Competitive Analysis

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Beyond Worst Case Analysis

Worst-case analysis.

Analyze running time as function of worst input of a given size.

Average case analysis.

- Analyze average running time over some distribution of inputs.
- Ex: quicksort.

Amortized analysis.

- Worst-case bound on sequence of operations.
- Ex: splay trees, union-find.

Competitive analysis.

- . Make quantitative statements about online algorithms.
- Ex: paging, load balancing.

Online Algorithm and Competitive Analysis

Paging problem: Given two-level store consisting of fast memory (cache) that can hold k pages, and slow memory that can store infinitely many pages.

- Sequence of page requests p:
 - if page p already in cache, no cost incurred
 - otherwise, eject some other page q from cache and replace with p, and pay unit cost for page fault.
- If p not in cache, which page q should you evict?
- Most fundamental and practically important online problem in CS.

Online Algorithm and Competitive Analysis

Competitive analysis. (Sleator-Tarjan)

. Algorithm A is ρ -competitive if there exists some constant b such that for every sequence of inputs σ :

$$cost_A(\sigma) \leq \rho cost_{OPT}(\sigma) + b.$$

where OPT is optimal offline algorithm.

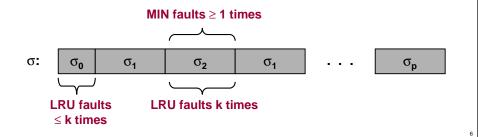
- OPT = MIN: evict page whose next access is furthest away.
- A = LRU: evict page whose most recent access was earliest
 - Traditional analysis completely uninformative.
 - We show LRU is k-competitive.
- A = LIFO: evict page brought in most recently.
 - LIFO can have arbitrarily bad competitive ratio.
- Fact: no online paging algorithm is better than k-competitive.

2

Online Algorithm and Competitive Analysis

Theorem. LRU is k-competitive.

Proof: Let τ be a subsequence of σ on which LRU faults exactly k times, and τ does not contain fist access in σ . Let p denote page requested just before τ .


- Case 1: LRU faults in sequence τ on p.
 - τ requests at least k+1 different pages \Rightarrow MIN faults at least once
- \blacksquare Case 2: LRU faults on some page, say q, at least twice in $\tau.$
 - τ requests at least k+1 different pages \Rightarrow MIN faults at least once

Online Algorithm and Competitive Analysis

Theorem. LRU is k-competitive.

Proof: Let τ be a subsequence of σ on which LRU faults exactly k times, and τ does not contain fist access in σ . Let p denote page requested just before τ .

- Case 3: LRU does not fault on p, nor on any page more than once.
 - k different pages are accessed and faulted on, none of which is p
 - p is in MIN's cache at start of $\tau \Rightarrow$ MIN faults at least once

