Approximation Algorithms

Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.

- Theory says you aren't likely to find a polynomial algorithm.
. Should you just give up?
\& Probably yes, if you're goal is really to find a polynomial algorithm.
Probably no, if you're job depends on it.

Coping With NP-Hardness

Brute-force algorithms.

- Develop clever enumeration strategies.
- Guaranteed to find optimal solution.
- No guarantees on running time.

Heuristics.

- Develop intuitive algorithms.
- Guaranteed to run in polynomial time.
- No guarantees on quality of solution.

Approximation algorithms.

- Guaranteed to run in polynomial time.
. Guaranteed to find "high quality" solution, say within 1% of optimum.
. Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Approximation Algorithms and Schemes

ρ-approximation algorithm.

- An algorithm A for problem P that runs in polynomial time.
- For every problem instance, A outputs a feasible solution within ratio ρ of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).

- A family of approximation algorithms $\left\{A_{\varepsilon}: \varepsilon>0\right\}$ for a problem P.
- \mathbf{A}_{ε} is a $(1+\varepsilon)$ - approximation algorithm for \mathbf{P}.
- A_{ε} is runs in time polynomial in input size for a fixed ε.

Fully polynomial-time approximation scheme (FPTAS).

- PTAS where A_{ε} is runs in time polynomial in input size and $1 / \varepsilon$.

Approximation Algorithms and Schemes

Types of approximation algorithms.
. Fully polynomial-time approximation scheme.

- Constant factor.

Knapsack Problem

Knapsack problem.
. Given N objects and a "knapsack."

- Item i weighs $w_{i}>0$ Newtons and has value $v_{i}>0$.
- Knapsack can carry weight up to W Newtons.
- Goal: fill knapsack so as to maximize total value.

Knapsack is NP-Hard

KNAPSACK: Given a finite set X , nonnegative weights w_{i}, nonnegative values v_{i}, a weight limit W, and a desired value V, is there a subset $S \subseteq$ X such that:

$$
\begin{aligned}
& \sum_{i \in S} w_{i} \leq w \\
& \sum_{i \in S} v_{i} \geq v
\end{aligned}
$$

SUBSET-SUM: Given a finite set X, nonnegative values u_{i}, and an integer t, is there a subset $S \subseteq X$ whose elements sum to t ?

Claim. SUBSET-SUM $\leq{ }_{p}$ KNAPSACK.
Proof: Given instance (\mathbf{X}, t) of SUBSET-SUM, create KNAPSACK instance:

- $\mathrm{v}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}}$
- $\mathrm{V}=\mathrm{W}=\mathrm{t}$

$$
\begin{aligned}
& \sum_{i \in S} \boldsymbol{u}_{i} \leq t \\
& \sum_{i \in S} \boldsymbol{u}_{i} \geq t
\end{aligned}
$$

Knapsack: Dynamic Programming Solution 1

OPT(n, w) = max profit subset of items $\{1, \ldots, n\}$ with weight limit w.

- Case 1: OPT selects item n.
- new weight limit $=\mathbf{w}-\mathbf{w}_{\mathbf{n}}$
- OPT selects best of $\{1,2, \ldots, n-1\}$ using this new weight limit
- Case 2: OPT does not select item n.
- OPT selects best of $\{1,2, \ldots, n-1\}$ using weight limit w
$\operatorname{OPT}(n, w)=\left\{\begin{array}{ll|}0 & \text { if } \mathrm{n}=0 \\ \operatorname{OPT}(n-1, w) & \text { if } \mathbf{w}_{\mathrm{n}}>\mathrm{w} \\ \max \{\operatorname{OPT}(n-1, w), & \left.v_{n}+\operatorname{OPT}\left(n-1, w-w_{n}\right)\right\} \\ \text { otherwise }\end{array}\right.$

Directly leads to O(N W) time algorithm.

- W = weight limit.
. Not polynomial in input size!

Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly vusing subset of items $\{1, \ldots, n\}$.

- Case 1: OPT selects item n.
- new value needed $=v-v_{n}$
- OPT selects best of $\{1,2, \ldots, n-1\}$ using new value
. Case 2: OPT does not select item n.
- OPT selects best of $\{1,2, \ldots, n-1\}$ that achieves value v
$\operatorname{OPT}(n, v)=\left\{\begin{array}{ll|}0 & \text { if } n=0 \\ \operatorname{OPT}(n-1, v) & \text { if } \mathbf{v}_{\mathbf{n}}>v \\ \min \{O P T(n-1, v), & \left.w_{n}+\operatorname{OPT}\left(n-1, v-v_{n}\right)\right\} \\ \text { otherwise }\end{array}\right.$

Directly leads to $\mathrm{O}\left(\mathrm{N} \mathrm{V}^{*}\right)$ time algorithm.

