
Greed

"Greed is good. Greed is right. Greed
works. Greed cuts through, clarifies,
and captures the essence of the
evolutionary spirit."

Gordon Gecko
(Michael Douglas)

2

Greedy Algorithms

Some possibly familiar examples:

■ Gale-Shapley stable matching algorithm.

■ Dijkstra’s shortest path algorithm.

■ Prim and Kruskal MST algorithms.

■ Huffman codes.

■ . . .

3

Selecting Breakpoints

Minimizing breakpoints.

■ Truck driver going from Princeton to Palo Alto along
predetermined route.

■ Refueling stations at certain points along the way.

■ Truck fuel capacity = C.

Greedy algorithm.

■ Go as far as you can before refueling.

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

4

Sort breakpoints by increasing value:
0 = b0 < b1 < b2 < ... < bn.

S ← {0}
x = 0
while (x ≠ bn)

let p be largest integer such that bp ≤ x + C
if (bp = x)

return "no solution"
x ← bp
S ← S ∪ {p}

return S

Greedy Breakpoint Selection Algorithm

Selecting Breakpoints: Greedy Algorithm

S = breakpoints selected.

5

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

1 2 3 4 5 6 7

1 2 3 4 5 6 7 98

r = 4

Greedy:

OPT:

g0 g1 g2

f0 f1 f2

gp

fq

gr

fr

6

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

1 2 3 4 5 6 7

1 2 3 4 5 6 7 98Greedy:

OPT: 5

5

5

r = 5

g0 g1 g2

f0 f1 f2

gp

fq

r = 4

7

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

■ Thus, f0 = g0, f1= g1 , . . . , fq = gq

1 2 3 4

1 2 3 4 6 7Greedy:

OPT:

5

5

r = q = 5

g0 g1 g2

f0 f1 f2

gq

fq

gp

8

Activity Selection

Activity selection problem (CLR 17.1).

■ Job requests 1, 2, … , n.

■ Job j starts at s j and finishes at f j.

■ Two jobs compatible if they don't overlap.

■ Goal: find maximum subset of mutually compatible jobs.

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

9

Activity Selection: Greedy Algorithm

Sort jobs by increasing finish times so that
f1 ≤ f2 ≤ ... ≤ fn.

S = φ
for j = 1 to n

if (job j compatible with A)
S ← S ∪ {j}

return S

Greedy Activity Selection Algorithm

S = jobs selected.

10

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let g1, g2, . . . gp denote set of jobs selected by greedy and assume
it is not optimal.

■ Let f1, f2, . . . fq denote set of jobs selected by optimal solution with
f1 = g1, f2= g2, . . . , fr = gr for largest possible value of r.

■ Note: r < q.

1 5 8

1 5 8 9 13

15 2117

r = 3

p = 6

q = 7

Greedy:

OPT:

f1 = g1

21
f2 = g2 f3 = g3

11

11

9

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let g1, g2, . . . gp denote set of jobs selected by greedy and assume
it is not optimal.

■ Let f1, f2, . . . fq denote set of jobs selected by optimal solution with
f1 = g1, f2= g2, . . . , fr = gr for largest possible value of r.

■ Note: r < q.

1 5 8 11

1 5 8 9 13

15 2117

r = 3

p = 6

q = 7

Greedy:

OPT:

f1 = g1

21
f2 = g2 f3 = g3

Replace 11 with 9

12

9

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let g1, g2, . . . gp denote set of jobs selected by greedy and assume
it is not optimal.

■ Let f1, f2, . . . fq denote set of jobs selected by optimal solution with
f1 = g1, f2= g2, . . . , fr = gr for largest possible value of r.

■ Note: r < q.

1 5 8

1 5 8 9 13

15 2117

r = 3

p = 6

q = 7

Greedy:

OPT:

f1 = g1

21
f2 = g2 f3 = g3

Replace 11 with 9

13

9

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let g1, g2, . . . gp denote set of jobs selected by greedy and assume
it is not optimal.

■ Let f1, f2, . . . fq denote set of jobs selected by optimal solution with
f1 = g1, f2= g2, . . . , fr = gr for largest possible value of r.

