Approximation Algorithms

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.

- Theory says you aren't likely to find a polynomial algorithm.
- Should you just give up?
 - Probably yes, if you're goal is really to find a polynomial algorithm.
 - Probably no, if you're job depends on it.

Coping With NP-Hardness

Brute-force algorithms.

- **.** Develop clever enumeration strategies.
- Guaranteed to find optimal solution.
- No guarantees on running time.

Heuristics.

- Develop intuitive algorithms.
- Guaranteed to run in polynomial time.
- No guarantees on quality of solution.

Approximation algorithms.

- Guaranteed to run in polynomial time.
- Guaranteed to find "high quality" solution, say within 1% of optimum.
- Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Approximation Algorithms and Schemes

ρ -approximation algorithm.

- An algorithm A for problem P that runs in polynomial time.
- . For every problem instance, A outputs a feasible solution within ratio ρ of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).

- A family of approximation algorithms {A $_{\epsilon}$: ϵ > 0} for a problem P.
- A_{ϵ} is a (1 + ϵ) approximation algorithm for P.
- A_{ϵ} is runs in time polynomial in input size for a fixed ϵ .

Fully polynomial-time approximation scheme (FPTAS).

- PTAS where A_ϵ is runs in time polynomial in input size and 1 / ϵ .

Approximation Algorithms and Schemes

Types of approximation algorithms.

- Fully polynomial-time approximation scheme.
- Constant factor.

Knapsack Problem

Knapsack problem.

- Given N objects and a "knapsack."
- Item i weighs $w_i > 0$ Newtons and has value $v_i > 0$.
- Knapsack can carry weight up to W Newtons.
- . Goal: fill knapsack so as to maximize total value.

	ltem	Value	Weight
	1	1	1
	2	6	2
v _i / w _i	3	18	5
	4	22	6
↓ ↓	5	28	7

Greedy = 35: { 5, 2, 1 }

Knapsack is NP-Hard

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a desired value V, is there a subset S \subseteq X such that:

$$\sum_{i \in S} w_i \leq W$$
$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer t, is there a subset $S \subseteq X$ whose elements sum to t?

Claim. SUBSET-SUM \leq_{P} KNAPSACK. **Proof:** Given instance (X, t) of SUBSET-SUM, create KNAPSACK instance:

• $\mathbf{v}_i = \mathbf{w}_i = \mathbf{u}_i$ • $\mathbf{V} = \mathbf{W} = \mathbf{t}$ $\sum_{i \in S} u_i \leq t$ $\sum_{i \in S} u_i \geq t$

Knapsack: Dynamic Programming Solution 1

OPT(n, w) = max profit subset of items \{1, \ldots, n\} with weight limit w.

- Case 1: OPT selects item n.
 - new weight limit = w w_n
 - OPT selects best of $\{1, 2, ..., n 1\}$ using this new weight limit
- . Case 2: OPT does not select item n.
 - OPT selects best of $\{1, 2, \ldots, n-1\}$ using weight limit w

$$OPT(n,w) = \begin{cases} 0 & \text{if } n = 0\\ OPT(n-1,w) & \text{if } w_n > w\\ \max\{OPT(n-1,w), v_n + OPT(n-1,w-w_n)\} & \text{otherwise} \end{cases}$$

Directly leads to O(N W) time algorithm.

- W = weight limit.
- Not polynomial in input size!

Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using subset of items $\{1, ..., n\}$.

- Case 1: OPT selects item n.
 - new value needed = v v_n
 - OPT selects best of $\{1, 2, \ldots, n-1\}$ using new value
- Case 2: OPT does not select item n.
 - OPT selects best of $\{1, 2, \ldots, n-1\}$ that achieves value v

$$OPT(n,v) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1,v) & \text{if } v_n > v \\ \min\{OPT(n-1,v), w_n + OPT(n-1,v-v_n)\} & \text{otherwise} \end{cases}$$

Directly leads to O(N V *) time algorithm.

- V* = optimal value.
- Not polynomial in input size!

