Divide-and-Conquer

"Divide et impera”
"Veni, vidi, vici"

- Julius Caesar
100BC - 44BC

Divide-and-Conquer

Most widespread application of divide-and-conquer.
Break up problem into two pieces of equal size.
Solve two sub-problems independently by recursion.
Combine two results in overall solution in linear time.

Consequence.
Brute force / naive solution: N 2.

Divide-and-conquer: N log N.

Familiar example.
Mergesort.

This course.

Counting inversions, closest pair of points, order statistics, fast
matrix multiplication, fast integer multiplication, FFT.

Run time
(nanoseconds)

1000

Why Does It Matter?

1.3 N3

1.3 seconds

10 N?

10 msec

47 N log,N

0.4 msec

48 N

0.048 msec

LR 10,000 22 minutes 1 second 6 msec 0.48 msec
SONE & 100,000 15 days 1.7 minutes 78 msec 4.8 msec
problem
of size million 41 years 2.8 hours 0.94 seconds 48 msec
10 million| 41 millennia 1.7 weeks 11 seconds | 0.48 seconds
. second 920 10,000 1 million 21 million
Max size
eyl Mminute 3,600 77,000 49 million 1.3 billion
solved EEITIN; 14,000 600,000 2.4 trillion 76 trillion
none " " .
! day 41,000 2.9 million 50 trillion 1,800 trillion
N multiplied by 10, 1.000 100 10+ 10

time multiplied by

Orders of Magnitude

Meters Per Imperial
Second Units

Seconds Equivalent

Example

1 - i i
1 second 1019 | 1.2in/decade | Continental drift
102 10 sef:onds 108 1 ft / year Hair growing
103 1.7 minutes 106 3.4in / day Glacier
10 17 minut ' '
: minutes 104 1.2 ft /hour |Gastro-intestinal tract
2.8 h i
105 8 hours 1072 2 ft / minute Ant
1.1 i
106 days 1 2.2 mi / hour Human walk
1. k - '
107 6 weeks 102 220 mi / hour Propeller airplane
10 3.8 th 17
8 montns 10% 370 mi / min Space shuttle
1 - i i '
109 EL1l YERlE 106 620 mi / sec | Earth in galactic orbit
10 3.1 decad - '
£ ecades 108 62,000 mi / sec 1/3 speed of light
10 3.1 centuries
forever 210 | thousand
P -
102 age of %Vlygrs 2| million
universe 230 billion

A Useful Recurrence Relation

T(N) =worst case running time on input of size N.
. Note: O(1) is "standard" abuse of notation.

% O(1) if N<n,
T(N)< jT(DN IZD)+T(DN /2D)+ O(N) otherwise
f| solveleft half solverlght half comblne

Alternate informal form: T(N) < T(N/2) + O(N).
. Implicitly assumes N is a power of 2.
. Implicitly assume T(N) [0 O(1) for sufficiently small N.

Solution.
. Any function satisfying above recurrence is [J O(N log, N).
. Equivalently, O(log, N) for any b > 1.

Analysis of Recurrence: Recursion Tree

Assuming N is a power of 2.

T(N)

T(N) =

if N=

%T(NIZ) +cN otherwise

1

/\

T(N/2)

O\

T(N/4) T(N/4)

T2 T2 T2 T2

T(2)

T(N/2)

O\

T(N/4) T(N/4)

T(2) T(2)

T(2)

A

log,N

\4

cN

2(cN/2)

4(cN/4)

2k (cN / 2%)

N/2 (2c)

cNlog,N

6

Analysis of Recurrence

o

[0 T(N)<cN dog, N[]

If N=1
| .

T(N)<OT(IN/20)+T(N/20)+ cN otherwise
B ~ J C > J —

= solvelefthalf solveright half — combine

Proof by induction on N.
. Base case: N=1.
. Definen, =0n /20, n,=0n/20

. Induction step: assume trueforl, 2,..., N-—1.
T(N) < T(ny))+T(ny)+cn -
2
< cny[log, n, [} cn,[log, n, 1 cn
<

cny [Jog, n, [cn, [1og, N, [t cn
cn[]og, n,[fcn

cn(og,n[+1)+cn

cnog, n[J

VAN

[]

= [M/2[]
< @Dogzn DIZD

log, n, < [Jog,n]-1

Counting Inversions

Web site tries to match your preferences with others on Internet.

. You rank N songs.

. Web site consults database to find people with similar rankings.

Closeness metric.
Myrank ={1,2,...,N}
. Yourrank ={ay, a,, ..., ay}
Number of inversions between two preference lists.

