
Space Complexity of Reachability Testing in Labelled
Graphs∗

Vidhya Ramaswamy† Jayalal Sarma† K. S. Sunil†

December 15, 2016

Abstract

Fix an algebraic structure (A, ∗). Given a graph G = (V,E) and the labelling
function φ (φ : E → A) for the edges, two nodes s, t ∈ V , and a subset F ⊆ A, the
A-Reach problem asks if there is a path p (need not be simple) from s to t whose
yield (result of the operation in the ordered set of the labels of the edges constituting
the path) is in F . On the complexity frontier of this problem, we show the following
results.

• When A is a group whose size is polynomially bounded in the size of the graph
(hence equivalently presented as a multiplication table at the input), and the
graph is undirected, the A-Reach problem is in L. Building on this, using a
decomposition in [4], we show that, when A is a fixed quasi-group, and the graph
is undirected, the A-Reach problem is in L. In a contrast, we show NL-hardness
of the problem over bidirected graphs, when A is a matrix group over Q, or an
aperiodic monoid.

• As our main theorem, we prove a dichotomy for graphs labelled with fixed ape-
riodic monoids by showing that for every fixed aperiodic monoid A, A-Reach
problem is either in L or is NL-complete.

• We show that there exists a monoid M , such that the reachability problem in gen-
eral DAGs can be reduced to A-Reach problem for planar non-bipartite DAGs
labelled with M . In contrast, we show that if the planar DAGs that we obtain
above are bipartite, the problem can be further reduced to reachability testing in
planar DAGs and hence is in UL.

∗A preliminary version of this paper has been accepted for presentation at the 11th International Con-
ference on Language and Automata Theory and Applications (LATA 2017).
†Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai,

India. Email : vidhya0794@gmail.com,jayalal@cse.iitm.ac.in,sunil@cse.iitm.ac.in.

1

1 Introduction

The reachability problem on combinatorial structures has been fundamental and well studied
in complexity theory. A most striking example of this is the graph reachability problem which
asks, given a directed graph G and two special vertices s and t whether there is a path from
s to t in G or not. The problem is known to be NL-complete for directed acyclic graphs.
Deterministic logspace algorithms are known for restricted classes of graphs - when each
component of the directed graph is Eulerian[19], or the graph has bounded treewidth [9].
Reachability for planar graphs is in unambiguous1 logspace [6]. See [1] for a survey.

Word problems over algebraic structures also play a fundamental role in complexity
theoretic characterizations. Fix an algebraic structureA with an associated binary operation,
and a subset F ⊆ A. Given a w ∈ A∗, test if the sequences of elements and operations among
them is in F or not. An important milestone in this direction is the dichotomy result due
to Barrington and Thérein[3] classifying the complexity of the word problems over a fixed
monoid structure: if the monoid M contains at least one non-solvable group, then the word
problem can be shown to be complete for NC1 (under AC0 projections) and if all groups
are solvable then it characterizes ACC0. Chandra et al [8] showed that if there are no non-
trivial groups then it characterizes the class AC0. It is also known that word problems over
groupoids characterize LogCFL[5].

Reachability on labelled graphs is a natural generalization of the graph reachability prob-
lem and the word problem on algebraic structures. A graph G is said to be labelled if the
edges are assigned labels from an underlying set S. When this set also equipped a binary
operation ∗ : S × S → S, the reachability problem asks to test, given the graph G and two
vertices s and t and an element a ∈ S, if there is a path (need not be simple) from s to t
whose yield (result of the operation in the ordered set of the labels of the edges constituting
the path) is a or not. A closely related problem is that of the L-Reach problem where a
language L over the alphabet Σ, given a graph G(V,E), two vertices s and t and a labelling
function φ : E → Σ, test if there is a path from s to t whose yield (the concatenation of the
labels in the ordered set of edges constituting the path) belongs to the language L. In [15],
characterizations of the language reachability problem with respect to languages classes and
graph classes were obtained.

In this work, we study the problem when the labels come from richer algebraic structures.
When the structure A is a groupoid (equivalently a case of L-Reach problem when the
language is restricted to be a context-free language) this problem has been used in inter-
procedural slicing and inter-procedural data flow analysis [12, 20, 21]. On the complexity
frontier, it is easy to observe that the A-Reach problem is always harder than the word
problem over A, and is harder than the graph reachability problem (under logspace many-
one reductions).

Our Results: We start with an observation that the problem of testing reachability on
labelled graphs over semigroups can be reduced to testing reachability on an associated

1A language is said to be in unambiguous logspace if there exists a non-deterministic logspace Turing
machine M such that for all inputs x, M has at most one accepting computation.

