TWENTIETH CENTURY FoOX

MITHARL DOUGLAS (HARLIE SHEEN DARYL HANNAR
U4 VR TR FL

WALL STREET

Greed

"Greed is good. Greed is right. Greed
works. Greed cuts through, clarifies,
and captures the essence of the
evolutionary spirit."

Gordon Gecko
(Michael Douglas)




Greedy Algorithms

Some possibly familiar examples:
. Gale-Shapley stable matching algorithm.
. Dijkstra’s shortest path algorithm.
. Prim and Kruskal MST algorithms.
. Huffman codes.




Selecting Breakpoints

Minimizing breakpoints.

. Truck driver going from Princeton to Palo Alto along
predetermined route.

Refueling stations at certain points along the way.
. Truck fuel capacity = C.

Greedy algorithm.
. Go as far as you can before refueling.

< C > < C > < C >

C >

7

Princeton

Palo Alto




Selecting Breakpoints: Greedy Algorithm

Greedy Breakpoint Selection Algorithm

Sort breakpoi nts by increasing val ue:
0 =Db, <b,<b, <... <h,.
S < {0} <:::S:breakpoints selected.
x =0
while (x # b,)
let p be largest integer such that b, < x + C
if (b, = x)
return "no solution"
X bp
S « S0 {p}
return S




Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f; < ...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

90 9, 9, 9,
Greedy: 1 2 3 4 I 6 819
opT: IR 2 345 6 [ 7 |
fo f, f, f, fy

r=4




Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f; < ...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

9o g, 9;
Greedy: 1 2 <! 4 5 “ 8 [9
OPT: 1 2 3 4 S 6 7 ]
f, f, f, fq




Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f; < ...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

. Thus, f5=00,1,=0;,...,1;=9,

gO gl g2 gq gp
Greedy: 1 2 3 4 3 6 |

OPT: 1 2 3 4 5




Activity Selection

Activity selection problem (CLR 17.1).

. Job requests 1, 2,

.., N,

. Jobjstarts ats ; and finishes atf ;.

. Two jobs compatible if they don't overlap.

. Goal: find maximum subset of mutually compatible jobs.

B

E

™~

G

» Time

11




Activity Selection: Greedy Algorithm

Greedy Activity Selection Algorithm

Sort jobs by increasing finish tinmes so that

<f.
<:::S = jobs selected.

¢
or j =1ton
f (Job j conpatible with A)

S -« SU{J}
=

return S




Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letg,, g, ...0,denote set of jobs selected by greedy and assume
it is not optimal.
. Letfy, f,, ... f, denote set of jobs selected by optimal solution with
fi =04 =0, ..., f =g, for largest possible value of r.
. Note: r <qg.
p=6
creecy: [ENEN NG BON BTG [
f1=0, f,=0, f3=0;
OPT B 557 17]21
r=3 q="7

10




Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letg,, g, ...0,denote set of jobs selected by greedy and assume
it is not optimal.
. Letfy, f,, ... f, denote set of jobs selected by optimal solution with
fi =04 =0, ..., f =g, for largest possible value of r.
. Note: r <qg.
p=6
creecy: [ENEN NG BON BTG [
f1=0, f,=0, f3=0;
OPT: B N | 55717 o
r=3 ﬁ q=7

Replace 11 with 9

11




Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letg,, g, ...0,denote set of jobs selected by greedy and assume
it is not optimal.
. Letfy, f,, ... f, denote set of jobs selected by optimal solution with
fi =04 =0, ..., f =g, for largest possible value of r.
. Note: r <qg.
p=6
creecy: [ENEN NG BON BTG [
f1=0, f,=0, f3=0;
OPT B B  [55707Bo
r=3 ﬁ q=7

Replace 11 with 9

12




Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letg,, g, ...0,denote set of jobs selected by greedy and assume
it is not optimal.
. Letfy, f,, ... f, denote set of jobs selected by optimal solution with
fi =04 =0, ..., f =g, for largest possible value of r.
. Note: r <qg.
p=6
creecy: [EEE NN BOE BTG [
f1=0, f,=0, f3=0;
OPT BEE B  [5500 7B
® - e

13




Making Change

Given currency denominations: 1, 5, 10, 25, 100, devise a method to
pay amount to customer using fewest number of coins.