Songs i and j inverted if i <], but a; > &

sSongs

Inversion

Inversions

{3, 2}, {4, 2}

Counting Inversions

Brute-force solution.
. Check all pairsiand jsuch thati <.
. © (N?) comparisons.

Note: there can be a quadratic number of inversions.

. Asymptotically faster algorithm must compute total number
without even looking at each inversion individually.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

. Divide: separate list into two pieces.

1 (5|4 |8 |10

6 | 9 |12

11

7 O(1)

1 5 4 8 10 2

6 9 12 11 3

-

11

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

. Divide: separate list into two pieces.

. Conquer: recursively count inversions in each half separately.

1|5

4

8

10

12

11

3

1 5 4 8 10 2 6 9 12 11 3 7

5 blue-blue inversions

8 green-green inversions

O(1)

2T(N / 2)

12

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Divide: separate list into two pieces.

. Conquer: recursively count inversions in each half.

. Combine: count inversions where g and g; are in different halves.

1|5

4

8

10

12

11

3

1 5 4 8 10 2 6 9 12 11 3 7

5 blue-blue inversions

9 blue-green inversions:

8 green-green inversions

{5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7}

O(1)

2T(N / 2)

O(N?)

13

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.

. Conquer: recursively count inversions in each half.

. Combine: count inversions where g and g; are in different halves.
Return sum of three quantities.

154|810 2|6 |9 |12]|11| 3 | 7 O(1)

1 5 4 8 10 2@ 6 9 12 11 3 7 2T(N / 2)

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions: O(N?)
{5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7}

Total =5+ 8 + 9 = 22. O(1)

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.

. Conquer: recursively count inversions in each half.
m) . Combine: count inversions where a, and a; are in different halves.

Return sum of three quantities.

15,4 |8|10]2 6|9 |12|11| 3 | 7

1 5 4 8 10 2 6 9 12 11 3 7

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions:
{5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7}

Total =5+ 8 +9 = 22.

O(1)

2T(N / 2)

Can we do this step in
sub-quadratic time?

o(1)

15

Counting Inversions: Good Combine

Combine: count inversions where g and a; are in different halves.
. Keyidea: easy if each half is sorted.
. Sort each half.
. Count inversions.

1 5 4 8 10 2 6 9 12 11 3 7
1 2 4 5 8 103 6 7 9 11 12 O(N log N)

9 blue-green inversions: 4 + 2+ 2+ 1+0 + 0O O(N)

T(N) =T(N/20)+T(IN/20)+ O(NlogN) O T(N) = O(Nlog? N)

16

Counting Inversions: Better Combine

Combine: count inversions where g and a; are in different halves.
. Assume each half is pre-sorted.

. Count inversions. >

Merge two sorted halves into sorted whole.

3 7 10 14 18 19 2 11 16 17 23 25

13 blue-green inversions: 6+3+2+2+0+0 O(N)

2|37 (10|11|14|16(1718|19|23 |25 O(N)

T(N) =T(N/20)+T(N/20)+ O(N) O T(N)=O(NlogN)

Closest Pair

Given N points in the plane, find a pair that is closest together.
For concreteness, we assume Euclidean distances.

Foundation of then-fledgling field of computational geometry.

Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

Brute force solution.
Check all pairs of points p and q.
© (N?) comparisons.

One dimensional version (points on a line).
O(N log N) easy.

Assumption to make presentation cleaner.
No two points have same x coordinate.

18

Closest Pair

Algorithm.
. Divide: draw vertical line so that roughly N/ 2 points on each side.

19

Closest Pair

Algorithm.
. Divide: draw vertical line so that roughly N/ 2 points on each side.
. Conquer: find closest pair in each side recursively.

20

Closest Pair

Algorithm.
. Divide: draw vertical line so that roughly N/ 2 points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side.

21

Closest Pair

Algorithm.
Divide: draw vertical line so that roughly N/ 2 points on each side.

. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side.
Return best of 3 solutions.

22

Closest Pair

Algorithm.
Divide: draw vertical line so that roughly N/ 2 points on each side.

. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side.
Return best of 3 solutions.

23

Closest Pair

Key step: find closest pair with one point in each side.

. Extrainformation: closest pair entirely in one side had distance 0.

o =min(12, 21)

24

Closest Pair

Key step: find closest pair with one point in each side.

Extra information: closest pair entirely in one side had distance o.

. Observation: only need to consider points S within o of line.

d=min(12, 21)

25

Closest Pair

Key step: find closest pair with one point in each side.