- $\mathrm{V}^{*}=$ optimal value.
. Not polynomial in input size!

Knapsack: Bottom-Up

Bottom-Up Knapsack

INPUT: $N, W, w_{1}, \ldots, w_{N}, v_{1}, \ldots, v_{N}$
ARRAY: OPT[0..N, O..V*]

FOR $v=0$ to v

$$
\mathrm{OPT}[0, \quad \mathrm{v}]=0
$$

FOR $\mathrm{n}=1$ to N

$$
\begin{aligned}
\text { FOR } w & =1 \text { to } w \\
I F & \left(v_{n}>v\right) \\
& \text { OPT }[n, v]=\operatorname{OPT}[n-1, v]
\end{aligned}
$$

ELSE

$$
O P T[n, v]=\min \left\{O P T[n-1, v], w_{n}+O P T\left[n-1, v-v_{n}\right]\right\}
$$

$v^{*}=\max \{v: O P T[N, v] \leq W\}$
RETURN OPT[N, $v *$]

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values down to lie in smaller range.
- Run $\mathbf{O}\left(\mathbf{N ~ V}^{*}\right)$ dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight
1	134,221	1
2	656,342	2
3	$1,810,013$	5
4	$22,217,800$	6
5	$28,343,199$	7

$$
W=11
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	222	6
5	283	7
		W = 11

Original Instance
Rounded Instance

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{\boldsymbol{v}_{\boldsymbol{n}}}=\left\lfloor\frac{\boldsymbol{v}_{\boldsymbol{n}}}{\boldsymbol{\theta}}\right\rfloor$
- V = largest value in original instance
$-\varepsilon \quad=$ precision parameter
$-\theta \quad=$ scaling factor $=\varepsilon \mathrm{V} / \mathrm{N}$
. Bound on optimal value \mathbf{V} *:

$$
V \leq V^{*} \leq N V \quad \text { assume } \mathrm{w}_{\mathrm{n}} \leq \mathrm{W} \text { for all } \mathrm{n}
$$

Running Time

$$
\begin{array}{rl|lll}
O\left(N \bar{V}^{*}\right) & \in O(N(N \bar{V})) \\
& \in O\left(N^{2}(V / \theta)\right) & \bar{V} & =\text { largest value in rounded instance } \\
& \in O\left(N^{3} 1\right)
\end{array} \quad \overline{V^{*}}=\text { optimal value in rounded instance }
$$

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{\boldsymbol{v}_{\boldsymbol{n}}}=\left\lfloor\frac{\boldsymbol{v}_{\boldsymbol{n}}}{\boldsymbol{\theta}}\right\rfloor$
- V = largest value in original instance
$-\varepsilon \quad=$ precision parameter
$-\theta \quad=$ scaling factor $=\varepsilon \mathrm{V} / \mathbf{N}$
. Bound on optimal value \mathbf{V} *:

$$
V \leq V^{*} \leq N V
$$

$S^{*}=$ opt set of items in original instance
$\overline{S^{*}}=$ opt set of items in rounded instance

Knapsack: State of the Art

This lecture.

- "Rounding and scaling" method finds a solution within a ($1-\varepsilon$) factor of optimum for any $\varepsilon>0$.
- Takes $\mathrm{O}\left(\mathrm{N}^{3} / \varepsilon\right)$ time and space.

Ibarra-Kim (1975), Lawler (1979).

- Faster FPTAS: $\mathrm{O}\left(\mathrm{N} \log (1 / \varepsilon)+1 / \varepsilon^{4}\right)$ time.
- Idea: group items by value into "large" and "small" classes.
- run dynamic programming algorithm only on large items
- insert small items according to ratio v_{n} / w_{n}
- clever analysis

Approximation Algorithms and Schemes

Types of approximation algorithms.
. Fully polynomial-time approximation scheme.

- Constant factor.

Traveling Salesperson Problem

TSP: Given a graph $G=(V, E)$, nonnegative edge weights $c(e)$, and an integer C, is there a Hamiltonian cycle whose total cost is at most C ?