■ Note: r < q.

1 5 8

1 5 8 9 13

15 2117

r = 3

p = 6

q = 7

Greedy:

OPT:

f1 = g1

21
f2 = g2 f3 = g3

r = 4

9

9

14

Making Change

Given currency denominations: 1, 5, 10, 25, 100, devise a method to
pay amount to customer using fewest number of coins.

■ Ex. 34¢.

Greedy algorithm.

■ At each iteration, add coin of the largest value that does not take
us past the amount to be paid.

■ Ex. $2.89.

15

Coin-Changing: Greedy Algorithm

Sort coins denominations by increasing value:
c1 < c2 < ... < cn.

S ← φ
while (x ≠ 0)

let p be largest integer such that cp ≤ x
if (p = 0)

return "no solution found"
x ← x - cp
S ← S ∪ {p}

return S

Greedy Coin-Changing Algorithm

S = coins selected.

16

Is Greedy Optimal for Coin-Changing Problem?

Yes, for U.S. coinage: {c1, c2, c3, c4, c5 } = {1, 5, 10, 25, 100}.

Ad hoc proof.

■ Consider optimal way to change amount ck ≤ x < ck+1 .

■ Greedy takes coin k.

■ Suppose optimal solution does not take coin k.
– it must take enough coins of type c1, c2, . . . , ck-1 to add up to x.

1

ck

10

25

100

4

Max # taken by
optimal solution

2

3

5 1

no limit

k

1

3

4

5

2

4

Max value of coins
1, 2, . . . , k in any OPT

20 + 4 = 24

75 + 24 = 99

4 + 5 = 9

no limit

2 dimes ⇒
no nickels

17

Does Greedy Always Work?

US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

■ Ex. 140¢.

■ Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

■ Optimal: 70, 70.

18

Characteristics of Greedy Algorithms

Greedy choice property.

■ Globally optimal solution can be arrived at by making locally
optimal (greedy) choice.

■ At each step, choose most "promising" candidate, without
worrying whether it will prove to be a sound decision in long run.

Optimal substructure property.

■ Optimal solution to the problem contains optimal solutions to sub-
problems.

– if best way to change 34¢ is {25, 5, 1, 1, 1, 1} then best way to
change 29¢ is {25, 1, 1, 1, 1}.

Objective function does not explicitly appear in greedy algorithm!

Hard, if not impossible, to precisely define "greedy algorithm."

■ See matroids (CLR 17.4), greedoids for very general frameworks.

19

Minimizing Lateness

Minimizing lateness problem.

■ Single resource can process one job at a time.

■ n jobs to be processed.
– job j requires pj units of processing time.
– job j has due date dj.

■ If we assign job j to start at time sj, it finishes at time fj = sj + pj.

■ Lateness: lj = max { 0, fj - dj }.

■ Goal: schedule all jobs to minimize maximum lateness L = max lj.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d = 11

d = 8

d = 15

d = 6 d = 9

d = 9

d = 11d = 8 d = 2 d = 6 d = 9d = 9

Lateness = 3

20

Minimizing Lateness: Greedy Algorithm

Sort jobs by increasing deadline so that
d1 ≤ d2 ≤ … ≤ dn.

t = 0
for j = 1 to n

Assign job j to interval [t, t + p j]
sj ← t, f j ← t + p j

t ← t + p j
output intervals [s j, f j]

Greedy Activity Selection Algorithm

max lateness = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d5 = 11d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

21

Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

Fact 2: the greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

22

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3: greedy schedule ⇔ no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

d2 = 4d5 = 8

inversion

23

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3: greedy schedule ⇔ no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:

■ Reduces the number of inversions by one.

■ Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

d2 = 4 d5 = 8

d2 = 4d5 = 8

inversion

24

Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Swapping two adjacent, inverted jobs does not increase max lateness.

■ l’k = lk for all k ≠ i, j

■ l’i ≤ li
■ If job j is late:

ij

i j

fi

f’j

n)(definitio

)(

) timeat finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df

l

l

≤
<−≤

−=
−′=′

