Competitive Analysis

Princeton University « COS 423 « Theory of Algorithms ¢ Spring 2001 « Kevin Wayne

Beyond Worst Case Analysis

Competitive analysis.
. Make quantitative statements about online algorithms.
. Ex: paging, load balancing.

Online Algorithm and Competitive Analysis

Paging problem: Given two-level store consisting of fast memory
(cache) that can hold k pages, and slow memory that can store
Infinitely many pages.
. Sequence of page requests p:
— if page p already in cache, no cost incurred

- otherwise, eject some other page g from cache and replace with
p, and pay unit cost for page fault.

If p not in cache, which page q should you evict?
. Most fundamental and practically important online problem in CS.

Online Algorithm and Competitive Analysis

Competitive analysis. (Sleator-Tarjan)

. Algorithm A is p-competitive if there exists some constant b such
that for every sequence of inputs o :

costp(0) £ pcostopr(0) +Dh.

where OPT is optimal offline algorithm.
. OPT = MIN: evict page whose next access is furthest away.

. A=LRU: evict page whose most recent access was earliest
Traditional analysis completely uninformative.
We show LRU is k-competitive.

. A=LIFO: evict page brought in most recently.
LIFO can have arbitrarily bad competitive ratio.

Fact: no online paging algorithm is better than k-competitive.

Online Algorithm and Competitive Analysis

Theorem. LRU is k-competitive.

Proof: Let Tt be asubsequence of 0 on which LRU faults exactly k
times, and 1 does not contain fist access in 0. Let p denote page
requested just before 1.

. Case 1. LRU faults in sequence t on p.

— Trequests at least k+1 different pages [
MIN faults at least once

. Case 2: LRU faults on some page, say q, at least twice in 1.

— Trequests at least k+1 different pages [
MIN faults at least once

Online Algorithm and Competitive Analysis

Theorem. LRU is k-competitive.

Proof: Let Tt be asubsequence of 0 on which LRU faults exactly k
times, and 1 does not contain fist access in 0. Let p denote page
requested just before 1.

. Case 3: LRU does not fault on p, nor on any page more than once.
- k different pages are accessed and faulted on, none of which is p
—pisin MIN’s cache at start of Tt [0 MIN faults at least once

MIN faults > 1 times

A
4 \
O Oy 0, O, 0, C . O,
Y/ U J
Y
LRU faults LRU faults k times

< k times