Knapsack: Bottom-Up

Bottom-Up Knapsack

```
INPUT: N, W, w_1, \dots, w_N, v_1, \dots, v_N
ARRAY: OPT[0...N, 0...V*]
FOR v = 0 to V
   OPT[0, v] = 0
FOR n = 1 to N
   FOR w = 1 to W
       IF (v_n > v)
          OPT[n, v] = OPT[n-1, v]
      ELSE
          OPT[n, v] = min {OPT[n-1, v], w_n + OPT[n-1, v-v_n]}
v^* = max \{v : OPT[N, v] \leq W\}
RETURN OPT[N, v^*]
```

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values down to lie in smaller range.
- Run O(N V*) dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

ltem	Value	Weight	ltem	Value	Weight	
1	134,221	1	1	1	1	
2	656,342	2	2	6	2	
3	1,810,013	5	3	18	5	
4	22,217,800	6	4	222	6	
5	28,343,199	7	5	283	7	
		W = 11			W = 11	
Ori	ginal Instance		Rounded Instance			

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{v_n} = \left| \frac{v_n}{\theta} \right|$
 - V = largest value in original instance
 - ε = precision parameter
 - $-\theta$ = scaling factor = ϵ V / N
- Bound on optimal value V *:

$$V \leq V^* \leq NV$$
 assume $w_n \leq W$ for all n

Running Time

$$O(N \overline{V^*}) \in O(N(N \overline{V}))$$

$$\in O(N^2(V/\theta))$$

$$\in O(N^3 \frac{1}{\varepsilon})$$

- V =largest value in rounded instance
- \overline{V}^* = optimal value in rounded instance

Knapsack: FPTAS

Knapsack FPTAS.

Round all values:

$$\overline{v_n} = \left\lfloor \frac{v_n}{\theta} \right\rfloor$$

- V = largest value in original instance
- $-\epsilon$ = precision parameter
- $-\theta$ = scaling factor = ϵ V / N
- Bound on optimal value V *:

 $V \leq V^* \leq NV$

- $S^* = opt set of items in original instance$
- $\overline{S^*}$ = opt set of items in rounded instance

Proof of Correctness

ne

$$\sum_{S^*} v_n \geq \sum_{n \in S^*} \theta \overline{v_n}$$

$$\geq \sum_{n \in S^*} \theta \overline{v_n}$$

$$\geq \sum_{n \in S^*} (v_n - \theta)$$

$$\geq \sum_{n \in S^*} v_n - \theta N$$

$$= V^* - (\varepsilon V / N) N$$

$$\geq (1 - \varepsilon) V^*$$

Knapsack: State of the Art

This lecture.

- "Rounding and scaling" method finds a solution within a (1 ϵ) factor of optimum for any ϵ > 0.
- Takes O(N³ / ε) time and space.

Ibarra-Kim (1975), Lawler (1979).

- Faster FPTAS: O(N log (1 / ϵ) + 1 / ϵ^4) time.
- Idea: group items by value into "large" and "small" classes.
 - run dynamic programming algorithm only on large items
 - insert small items according to ratio v_n / w_n
 - clever analysis

Approximation Algorithms and Schemes

Types of approximation algorithms.

- Fully polynomial-time approximation scheme.
- Constant factor.

Traveling Salesperson Problem

TSP: Given a graph G = (V, E), nonnegative edge weights c(e), and an integer C, is there a Hamiltonian cycle whose total cost is at most C?

Traveling Salesperson Problem

TSP: Given a graph G = (V, E), nonnegative edge weights c(e), and an integer C, is there a Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570? Yes, red tour = 1565.

Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph G = (V, E), does there exists a simple cycle C that contains every vertex in V.

TSP: Given a complete (undirected) graph G, integer edge weights $c(e) \ge 0$, and an integer C, is there a Hamiltonian cycle whose total cost is at most C?

Claim. HAM-CYCLE is NP-complete.

Proof. (HAM-CYCLE transforms to TSP)

- Given G = (V, E), we want to decide if it is Hamiltonian.
- Create instance of TSP with G' = complete graph.
- Set c(e) = 1 if $e \in E$, and c(e) = 2 if $e \notin E$, and choose C = |V|.
- Γ Hamiltonian cycle in G \Leftrightarrow Γ has cost exactly |V| in G'.
- Γ not Hamiltonian in G \Leftrightarrow Γ has cost at least |V| + 1 in G'.

TSP

TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer edge weights $c(e) \ge 0$, find a Hamiltonian cycle of minimum cost?

Claim. If P \neq NP, there is no ρ -approximation for TSP for any $\rho \ge$ 1 .

Proof (by contradiction).

