Approximation Algorithms

Princeton University « COS 423 « Theory of Algorithms ¢ Spring 2001 « Kevin Wayne

Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.
. Theory says you aren’t likely to find a polynomial algorithm.
. Should you just give up?

Probably yes, if you're goal is really to find a polynomial
algorithm.

Probably no, if you're job depends on it.

Coping With NP-Hardness

Brute-force algorithms.
Develop clever enumeration strategies.
Guaranteed to find optimal solution.
No guarantees on running time.

Heuristics.
Develop intuitive algorithms.
Guaranteed to run in polynomial time.
No guarantees on quality of solution.

Approximation algorithms.
Guaranteed to run in polynomial time.
Guaranteed to find "high quality” solution, say within 1% of optimum.

Obstacle: need to prove a solution’s value is close to optimum,
without even knowing what optimum value is!

Approximation Algorithms and Schemes

p-approximation algorithm.
. An algorithm A for problem P that runs in polynomial time.

For every problem instance, A outputs a feasible solution within
ratio p of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).
. A family of approximation algorithms {A, : €> 0} for a problem P.
. A isa(l+¢)-approximation algorithm for P.
. A isruns in time polynomial in input size for a fixed «.

Fully polynomial-time approximation scheme (FPTAS).
PTAS where A, is runs in time polynomial in input size and 1 /¢ .

Approximation Algorithms and Schemes

Types of approximation algorithms.
. Fully polynomial-time approximation scheme.

Knapsack Problem

Knapsack problem.
. Given N objects and a "knapsack."
Item i weighs w; > 0 Newtons and has value v; > 0.
Knapsack can carry weight up to W Newtons.
. Goal: fill knapsack so as to maximize total value.

Item Value Weight

1 1 1 Greedy =35: {5,2,1}
2 6 2

v, I'w, 3 18 S OPT value = 40: { 3,4}
4 22 6
! 5 28 7

W=11

Knapsack is NP-Hard

KNAPSACK: Given afinite set X, nonnegative weights w; , nonnegative
values v, , a weight limit W, and a desired value V, is there a subset S [J
X such that:

Z W < W
s
Z Vi > V
IS

SUBSET-SUM: Given a finite set X, nonnegative values u; , and an
Integer t, is there a subset S 0 Xwhose elements sum to t?

Claim. SUBSET-SUM < ; KNAPSACK.

Proof: Given instance (X, t) of SUBSET-SUM, create KNAPSACK
Instance:

<
. V= W = U imzsu' s
. V:W:t ZUI 2 t

i0S

Knapsack: Dynamic Programming Solution 1

OPT(n, w) = max profit subset of items {1, ..., n} with weight limit w.
. Case 1. OPT selects item n.
- new weight limit =w —w_

— OPT selects best of {1, 2, ..., n — 1} using this new weight limit
. Case 2: OPT does not select item n.
— OPT selects best of {1, 2, ..., n =1} using weight limit w
10 if n=0
OPT(n,W):EDPT(n—l,W) if w,>w

Hnax{ OPT(n-1,w), v, + OPT(n-Lw-w.)} otherwise

Directly leads to O(N W) time algorithm.
. W = weight limit.
. Not polynomial in input size!

Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using
subset of items {1,...,n}.

. Case 1: OPT selects item n.
- new value needed =v —v_

- OPT selects best of {1, 2,. .., n -1} using new value
. Case 2: OPT does not select item n.
- OPT selects best of {1, 2, ..., n -1} that achieves value v

Directly leads to O(N V *) time algorithm.
. V* = optimal value.

. Not polynomial in input size!

Knapsack: Bottom-Up

Bottom-Up Knapsack

| NPUT: N, W Wi Wy Vigpe Vo
ARRAY OPT[O..N, 0..V*]

FORv=0toV
OPTI[O,Vv] =0

FORNn=1toN
FORw=1to W
IF (v, >V)
OPTIn, v] = OPT[n-1, v]
ELSE
OPTIn, v] = min {OPT[n-1, v], w

v¥ = max {v : OPT|[N, v] < W}
RETURNOPTIN, v*]

n

+ OPT[n-1, v-v

a1}

10

Knapsack: FPTAS

Intuition for approximation algorithm.
Round all values down to lie in smaller range.
Run O(N V*) dynamic programming algorithm on rounded instance.
Return optimal items in rounded instance.

Item Value Weight Item Value Weight
1 134,221 1 1 1 1
2 656,342 2 2 6 2
3 1,810,013 5 ‘ 3 18 5
4 22,217,800 6 4 222 6
5 28,343,199 4 5 283 4
W=11 W=11

Original Instance Rounded Instance

Knapsack: FPTAS

Knapsack FPTAS.