Extra information: closest pair entirely in one side had distance o.

. Observation: only need to consider points S within o of line.

. Sort points in strip S by their y coordinate.

- suffices to compute distances for pairs within constant number

of positions of each other in sorted list!

o 0 ..
. ° ©
: " lel®|/a
12, - |© o ..
o o 9 ®
0

d=min(12, 21)

26

Closest Pair

S = list of points in the strip sorted by their y coordinate.

Crucial fact: if pand g arein S, and if
d(p, q) <3, then they are within 11 eee
positions of each other in S. (39) @&
. No two points lie in same box. @
. Two points at least 2 rows apart
have distance > 25/ 2. T 5/ 2
2 rows
| o 50 512
26
25
(N N J

27

O(N log N) =>

2T(N/2) —=>

oN) —=>

O(N log N) =>

oN) —=>

oN) —=>

Closest Pair

d = ClosestPair (py, Py, .- -, Py)

Compute separation line X = X,.q Such that half the points

have x coordinate less than x4, and half are greater.

0, = ClosestPair(left half)
d, = ClosestPair(right half)
d=min (d;, 0,)

Delete all points further than & from separation line.
Sort remaining points in strip by y coordinate.

Scan in y order, and compute distance between each point
and next 11 neighbors.

If any of these distances is less than o, update 0.

T(N) =T(N/20)+T(IN/20)+ O(NlogN) O T(N) = O(Nlog? N)

28

Closest Pair

Can we achieve O(N log N)?
. Yes. Don’t sort points in strip from scratch each time.

. Each recursive call should return two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.

. Sorting is accomplished by merging two already sorted lists.

TIN) =T(N/20)+T(IN/20)+ ON) O T(N)=O(NlogN)

29

Integer Arithmetic

Given two N-digit integers a and b, compute a + b.
. O(N) bit operations.

Multiplication: given two N-digit integers a and b,
compute ab.

Brute force solution: ® (N?) bit operations.

Application.
. Cryptography.

11010101
*01111101

AR MOL I NN RN MO RN)
0000000O0O
AR MOL I NN RN MO RN)

AR MOL I NN RN MO RN)

1 1 1 1 1 0 1 AR MOL I NN RN MO RN)
1 1 0 1 0 1 0 1 AR MOL I NN RN MO RN)
o 1 1 1 1 1 O AR MOL I NN RN MO RN)

o 1 0 1 0 0 1 O 0000000O0O

01101000000000010

30

Divide-and-Conquer Multiplication: First Attempt

To multiply two N-digit integers:
. Multiply four N/2-digit integers.
. Add two N/2-digit integers, and shift to obtain result.

123,456 x987,654 = (103w + x)x(103y + 2)

= 106(Wy) + 103(WZ + Xy)+ 100(xz)

= 10°(121,401) + 10°(80,442 + 450,072) + 10°(298,224)
= 123 = 121,401,299,224

= 456
987
= 654

N < x S
I

ab = (10N"2w + x)10N'? y + 2)

N is a power of 2 —> T(N) = 4T(N/2) + ©O(N) O T(N)=0(N?)

recursive calls add, shift

31

Karatsuba Multiplication

To multiply two N-digit integers:
. Add two N/2 digit integers.
. Multiply three N/2-digit integers.

. Subtract two N/2-digit integers, and shift to obtain result.

123,456 x 987,654

= 123
= 456
987

(103W + X)X (1O3y + 2)

106(Wy) + 103(Wz + Xy)+ 100(xz)

10°(p) +10°(r - p~q) +10°(q)

10°(121,401) + 103(950,139 - 121,401 - 298,224) + 10°(298,224)
121,401,299,224

N < x S
I

= 654

|
Wz+xy)=r-p-g

p = wy
= XZ

ro= w+x)(y+2

32

Karatsuba Multiplication: Analysis

To multiply two N-digit integers:
. Add two N/2 digit integers.
. Multiply three N/2-digit integers.
. Subtract two N/2-digit integers, and shift to obtain result.

Karatsuba-Ofman (1962). p = wy wWz+xy)=r-p-g
. O(N1-585) bit operations. q = xz
ro= w+x)y+2)

ab = (10N 2w + x)(20N'?y + 2)

T(N) < T(v/20) + T(IN/20) + T(1+N/20) + O(N)

recursirle calls add, subf?act, shift

)

0 T(N)=oO(N'"°923

33

Matrix Multiplication

Given two N x N matrices A and B, compute C = AB.