Is there a tour of length at most $1570 ?$

Traveling Salesperson Problem

TSP: Given a graph $G=(V, E)$, nonnegative edge weights $c(e)$, and an integer \mathbf{C}, is there a Hamiltonian cycle whose total cost is at most \mathbf{C} ?

Is there a tour of length at most $1570 ?$ Yes, red tour $=1565$.

Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph $G=(V, E)$, does there exists a simple cycle C that contains every vertex in V.

TSP: Given a complete (undirected) graph G, integer edge weights $c(e) \geq 0$, and an integer C, is there a Hamiltonian cycle whose total cost is at most C ?

Claim. HAM-CYCLE is NP-complete.

G

G'

Proof. (HAM-CYCLE transforms to TSP)

- Given $G=(V, E)$, we want to decide if it is Hamiltonian.
- Create instance of TSP with G' = complete graph.
- Set $c(e)=1$ if $e \in E$, and $c(e)=2$ if $e \notin E$, and choose $C=|V|$.
- Γ Hamiltonian cycle in $G \Leftrightarrow \Gamma$ has cost exactly |V| in G'. Γ not Hamiltonian in $\mathbf{G} \Leftrightarrow \Gamma$ has cost at least $|\mathrm{V}|+1$ in G^{\prime}.

TSP

TSP-OPT: Given a complete (undirected) graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ with integer edge weights $c(e) \geq 0$, find a Hamiltonian cycle of minimum cost?

Claim. If $\mathbf{P} \neq \mathbf{N P}$, there is no ρ-approximation for TSP for any $\rho \geq 1$.

Proof (by contradiction).

- Suppose A is ρ-approximation algorithm for TSP.
. We show how to solve instance G of HAM-CYCLE.
- Create instance of TSP with G' = complete graph.
- Let $C=|V|, c(e)=1$ if $e \in E$, and $c(e)=\rho|V|+1$ if $e \notin E$.
- Γ Hamiltonian cycle in $G \Leftrightarrow \Gamma$ has cost exactly |V| in \mathbf{G}^{\prime} Γ not Hamiltonian in $\mathbf{G} \Leftrightarrow \Gamma$ has cost more than $\rho|V|$ in \mathbf{G}^{\prime}
- Gap \Rightarrow If G has Hamiltonian cycle, then A must return it.

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).

Input
(assume Euclidean distances)

MST

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- W \leftarrow ordered list of vertices in preorder walk of T.
. $\mathrm{H} \leftarrow$ cycle that visits the vertices in the order L.

Preorder Traversal Full Walk W

Hamiltonian Cycle H $a b c h d e f g a$

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- W \leftarrow ordered list of vertices in preorder walk of T.
- $H \leftarrow$ cycle that visits the vertices in the order L.

An Optimal Tour: 14.715

Hamiltonian Cycle H: 19.074 (assuming Euclidean distances)

TSP With Triangle Inequality

Δ-TSP: TSP where costs satisfy Δ-inequality:

- For all u, v, and $w: c(u, w) \leq c(u, v)+c(v, w)$.

Claim. Δ-TSP is NP-complete.

Proof. Transformation from HAM-CYCLE satisfies Δ-inequality.

Ex. Euclidean points in the plane.

- Euclidean TSP is NP-hard, but not known to be in NP.

- PTAS for Euclidean TSP. (Arora 1996, Mitchell 1996)

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for Δ-TSP.
Proof. Let \mathbf{H}^{*} denote an optimal tour. Need to show $\mathbf{c}(\mathrm{H}) \leq \mathbf{2 c}\left(\mathbf{H}^{*}\right)$.

- $c(T) \leq c\left(H^{*}\right)$ since we obtain spanning tree by deleting any edge from optimal tour.

MST T

An Optimal Tour

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for Δ-TSP.
Proof. Let \mathbf{H}^{*} denote an optimal tour. Need to show $\mathbf{c}(\mathrm{H}) \leq \mathbf{2 c}\left(\mathrm{H}^{*}\right)$.

- $c(T) \leq c\left(H^{*}\right)$ since we obtain spanning tree by deleting any edge from optimal tour.
- $c(W)=2 c(T)$ since every edge visited exactly twice.

MST T

Walk W
$a b c b h b a d e f e g e d a$

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for Δ-TSP.
Proof. Let \mathbf{H}^{*} denote an optimal tour. Need to show $\mathbf{c}(\mathrm{H}) \leq \mathbf{2 c}\left(\mathbf{H}^{*}\right)$.