Round all values: . = 2Vn U
n 579 E
-V =largest value in original instance
— &€ =precision parameter
-0 = scaling factor=¢ V/N

. Bound on optimal value V *:

V < V*< NV <::: assume w, < W for all n

Running Time

OINV*) O O(N(NV))
0 O(N? (V16))
0 O(N°1)

= largest valueinrounded instance
optimal valueinrounded instance

< <]

12

Knapsack: FPTAS

Knapsack FPTAS.

Round all values: v E‘Lﬂ =

-V =largest value in original instance
— € =precision parameter

-0 = scaling factor=¢ V/N

Proof of Correctness

Bound on optimal value V *:

V< V*< NV

S* = optsetofitems inoriginal instance
S* = optsetofitems inrounded instance

13

Knapsack: State of the Art

This lecture.

. "Rounding and scaling” method finds a solution within a (1 - €)
factor of optimum for any € > 0.

. Takes O(N3/ ¢) time and space.

Ibarra-Kim (1975), Lawler (1979).
Faster FPTAS: O(Nlog (1/¢€) + 1/¢*) time.
Idea: group items by value into "large" and "small" classes.
— run dynamic programming algorithm only on large items
—insert small items according to ratio v,/ w,
- clever analysis

14

Approximation Algorithms and Schemes

Types of approximation algorithms.

. Constant factor.

15

Traveling Salesperson Problem

TSP: Given agraph G =(V, E), nonnegative edge weights c(e), and an
integer C, is there a Hamiltonian cycle whose total cost is at most C?

\ sLc PHEN ﬁf
§

e f'HX —
84N DFD BHM ATL A

\J"\K“"Lﬁ{“mﬁm

Is there a tour of length at most 15707

16

Traveling Salesperson Problem

TSP: Given agraph G =(V, E), nonnegative edge weights c(e), and an
integer C, is there a Hamiltonian cycle whose total cost is at most C?

n

N :fh-—-— B
Epm ’;::
/
pHxX

“EAN PED BHM_ML\

Is there a tour of length at most 1570? Yes, red tour = 1565.

17

Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph G = (V, E), does there exists
a simple cycle C that contains every vertex in V.

TSP: Given acomplete (undirected) graph G, integer edge weights
c(e) =0, and an integer C, is there a Hamiltonian cycle whose total
cost is at most C?

Claim. HAM-CYCLE is NP-complete. @ (b)

0‘0

G
Proof. (HAM-CYCLE transforms to TSP)

. Given G = (V, E), we want to decide if it is Hamiltonian.
. Create instance of TSP with G’ = complete graph.
. Setc(e)=1ifellE,andc(e)=2if e JE, and choose C = |V]|.

[Hamiltonian cyclein G < [has cost exactly [V]in G'.
[not Hamiltonian in G = [hascostatleast |V|+1inG'.

18

TSP

TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer
edge weights c(e) = 0, find a Hamiltonian cycle of minimum cost?

Claim. If P # NP, there is no p-approximation for TSP forany p=>1.

Proof (by contradiction).
Suppose A is p-approximation algorithm for TSP.
. We show how to solve instance G of HAM-CYCLE.
Create instance of TSP with G’ = complete graph.
LetC=|V|,c(e)=1ifeldE,andc(e)=p|V|+1lifeOE.
[Hamiltonian cycle in G < [has cost exactly [V]in G’
[not Hamiltonian in G = [has cost morethan p |V]|in G’

Gap O If G has Hamiltonian cycle, then A must return it.

19

TSP Heuristic

APPROX-TSP(G, c)
. Find a minimum spanning tree T for (G, c).

Input
(assume Euclidean distances)

MST

20

TSP Heuristic
APPROX-TSP(G, ¢)

. W ~ ordered list of vertices in preorder walk of T.
H — cyclethat visits the vertices in the order L.

Preorder Traversal Full Walk W Hamiltonian Cycle H

abcbhbadef egeda abchdef ga

21

APPROX-TSP(G, ¢)

TSP Heuristic

An Optimal Tour: 14.715

Hamiltonian Cycle H: 19.074

(assuming Euclidean distances)

22

TSP With Triangle Inequality

A-TSP: TSP where costs satisfy A-inequality: u w

For all u, v, and w: c(u,w) <c(u,v) + c(v,w).

Claim. A-TSP is NP-complete.
Proof. Transformation from HAM-CYCLE satisfies A-inequality.

Ex. Euclidean points in the plane.
Euclidean TSP is NP-hard, but not known to be in NP.

(-10, 5) (5, 9)

V102 + 52 ++/52 + 92 +/15% + 42 = 37.000. ..

(0,0)

. PTAS for Euclidean TSP. (Arora 1996, Mitchell 1996)

23

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H*).

. ¢(T) £c(H*) since we obtain spanning tree by deleting any edge
from optimal tour.

MST T An Optimal Tour

24

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H*).

. ¢(W) =2c(T) since every edge visited exactly twice.

MST T Walk W
abcbhbadef egeda

25

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H*).

. C(H) £ c(W) because of A-inequality.