N
Cij = Y @i by
k=1

Brute force: © (N3) time.
126 62 98
[|
180 | 224 368 []

434 386 638H

10 2 4

[
6 8 10j

] X

H2 14 16H 6

7 13
9 15
11 174

Hcll
[1C21

o,y

[]
EPNl

Ci2 Ci3
Coo Cp3
C3p C33
Cn2 Cn3

Cin H Hall

Con [(21

Can E = 5331
] 0 :

Cnn H EﬁNl

djp a3
dyy a3
dzp dzg
dyo anaz

apy H

o [

az E X
]

ann H

Bbll

b1
s
] :

Ele

by H
by O
o

by B

Hard to imagine naive algorithm can be improved upon.

34

Matrix Multiplication: Warmup

Warmup: divide-and-conquer.
Divide: partition A and B into N/2 x N/2 blocks.
. Conquer: multiply 8 N/2 x N/2 recursively.
. Combine: add appropriate products using 4 matrix additions.

11 G20 A1 A BB B Ciz = (A11%xB11)+(A12xBy)
%21 Coo E_ 521 A2 E%ﬂ B> E Ciz = (A11xBip)+ (A2 xByy)
Co1 = (Ax1%Bi1)+ (A xBy)

Coy = (Ap1xBip)+(Ax xBy;)

T(N= 8T(N/2) + ©(N°) O T(N)=0O(N°)

recursive calls add, form submatrices

35

Matrix Multiplication: Idea

Idea: multiply 2 x 2 matrices with only 7 scalar multiplications.

J °H-H °HE 9H
i

ug e dogof hg

P = ax(g-h) r= FB+P-R+H
P, = (a+b)xh s = P+P
P; = (c+d)xe t = P3+Py
P, = dx(f-e) U = R+P-P-PR

P = (a+d)x(e+h)
Ps = (b-d)x(f+h)
P = (a-c)x(e+g)

. 7 multiplications.
. 18 =10 + 8 additions and subtractions.

Note: did not rely on commutativity of scalar multiplication.

36

Matrix Multiplication: Strassen

Generalize to matrices.
Divide: partition A and B into N/2 x N/2 blocks.
. Compute: 14 N/2 x N/2 matrices via 10 matrix add/subtract.
. Conquer: multiply 7 N/2 x N/2 recursively.
. Combine: 7 products into 4 terms using 8 matrix add/subtract.

%11 C12 Ez 511 A12 E%ﬂ B12%
21 C22 21 A2[0B21 B2

Analysis.
. Assume N is a power of 2.
. T(N) = # arithmetic operations.

T(N = 7T(N/2) + ©O(N?) O T(N)=0N°%")=0o(Nn>8h

recursive calls add, subtract

37

Beyond Strassen

Can you multiply two 2 x 2 matrices with only 7 scalar multiplications?
Yes! Strassen (1969). O(N'°927y = o(N 281y

Can you multiply two 2 x 2 matrix with only 6 scalar multiplications?
Impossible (Hopcroft and Kerr, 1971). G)(N'0926) _ O(N2'59)
Two 3 x 3 matrices with only 21 scalar multiplications?
Also impossible. O(N'°9:2Yy = o(N 277y

Two 70 x 70 matrices with only 143,640 scalar multiplications?
Yes! :
Yes! (Pan, 1980) O (N 10970143640y _ 5y 2.80
Decimal wars.
December, 1979: O(N?°21813),
January, 1980: O(N2>21801)

Coppersmith-Winograd (1987): O(N2379),

38

Strassen In Practice?

Practical considerations.

. Stop recursion around N = 100.
. Numerical stability.

. Harder to parallelize.

. Caching effects.

39

Order Statistics

Given N linearly ordered elements, find ith smallest element.
Minimum if i = 1.
Maximum if i = N.
Median:
~1=(N+1)/2 if Nis odd
~1=N/2ori=N/2+1
Easy to do with O(N) comparisons ifi or N—i is a constant.

Easy to do in general with O(N log ,N) comparisons by sorting.

Can we do in worst-case O(N) comparisons?
. Yes. (Blum, Floyd, Pratt, Rivest, Tarjan, 1973)
Cool and simple idea. Ahead of its time.

Assumption to make presentation cleaner.
. All items have distinct values.

40

Fast Select

Similar to quicksort, but throw away useless "half" at each iteration.

Select i smallest element from ag, a,, . .., ay.
FastSelect (i"", N, a,;, a,, . . ., a,)
X « FastPartition(N, a,, a, ..., ay <:: X = partition element
k « rank(x) Is kth smallest
i f (i == k)
return X

else if (i < Kk)
b[] « all itens of a[] |ess than x
return FastSelect(ith, k-1, b, b, ..., b))

else if (i > k)
c[] « all itens of a[] greater than x
return FastSelect((i-k)th, Nk, c;, C, ..., Cpny)

41

Fast Partition

FastPartition().
. Divide N elements into N/500groups of 5 elements each, plus extra.

