ 6D @ @ @ @) @

17

Binary Heap: Heapsort

Heapsort.

. Insert N items into binary heap.

. Perform N delete-min operations.
. O(Nlog N) sort.

. No extra storage.

18

Binary Heap: Union

Union.

. Combine two binary heaps H; and H, into a single heap.

. No easy solution.
- Q(N) operations apparently required
. Can support fast union with fancier heaps.

H, H,

OIOIDRD (89 (99 (9

19

Priority Queues

Heaps
Operation Linked List Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
Is-empty 1 1 1 1 1

20

Binomial tree.
. Recursive definition:

Binomial Tree

21

Binomial Tree

Useful properties of order k binomial tree B,.
Number of nodes = 2k,

Height = k.
Degree of root = k.

Deleting root yields binomial
trees B, 4, ..., By

Proof.

By induction on k.

22

Binomial Tree

A property useful for naming the data structure.
. B, has ?jtﬁ nodes at depth i.

depth O
depth 1 -~ O
|
| |
depth 2 O ® O
|
depth 3 O 6 6

depth 4 . B,

23

Binomial Heap

Binomial heap. Vuillemin, 1978.

. Sequence of binomial trees that satisfy binomial heap property.

— each tree is min-heap ordered
—0or 1binomial tree of order k

(8 (@ W @
(30 @) @ @ @ W

@) @2 @ @
©

B,

..................................

Binomial Heap: Implementation

Implementation.
Represent trees using left-child, right sibling pointers.
—three links per node (parent, left, right)

Roots of trees connected with singly linked list.
- degrees of trees strictly decreasing from left to right

Binomial Heap Leftist Power-of-2 Heap

25

Binomial Heap: Properties

Properties of N-node binomial heap.

. Min key contained in root of B,, B, . . ., B,.

. Contains binomial tree B, iff b, =1 where b [b,b,b, is binary
representation of N.

. At most og, NI+ 1 binomial trees.
. Height < og, N[

45
©

(8 (@ W @

(30) @3) (22) (s8) BV () N=19
#trees =3
height =4

@ @ @ bir:ary:10011

B, B,

26

Binomial Heap: Union

Create heap H that is union of heaps H and H”.
. "Mergeable heaps."
. Easy if H and H” are each order k binomial trees.

- connect roots of H and H”
- choose smaller key to be root of H

(&) 29) @
(30) @) @ 48 GV (7
1) (@) @ ©

27

Binomial Heap: Union

..

...

@ - i @
s (3
(1)
1 1 1
O 0 1 1
19+ 7 = 26 + 0 0 1 1 1
1 1 0 1 O

28

Binomial Heap: Union

29

Binomial Heap: Union

...........

30

31

............................

.................

32

.................

33

.................

34

Binomial Heap: Union

Create heap H that is union of heaps H and H”.
. Analogous to binary addition.

Running time. O(log N)

Proportional to number of trees in root lists < 2(og, N[+ 1).

19 +7 =26 + 0

~rlo o -

Ol O

e I S S =

35

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

. Find root x with min key in root list of H, and delete
. H' — Dbroken binomial trees

. H <« Union(H’, H)

Running time. O(log N)

36

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

. Find root x with min key in root list of H, and delete
. H' — Dbroken binomial trees

. H <« Union(H’, H)

Running time. O(log N)

....................

37

Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.
. Suppose x is in binomial tree B,.
. Bubble node x up the tree if x is too small.

Running time. O(log N)

. Proportional to depth of node x < [og, NL.

38

Binomial Heap: Delete

Delete node x in binomial heap H.
. Decrease key of x to -co.
. Delete min.

Running time. O(log N)

39

Binomial Heap: Insert

Insert a new node x into binomial heap H.
. H « MakeHeap(x)
. H <« Union(H’, H)

Running time. O(log N)

Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

fN=....... 0, then only 1 steps. O (6)
fN=...... 01, then only 2 steps.
fTN=..... 011, then only 3 steps. ey 19 @) @)
IfN=....0111, then only 4 steps. (48) G ()

50

Inserting 1 item can take Q(log N) time.
If N= 11...111, then log, N steps.

But, inserting sequence of N items takes O(N) time!
. (N/2)(1) + (N/4)(2) + (N/8)(3) + ... <2N

. Amortized analysis. N
. . . n - o_ N __1
. Basis for getting most operations nZ1 on = oN oN-1
down to constant time. < 2

41

Priority Queues

Heaps
Operation Linked List Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
IS-empty 1 1 1 1 1

{}

just did this

42