- $c(T) \leq c\left(H^{*}\right)$ since we obtain spanning tree by deleting any edge from optimal tour.
- $c(W)=2 c(T)$ since every edge visited exactly twice.
- $\mathbf{c}(\mathrm{H}) \leq \mathbf{c}(\mathrm{W})$ because of Δ-inequality.

Walk W
$a b c b h b a d e f e g e d a$

Hamiltonian Cycle H $a b c h d e f g a$

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree \mathbf{T} for (G, c).
. $M \leftarrow$ min cost perfect matching of odd degree nodes in T.

MST T

Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.
CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- $\mathbb{M} \leftarrow$ min cost perfect matching of odd degree nodes in T.
- $\mathbf{G}^{\prime} \leftarrow$ union of spanning tree and matching edges.

G' = MST + Matching

Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.
CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- $\mathbb{M} \leftarrow$ min cost perfect matching of odd degree nodes in T.
- $G^{\prime} \leftarrow$ union of spanning tree and matching edges.
- $\mathrm{E} \leftarrow$ Eulerian tour in G'.

E = Eulerian tour in G'

Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.
CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- $\mathbb{M} \leftarrow$ min cost perfect matching of odd degree nodes in T.
- $\mathrm{G}^{\prime} \leftarrow$ union of spanning tree and matching edges.
- E \leftarrow Eulerian tour in G'.
- $\mathrm{H} \leftarrow$ short-cut version of Eulerian tour in E .

E = Eulerian tour in \mathbf{G}^{\prime}

Hamiltonian Cycle H

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.
Proof. Let H^{*} denote an optimal tour. Need to show $\mathbf{c}(\mathrm{H}) \leq 1.5 \mathrm{c}\left(\mathrm{H}^{*}\right)$.

- $\mathbf{c}(\mathrm{T}) \leq \mathbf{c}\left(\mathrm{H}^{\star}\right)$ as before.
- $\mathbf{C}(\mathbf{M}) \leq 1 / 2 \mathbf{c}\left(\Gamma^{*}\right) \leq 1 / 2 \mathbf{c}\left(\mathbf{H}^{*}\right)$.
- second inequality follows from Δ-inequality
- even number of odd degree nodes
- Hamiltonian cycle on even \# nodes comprised of two matchings

Optimal Tour Γ^{*} on Odd Nodes

Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ-TSP.
Proof. Let H^{*} denote an optimal tour. Need to show $\mathbf{c}(\mathrm{H}) \leq 1.5 \mathbf{c}\left(\mathrm{H}^{*}\right)$.

- $c(T) \leq c\left(H^{*}\right)$ as before.
- $C(M) \leq 1 / 2 C\left(\Gamma^{*}\right) \leq 1 / 2 C\left(H^{*}\right)$.
- Union of MST and and matching edges is Eulerian.
- every node has even degree
- Can shortcut to produce H and $c(H) \leq c(M)+c(T)$.

MST + Matching

Hamiltonian Cycle H

Load Balancing

Load balancing input.

- m identical machines.
- n jobs, job j has processing time p_{j}.

Goal: assign each job to a machine to minimize makespan.

- If subset of jobs S_{i} assigned to machine i, then i works for a total time of $T_{i}=\sum_{j \in S_{i}} p_{j}$.
- Minimize maximum T_{i}.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length $p_{j} \geq 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length $p_{j} \geq 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T .

Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S
$\subseteq X$ such that $\sum_{a \in S} a=\sum_{a \in X \backslash S} a$.
2-LOAD-BALANCE: Given a set of jobs J of varying length p_{j}, and an integer T , can the jobs be processed on 2 identical parallel machines so that they all finish by time T .

Claim. PARTITION $\leq \mathrm{p}$ 2-LOAD-BALANCE.
Proof. Let X be an instance of PARTITION.

- For each integer $\mathbf{x} \in \mathbf{X}$, include a job j of length $p_{j}=\mathbf{x}$.
- Set $T=\frac{1}{2} \sum_{a \in X} a$.

Conclusion: load balancing optimization problem is NP-hard.

Load Balancing

Greedy algorithm.

- Consider jobs in some fixed order.

- Assign job j to machine whose load is smallest so far.