Walk W Hamiltonian Cycle H
abcbhbadef egeda abchdef ga

26

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, c)
. Find a minimum spanning tree T for (G, c).
. M < min cost perfect matching of odd degree nodes in T.

» p o

MST T Matching M

27

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, ¢)

. G' < union of spanning tree and matching edges.

» p o

G’ = MST + Matching Matching M

28

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, ¢)

. E « Eulerian tour in G'.

"

S

E = Eulerian tour in G’ Matching M

29

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, c)

H ~ short-cut version of Eulerian tour in E.

E = Eulerian tour in G’ Hamiltonian Cycle H

30

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 1.5 c(H?).
. C¢(T) £c(H*) as before.
. ¢c(M) < %L c(l*) < % c(HY).
- second inequality follows from A-inequality
-~ even number of odd degree nodes
-~ Hamiltonian cycle on even # nodes comprised of two matchings

5 p o

Optimal Tour '* on Odd Nodes Matching M

31

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 1.5 c(H?).

. Union of MST and and matching edges is Eulerian.
- every node has even degree
. Can shortcut to produce H and c(H) < c(M) + c(T).

MST + Matching Hamiltonian Cycle H

32

Load Balancing

Load balancing input.
. midentical machines.
. njobs, job | has processing time p;.

Goal: assign each job to a machine to minimize makespan.

If subset of jobs S; assigned to machine i, then i works for a total

timeof 7, = > p;.
JUS;

Minimize maximum T..

33

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length p;= 0, and
an integer T, can the jobs be processed on 2 identical parallel
machines so that they all finish by time T.

Y
length of job F

Machine 1

Machine 2

0 Time T

34

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length p;= 0, and
an integer T, can the jobs be processed on 2 identical parallel
machines so that they all finish by time T.

Yes.

v

35

Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S

0 Xsuchthat > a=) a.
atls allxX\Ss

2-LOAD-BALANCE: Given a set of jobs J of varying length p;, and an
Integer T, can the jobs be processed on 2 identical parallel machines
so that they all finish by time T.

Claim. PARTITION < ; 2-LOAD-BALANCE.
Proof. Let X be an instance of PARTITION.

For each integer x LI X, include a job j of length p; = x.
. Set T:EZaDXa.

Conclusion: load balancing optimization problem is NP-hard.

36

Load Balancing

Greedy algorithm. >
. Consider jobs in some fixed order. '

. Assign job jto machine whose load is smallest so far.

LIST-SCHEDULING (m, n, py, - .., P;)
FORiI = 1tom

FORj) =1ton

= argmin, T, <::: machine with smallest load
I

i
S « S U{j}
T,

- T, +p, <= assign job j to machine |

Note: this is an "on-line" algorithm.

37

Load Balancing

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.
First worst-case analysis of an approximation algorithm.
Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is atleast T* > 1% . p;.
. The total processing timeis 2 ;p ;.
One of m machines must do at least a 1/m fraction of total work.

Lemma 2. The optimal makespan is atleast T* = max; p;.
Some machine must process the most time-consuming job.

38

Load Balancing

Lemma 1. The optimal makespan is at least T* > %2;‘ p;.
Lemma 2. The optimal makespan is atleast T* > max; p;.

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.

Let j be last job scheduled on machinei.

. When job j assigned to machine i, i has smallest load. It’s load

before assignment is T; - p;

U Ty-pj s T foralll<ks<sm.

Machine |

39

Load Balancing

Lemma 1. The optimal makespan is at least T
Lemma 2. The optimal makespan is at least T

* 1 .
= mzj p/'
* > manpj

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.

Let j be last job scheduled on machinei.

. When job j assigned to machine i, i has smallest load. It’s load

before assignmentis T, - p; U T;- p; <

. Sum inequalities over all k and divide by m,
and then apply L1.

Finish off using L2.

Tj (Ti—pj) + p;j
T*+T*

2T *

IN

Ty

forall 1<k <n.

Ti_pj

<

IN

%Z Pk
K
T*

40

1
2
3
4
5
6
4
8
9
10

Is our analysis tight?
Essentially yes.

Load Balancing

. We give instance where solution is almost factor of 2 from optimal.
- m machines, m(m-1) jobs with of length 1, 1 job of length m
- 10 machines, 90 jobs of length 1, 1 job of length 10

91
Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

Machine 8

Machine 9

Machine 10

List Schedule makespan =19

41

1
2
3
4
5
6
4
8
9

Is our analysis tight?
Essentially yes.

Load Balancing

. We give instance where solution is almost factor of 2 from optimal.
- m machines, m(m-1) jobs with of length 1, 1 job of length m
- 10 machines, 90 jobs of length 1, 1 job of length 10

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

Machine 8

Machine 9

Machine 10

Optimal makespan = 10

42

Load Balancing: State of the Art

What’s known.
. 2-approximation algorithm.
. 3/2-approximation algorithm: homework.

. 4/3-approximation algorithm: extra credit.
. PTAS.

43