OO ®EHE®E®E®
POHEOOOOOE®®E®
BE@OOO®OW®E®E®
WEOEO®O®®EEO®
®EOOOOOO®®

N =54

Fast Partition

FastPartition().
Divide N elements into [IN/5Ligroups of 5 elements each, plus extra.
Brute force sort each of the 5-element groups.

14 Qo Jlo Jos Yoz Xz Rou 7 o0 Jo- JCY
Q00000000 ®
Q000000000 ®
Q000000000 ®
000000000

Fast Partition

FastPartition().

. Divide N elements into N/500groups of 5 elements each, plus extra.
. Brute force sort each of the 5-element groups.
. Find x ="median of medians" using Fast Sel ect () recursively.

WOPEPEOOOO®®E®
POWPOOOOHGDO®@
QPROOOB®®®O®
DEOO®EO@®®E®®®
OOOOE®@®®E®

&

44

Fast Selection and Fast Partition

FastPartition().
Divide N elements into [IN/5Ligroups of 5 elements each, plus extra.

Brute force sort each of the 5-element groups.
Find x = "median of medians" using Fast Sel ect () recursively.

Fast Sel ect () .

. Call FastPartition().Letx be partition element used, and let k
be its rank.

. Call Fast Sel ect () recursively to find ith smallest element.
—return x if i =k
—return it smallest on left side if i <k
—return (i-k)th smallest on right side if i > k

45

Crux of

Fast Selection Analysis

proof: at least 25% of elements thrown away at each step.

. At least 1/2 of 5 element medians < x
—at least [IIN / 500/ 2[0= [N / 100 medians < x

median of
medians

WOPEPEOOOO®®E®

N

o)
POOOOOB @?

&

)

Q0 PDOWOO®®®
DEOO®EO@®®E®®®
OOOOE®@®®E®

46

Crux of

Fast Selection Analysis

proof: at least 25% of elements thrown away at each step.

. At least 1/2 of 5 element medians < x
—at least [IIN / 500/ 2[0= [N / 100 medians < x
. At least 3N/ 10l elements < x.

median of
medians

Q0000000 ®®

N

o)
Q00000 @?

&

)

Q0 PDOWOO®®®
DEOO®EO@®®E®®®
OOOOE®@®®E®

47

Crux of

Fast Selection Analysis

proof: at least 25% of elements thrown away at each step.

. Atleast 1/2 of 5 element medians < X

—at least OIN / 500/ 2[0= [N / 1000 medians £ X
. At least 3[N/ 100 elements < x.
. At least 3[N/ 100 elements > x.

median of
medians

WOPEPEOOOO®®E®

N

o)
POOOOOB @?

&

QPO0®O00®O
O@WOPWO®®@

)

0000000
00
00

48

Fast Selection Analysis

Crux of proof: at least 25% of elements thrown away at each step.
. Atleast 1/2 of 5 element medians £ x
—at least [JIN / 5[0/ 2[J= [N / 1000 medians < X
. Atleast 3[N /10l elements < X.
. Atleast 3[N /10l elements > x.

[1 Fast Sel ect () called recursively with at most N -3 [N/ 100
elements in last step

T(N) < T(N/50) + T(N-3[N/10D + O(N)
- ~ J - ~ J ;_J
median of medians recursive select insertion sort

0 T(N) = O(N).

Fast Selection Analysis

Analysis of recurrence.

[]c if N<50
T(N)=s O .
OT(IN/50) + TIN-3[N/10[]) + cN otherwise
Claim: T(N) < 20cN.
. Base case: N <50.
. Inductive step: assume trueforl, 2,..., N-1.
T(N) < T([N/S5)+T(N-3[N/10[)+cN
< 20c [N/5[1#20c(N-3 IN/10[])+cN For n =50,

IN

20c(N/5)+20c(N)—-20c(N/4)+cN
20cN

3[IN/100 =N /4.

50

Linear Time Median Finding Postmortem

Practical considerations.

. Constant (currently) too large to be useful.
Practical variant: choose random partition element.
— O(N) expected running time ala quicksort.

. Open problem: guaranteed O(N) with better constant.

Quicksort.
. Worst case O(N log N) if always partition on median.
. Justifies practical variants: median-of-3, median-of-5.

51