- . Suppose A is $\rho\text{-approximation}$ algorithm for TSP.
- We show how to solve instance G of HAM-CYCLE.
- Create instance of TSP with G' = complete graph.
- . Let C = |V|, c(e) = 1 if $e \in E$, and c(e) = ρ |V | + 1 if $e \notin E$.
- Γ Hamiltonian cycle in G \Leftrightarrow Γ has cost exactly |V| in G' Γ not Hamiltonian in G \Leftrightarrow Γ has cost more than ρ |V| in G'
- Gap \Rightarrow If G has Hamiltonian cycle, then A must return it.

TSP Heuristic

APPROX-TSP(G, c)

• Find a minimum spanning tree T for (G, c).

MST

Input (assume Euclidean distances)

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- W \leftarrow ordered list of vertices in preorder walk of T.
- $H \leftarrow$ cycle that visits the vertices in the order L.

Preorder Traversal Full Walk W abcbhbadefegeda abchdefga

Hamiltonian Cycle H

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- W \leftarrow ordered list of vertices in preorder walk of T.
- H \leftarrow cycle that visits the vertices in the order L.

An Optimal Tour: 14.715

Hamiltonian Cycle H: 19.074

(assuming Euclidean distances)

 \triangle -TSP: TSP where costs satisfy \triangle -inequality:

• For all u, v, and w: $c(u,w) \le c(u,v) + c(v,w)$.

Claim. \triangle -TSP is NP-complete.

Proof. Transformation from HAM-CYCLE satisfies \triangle -inequality.

Ex. Euclidean points in the plane.

• Euclidean TSP is NP-hard, but not known to be in NP.

PTAS for Euclidean TSP. (Arora 1996, Mitchell 1996)

Theorem. APPROX-TSP is a 2-approximation algorithm for \triangle -TSP. **Proof.** Let H* denote an optimal tour. Need to show $c(H) \le 2c(H^*)$.

 c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge from optimal tour.

MST T

An Optimal Tour

Theorem. APPROX-TSP is a 2-approximation algorithm for \triangle -TSP. **Proof.** Let H* denote an optimal tour. Need to show c(H) \leq 2c(H*).

- c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge from optimal tour.
- . c(W) = 2c(T) since every edge visited exactly twice.

Theorem. APPROX-TSP is a 2-approximation algorithm for \triangle -TSP. **Proof.** Let H* denote an optimal tour. Need to show c(H) \leq 2c(H*).

- c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge from optimal tour.
- c(W) = 2c(T) since every edge visited exactly twice.
- $c(H) \le c(W)$ because of Δ -inequality.

Walk W a b c b h b a d e f e g e d a

Hamiltonian Cycle H a b c h d e f g a

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP.

- Find a minimum spanning tree T for (G, c).
- M \leftarrow min cost perfect matching of odd degree nodes in T.

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP.

- Find a minimum spanning tree T for (G, c).
- M \leftarrow min cost perfect matching of odd degree nodes in T.
- G' \leftarrow union of spanning tree and matching edges.

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP.

- Find a minimum spanning tree T for (G, c).
- M \leftarrow min cost perfect matching of odd degree nodes in T.
- G' \leftarrow union of spanning tree and matching edges.
- E \leftarrow Eulerian tour in G'.

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP.

- Find a minimum spanning tree T for (G, c).
- M \leftarrow min cost perfect matching of odd degree nodes in T.
- G' \leftarrow union of spanning tree and matching edges.
- $E \leftarrow$ Eulerian tour in G'.
- H \leftarrow short-cut version of Eulerian tour in E.

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP. **Proof.** Let H* denote an optimal tour. Need to show c(H) \leq 1.5 c(H*).

- $c(T) \le c(H^*)$ as before.
- $C(M) \leq \frac{1}{2} C(\Gamma^*) \leq \frac{1}{2} C(H^*)$.
 - second inequality follows from $\Delta\text{-inequality}$
 - even number of odd degree nodes
 - Hamiltonian cycle on even # nodes comprised of two matchings

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP. Proof. Let H* denote an optimal tour. Need to show c(H) \leq 1.5 c(H*).

- $c(T) \le c(H^*)$ as before.
- $c(M) \leq \frac{1}{2} c(\Gamma^*) \leq \frac{1}{2} c(H^*).$
- Union of MST and and matching edges is Eulerian.
 - every node has even degree
- Can shortcut to produce H and $c(H) \le c(M) + c(T)$.