Ex. 34¢.

At each iteration, add coin of the largest value that does not take
us past the amount to be paid.

Ex. $2.89.

Greedy algorithm.

14




Coin-Changing: Greedy Algorithm

Greedy Coin-Changing Algorithm

Sort coins denom nations by increasing val ue:
C, <C, < ...

<c,.
S < o <:::S = coins selected.

while (x # 0)
let p be largest integer such that c, < x
1t (p = 0)
return "no solution found"
X < X - Cp
S « S U {p}
return S

15




Is Greedy Optimal for Coin-Changing Problem?

Yes, for U.S. coinage: {c4, C,, C3, Cy4, C5 } ={1, 5, 10, 25, 100}.

Ad hoc proof.
. Consider optimal way to change amount ¢, <X <C,,; .

. Greedy takes coin k.

. Suppose optimal solution does not take coin k.

- it must take enough coins of type c,, C,, . .

Cy

Max # taken by

Max value of coins

optimal solution 1, 2,...,kinany OPT

., C,, to add up to x.

1 4 4
2 | 5 1 4+5=9
3 | 10 2 20 + 4 = 24

/]_
4 | 25 3 75+24=99 <
5 100 no limit no limit

2 dimes [
no nickels

16




Does Greedy Always Work?

US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.
Ex. 140¢.
Greedy: 100, 34,1,1,1,1,1, 1.
Optimal: 70, 70.

| EXPLORING THE SOLAR SYSTERA

3 . I
Wveid ofteraiune 30,
< 0

e e e e e e o e i e e

b b b bk b b

‘‘‘‘‘

17




Characteristics of Greedy Algorithms

Greedy choice property.

. Globally optimal solution can be arrived at by making locally
optimal (greedy) choice.

. At each step, choose most "promising"” candidate, without
worrying whether it will prove to be a sound decision in long run.

Optimal substructure property.

. Optimal solution to the problem contains optimal solutions to sub-
problems.

— if best way to change 34¢ is {25, 5, 1, 1, 1, 1} then best way to
change 29¢ is {25, 1, 1, 1, 1}.

Objective function does not explicitly appear in greedy algorithm!

Hard, if not impossible, to precisely define "greedy algorithm."
. See matroids (CLR 17.4), greedoids for very general frameworks.

18




Minimizing Lateness

Minimizing lateness problem.
. Single resource can process one job at a time.
. njobs to be processed.
- Job j requires p; units of processing time.
- Job j has due date d;.
If we assign job j to start at time s;, it finishes at time f; = s; + p;.
Lateness: ;=max {0, f;-d;}.
. Goal: schedule all jobs to minimize maximum lateness L = max ¢;.

d=9 d=15 d=11

eteness 3~ BT [d=c ] ICECEE

d = O I=i:! d=2 d=6 d=11 d=9
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




Minimizing Lateness: Greedy Algorithm

Greedy Activity Selection Algorithm

Sort jobs by increasing deadline so that
d <d, < ..<d.
t=0
forj=1ton
Assign job jto interval [t, t + p il
S < tf j «_t+pj
t < t+p
output intervals [s EREN

max lateness = 2 -——w

2 3 4 5 6 7 8 9 10 11 12 13 14 15

20




Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

o 1 2 3 4 5 6 7 8 9 10 11

d=4 d=6 d=12
o 1 2 3 4 S5 6 7 8 9 10 11

Fact 2: the greedy schedule has no idle time.

21




Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei inversion
KTy
d5:8 d2:4

Fact 3: greedy schedule < no inversions.

Fact 4. if aschedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

22




Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei inversion
KTy
d5:8 d2:4
d,=4 d.=8

Fact 3: greedy schedule < no inversions.

Fact 4. if aschedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:
Reduces the number of inversions by one.
Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

23




Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei f
i
fr

]

Swapping two adjacent, inverted jobs does not increase max lateness.

. O =( forallk #1, ]

Ll

. Ifjobjis late: f'j — fj'—dj (definition)
= f; —d, (jfinishesat time f,)
< f.-d (i<j)
< 7 (definition)

24