LIST-SCHEDULING ($\mathrm{m}, \mathrm{n}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$)

FOR i $=1$ to m

$$
\mathbf{T}_{\mathbf{i}} \leftarrow 0, \quad \mathbf{S}_{\mathbf{i}} \leftarrow \phi
$$

$$
\text { FOR j }=1 \text { to } n
$$

$$
\mathbf{i}=\operatorname{argmin}_{k} \mathbf{T}_{\mathrm{k}}
$$

$$
S_{i} \leftarrow S_{i} \cup\{j\}
$$

$$
\mathbf{T}_{i} \leftarrow \mathbf{T}_{i}+\mathrm{P}_{\mathrm{j}}
$$

. Note: this is an "on-line" algorithm.

Load Balancing

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.

- Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is at least $\boldsymbol{T}^{*} \geq \frac{1}{m} \sum_{j} \boldsymbol{p}_{j}$.

- The total processing time is $\Sigma_{j} p_{j}$.
- One of m machines must do at least a $1 / \mathrm{m}$ fraction of total work.

Lemma 2. The optimal makespan is at least $T^{*} \geq \max _{j} \boldsymbol{p}_{j}$.
. Some machine must process the most time-consuming job.

Load Balancing

Lemma 1. The optimal makespan is at least $T^{*} \geq \frac{1}{m} \sum_{j} p_{j}$.
Lemma 2. The optimal makespan is at least $T^{*} \geq \max _{j} \boldsymbol{p}_{j}$.

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine ithat works for T units of time.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is $T_{i}-p_{j} \Rightarrow T_{i}-p_{j} \leq T_{k}$ for all $1 \leq k \leq m$.

Load Balancing

Lemma 1. The optimal makespan is at least $T^{*} \geq \frac{1}{m} \sum_{j} p_{j}$.
Lemma 2. The optimal makespan is at least $T^{*} \geq \max _{j} \boldsymbol{p}_{j}$.

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine ithat works for T units of time.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is $T_{i}-p_{j} \Rightarrow T_{i}-p_{j} \leq T_{k}$ for all $1 \leq k \leq n$.
- Sum inequalities over all k and divide by m, and then apply L1.
- Finish off using L2.

$$
\begin{aligned}
\boldsymbol{T}_{\boldsymbol{i}} & =\left(T_{i}-p_{j}\right)+p_{j} \\
& \leq \boldsymbol{T}^{*}+T^{*} \\
& =2 \boldsymbol{T}^{*}
\end{aligned}
$$

$$
\begin{aligned}
T_{i}-p_{j} & \leq \frac{1}{m} \sum_{k} T_{k} \\
& =\frac{1}{m} \sum_{k} p_{k} \\
& \leq T^{*}
\end{aligned}
$$

Load Balancing

Is our analysis tight?

- Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
- m machines, $m(m-1)$ jobs with of length 1,1 job of length m
- 10 machines, 90 jobs of length 1,1 job of length 10

1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	Machine 2
3	13	23	33	43	53	63	73	83	Machine 3
4	14	24	34	44	54	64	74	84	Machine 4
5	15	25	35	45	55	65	75	85	Machine 5
6	16	26	36	46	56	66	76	86	Machine 6
7	17	27	37	47	57	67	77	87	Machine 7
8	18	28	38	48	58	68	78	88	Machine 8
9	19	29	39	49	59	69	79	89	Machine 9
10	20	30	40	50	60	70	80	90	Machine 10

List Schedule makespan $=19$

Load Balancing

Is our analysis tight?

- Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
- m machines, $m(m-1)$ jobs with of length 1,1 job of length m
- 10 machines, 90 jobs of length 1,1 job of length 10

1	11	21	31	41	51	61	71	81	10	Machine 1
2	12	22	32	42	52	62	72	82	20	Machine 2
3	13	23	33	43	53	63	73	83	30	Machine 3
4	14	24	34	44	54	64	74	84	40	Machine 4
5	15	25	35	45	55	65	75	85	50	Machine 5
6	16	26	36	46	56	66	76	86	60	Machine 6
7	17	27	37	47	57	67	77	87	70	Machine 7
8	18	28	38	48	58	68	78	88	80	Machine 8
9	19	29	39	49	59	69	79	89	90	Machine 9
91										

Optimal makespan $=10$

Load Balancing: State of the Art

What's known.

- 2-approximation algorithm.
- 3/2-approximation algorithm: homework.
- 4/3-approximation algorithm: extra credit.
- PTAS.

