

Greed

"Greed is good. Greed is right. Greed works. Greed cuts through, clarifies, and captures the essence of the evolutionary spirit."

> Gordon Gecko (Michael Douglas)

Greedy Algorithms

Some possibly familiar examples:

- Gale-Shapley stable matching algorithm.
- Dijkstra's shortest path algorithm.
- Prim and Kruskal MST algorithms.
- Huffman codes.
- • •

Minimizing breakpoints.

- Truck driver going from Princeton to Palo Alto along predetermined route.
- Refueling stations at certain points along the way.
- Truck fuel capacity = C.

Greedy algorithm.

• Go as far as you can before refueling.

Selecting Breakpoints: Greedy Algorithm

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let 0 = f₀ < f₁ < ... < f_q = L denote set of breakpoints in optimal solution with f₀ = g₀, f₁ = g₁, ..., f_r = g_r for largest possible value of r.

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in optimal solution with $f_0 = g_0$, $f_1 = g_1$, ..., $f_r = g_r$ for largest possible value of r.
- Note: q < p.

• Thus,
$$f_0 = g_0, f_1 = g_1, \dots, f_q = g_q$$

Activity selection problem (CLR 17.1).

- Job requests 1, 2, ... , n.
- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don't overlap.
- . Goal: find maximum subset of mutually compatible jobs.

Activity Selection: Greedy Algorithm

Greedy Activity Selection Algorithm

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- Let f_1, f_2, \ldots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \ldots, f_r = g_r$ for largest possible value of r.

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- Let f_1, f_2, \ldots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \ldots, f_r = g_r$ for largest possible value of r.

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- Let f_1, f_2, \ldots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \ldots, f_r = g_r$ for largest possible value of r.

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- Let f_1, f_2, \ldots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \ldots, f_r = g_r$ for largest possible value of r.

Making Change

Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex. 34¢.

Greedy algorithm.

- At each iteration, add coin of the largest value that does not take us past the amount to be paid.
- **Ex.** \$2.89.

Coin-Changing: Greedy Algorithm

Is Greedy Optimal for Coin-Changing Problem?

Yes, for U.S. coinage: $\{c_1, c_2, c_3, c_4, c_5\} = \{1, 5, 10, 25, 100\}.$

Ad hoc proof.

- Consider optimal way to change amount $c_k \le x < c_{k+1}$.
- Greedy takes coin k.
- Suppose optimal solution does not take coin k.
 - it must take enough coins of type $c_1, c_2, \ldots, c_{k-1}$ to add up to x.

k	c _k	Max # taken by optimal solution	Max value of coins 1, 2, , k in any OPT	
1	1	4	4	
2	5	1	4 + 5 = 9	
3	10	2	20 + 4 = 24	
4	25	3	75 + 24 = 99	<mark>_ 2 dimes</mark> = <mark>─ no nickels</mark>
5	100	no limit	no limit	

Does Greedy Always Work?

US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

- **Ex.** 140¢.
- **.** Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
- Optimal: 70, 70.

Characteristics of Greedy Algorithms

Greedy choice property.

- Globally optimal solution can be arrived at by making locally optimal (greedy) choice.
- At each step, choose most "promising" candidate, without worrying whether it will prove to be a sound decision in long run.

Optimal substructure property.

- Optimal solution to the problem contains optimal solutions to subproblems.
 - if best way to change 34¢ is {25, 5, 1, 1, 1, 1} then best way to change 29¢ is {25, 1, 1, 1, 1}.

Objective function does not explicitly appear in greedy algorithm!

Hard, if not impossible, to precisely define "greedy algorithm."

• See matroids (CLR 17.4), greedoids for very general frameworks.

Minimizing Lateness

Minimizing lateness problem.

- Single resource can process one job at a time.
- n jobs to be processed.
 - job j requires p_i units of processing time.
 - job j has due date d_i.
- If we assign job j to start at time s_i , it finishes at time $f_i = s_i + p_i$.
- Lateness: $\ell_j = \max \{ 0, f_j d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness L = max ℓ_i .

Minimizing Lateness: Greedy Algorithm

Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

Fact 2: the greedy schedule has no idle time.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. i < j

Fact 3: greedy schedule \Leftrightarrow no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one whose with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. i < j

Fact 3: greedy schedule \Leftrightarrow no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:

- Reduces the number of inversions by one.
- Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

- . i < j
- . j scheduled before i

Swapping two adjacent, inverted jobs does not increase max lateness.

•
$$\ell'_{\mathbf{k}} = \ell_{\mathbf{k}}$$
 for all $\mathbf{k} \neq \mathbf{i}, \mathbf{j}$

- $\ell'_i \leq l_i$
- If job j is late:

$$\ell'_{j} = f'_{j} - d_{j} \quad (\text{definition})$$

$$= f_{i} - d_{j} \quad (j \text{ finishes at time } f_{i})$$

$$\leq f_{i} - d_{i} \quad (i < j)$$

$$\leq \ell_{i} \quad (\text{definition})$$