Load balancing input.

- m identical machines.
- n jobs, job j has processing time p_i.

Goal: assign each job to a machine to minimize makespan.

- If subset of jobs S_i assigned to machine i, then i works for a total time of $T_i = \sum_{j \in S_i} p_j$.
- Minimize maximum T_i.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length $p_j \ge 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length $p_j \ge 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.

Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S \subseteq X such that $\sum_{a \in S} a = \sum_{a \in X \setminus S} a$.

2-LOAD-BALANCE: Given a set of jobs J of varying length p_j , and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.

Claim. PARTITION \leq_{P} 2-LOAD-BALANCE. Proof. Let X be an instance of PARTITION.

. For each integer $x \in X$, include a job j of length $p_i = x$.

• Set
$$T = \frac{1}{2} \sum_{a \in X} a$$

Conclusion: load balancing optimization problem is NP-hard.

Greedy algorithm.

- Consider jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

• Note: this is an "on-line" algorithm.

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is at least $T^* \geq \frac{1}{m} \sum_i p_i$.

- The total processing time is $\Sigma_i p_i$.
- One of m machines must do at least a 1/m fraction of total work.

Lemma 2. The optimal makespan is at least $T^* \ge \max_i p_i$.

• Some machine must process the most time-consuming job.

Lemma 1. The optimal makespan is at least $T^* \ge \frac{1}{m} \sum_j p_j$. Lemma 2. The optimal makespan is at least $T^* \ge \max_j p_j$.

Theorem. Greedy algorithm is a 2-approximation. Proof. Consider bottleneck machine i that works for T units of time.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is $T_i p_i \implies T_i p_j \le T_k$ for all $1 \le k \le m$.

Lemma 1. The optimal makespan is at least $T^* \ge \frac{1}{m} \sum_j p_j$. Lemma 2. The optimal makespan is at least $T^* \ge \max_j p_j$.

Theorem. Greedy algorithm is a 2-approximation. Proof. Consider bottleneck machine i that works for T units of time.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is $T_i p_j \implies T_i p_j \le T_k$ for all $1 \le k \le n$.
- Sum inequalities over all k and divide by m, and then apply L1.
- Finish off using L2.

$$T_i = (T_i - p_j) + p_j$$

 $\leq T^* + T^*$
 $= 2T^*$

$$T_{j} - p_{j} \leq \frac{1}{m} \sum_{k} T_{k}$$
$$= \frac{1}{m} \sum_{k} p_{k}$$
$$\leq T^{*}$$

Is our analysis tight?

- Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
 - m machines, m(m-1) jobs with of length 1, 1 job of length m
 - 10 machines, 90 jobs of length 1, 1 job of length 10

1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	Machine 2
3	13	23	33	43	53	63	73	83	Machine 3
4	14	24	34	44	54	64	74	84	Machine 4
5	15	25	35	45	55	65	75	85	Machine 5
6	16	26	36	46	56	66	76	86	Machine 6
7	17	27	37	47	57	67	77	87	Machine 7
8	18	28	38	48	58	68	78	88	Machine 8
9	19	29	39	49	59	69	79	89	Machine 9
10	20	30	40	50	60	70	80	90	Machine 10

List Schedule makespan = 19

Is our analysis tight?

- Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
 - m machines, m(m-1) jobs with of length 1, 1 job of length m
 - 10 machines, 90 jobs of length 1, 1 job of length 10

1	11	21	31	41	51	61	71	81	10	Machine 1
2	12	22	32	42	52	62	72	82	20	Machine 2
3	13	23	33	43	53	63	73	83	30	Machine 3
4	14	24	34	44	54	64	74	84	40	Machine 4
5	15	25	35	45	55	65	75	85	50	Machine 5
6	16	26	36	46	56	66	76	86	60	Machine 6
7	17	27	37	47	57	67	77	87	70	Machine 7
8	18	28	38	48	58	68	78	88	80	Machine 8
9	19	29	39	4 9	59	69	79	89	90	Machine 9
91							Machine 10			

Optimal makespan = 10

Load Balancing: State of the Art

What's known.

- **2**-approximation algorithm.
- **3/2-approximation algorithm:** homework.
- 4/3-approximation algorithm: extra credit.
- PTAS.