2

directed graph (called product graphs - see section 3.1). From a complexity-theoretic view
point, this motivates the study of the labelled reachability problem. More specifically, in
order to show that for a graph class the reachability problem is in L, it is sufficient to reduce
it to the reachability problem in a labelled graph such that reachability in the product graph
can be solved in L. We prove several properties of this directed graph and explore graph
classes and algebraic structures for which the A-Reach problem is in L. In particular, we
study this for undirected graphs (for which reachability problem is in L[18]) and show:

3

Logspace Upper Bounds for Polynomially Growing Groups: We show that when A is a group,
such that |A| = O(nc), where n is the size of the graph, and c is a constant (hence
equivalently presented as a multiplication table at the input), and the graph is undi-
rected, the A-Reach problem is L-complete.

NL-hardness for Monoids and Matrix Groups: In contrast, we observe that there exists a
fixed monoid A such that A-Reach problem for undirected graphs is NL-complete.
Working over a more structured labelling set, we show NL-hardness of the problem over
bidirected graphs2, when A is a finitely generated subgroup of GLk(Q) (for k ≥ 2)- the
group of invertible k × k matrices with rational entries.

(NL vs L) Dichotomy for Aperiodic Monoids: We show a dichotomy for aperiodic monoids: for
any fixed aperiodic monoid A, the A-Reach problem for undirected graphs is either
NL-complete or is in L.

Logspace Upper Bounds for Quasigroups: When A is a fixed quasigroup, the A-Reach prob-
lem is L-complete.

Logspace Upper Bounds for Treewidth k Graphs labelled with Monoids: When the graph has
bounded treewidth, for any fixed monoid A the A-Reach problem for undirected
graphs is L-complete.

While the general DAGReach problem is complete for NL, the reachability problem over
planar DAGs is known to be in UL[6]. We show that DAGReach can be reduced to A-
Reach over planar DAGs when A is a specific monoid M . Tightly complementing this, we
show that the instances of labelled graph reachability problem obtained in this reduction,
with the additional restriction that the graph is bipartite, can be solved in deterministic
logspace. Moving towards groups, we show that DAGReach can be reduced to A-Reach
over planar graph when A is a specific exponentially growing group.

Related Work: Group labelled graphs have been extensively studied in the literature as a
generalization of signed graphs (see [11]) with the aim to extend the graph minor theory to
group labelled graphs over a fixed finite Abelian group. An important comparison that we
make is with the results by Kawase et al[14], where they consider the reachability problem
in group labelled graphs: to check if there is a simple path from s to t in the given group
labelled graph so that the yield of the path is a given element α. It is observed in [14] that
the problem is NP-complete over Z, since the undirected Hamiltonian path problem reduces
to this problem by replacing each edge with a pair of two arcs of opposite directions with
label 1 and letting α = n− 1. Huynh[13] showed the problem is polynomial time solvable if
the group is a fixed Abelian group.

2Directed graph (G(V,E)) such that ∀vi, vj ∈ V, (vi, vj) ∈ E =⇒ (vj , vi) ∈ E. However, φ(vi, vj) need
not be equal to φ(vj , vi). To complement this, we observe (see Corollary 1) that the logspace upper bound
for groups whose size is polynomially bounded in terms of input, holds even for bidirected graphs.

4

However, we point out two important differences in our setting. Firstly, in our setting,
the problem does not look for simple paths from s to t, and hence the NP-completeness result
does not apply. Secondly, for the case of undirected graphs with labelling from a group, the
above mentioned results (including [14]) assume that if an edge (u, v) in the graph is labelled
with g, the edge (v, u) is labelled with g−1. In our setting, this is not the case - if an edge
in the undirected graph is labelled g ∈ G, then the edge contributes to the final product as
g itself irrespective of the direction that is taken by the path through the edge. Thus, the
above results of the problem do not apply in our case.

2 Preliminaries

In this section, we list notations and preliminaries used in the paper. For standard notations
and definitions of complexity classes, we refer the reader to the textbook[2]. We now define
some graph theoretic terminologies required. A tree decomposition of a graph G = (V,E)
is a tree T = (I, F) where each vertex i ∈ I has a label Xi ⊆ V with

⋃
i∈I Xi = V such

that: for any edge (u, v) ∈ E, there exists an i ∈ I with u, v ∈ Xi and, for any v ∈ V , the
vertices containing v in their label form a connected subtree of T . Given a tree decomposition
T = (I, F), the width of the decomposition is maxi∈I(|Xi|)− 1. The treewidth of a graph G
is the minimum k such that G has a tree decomposition of width k.

We define the algebraic structures that we refer to in the paper. Let A be an algebraic
structure where ∗ is the binary operator. If ∗ has the closure property, A is said to be a
groupoid. Groupoids for which ∗ is associative are called semi-groups. Semi-groups which
have an identity element e (that is, ∀a ∈ A, ae = ea = a)3 are called monoids. Groups are
monoids for which every element has an inverse with respect to ∗. That is, ∀a ∈ A,∃ b ∈ A
such that ab = ba = e. In general, a monoid M is said to be divided by another monoid
N if there exists a surjective morphism from a submonoid of M to N [22]. Quasigroups
are a generalization of groups in a different direction; the operation in a quasigroup need
not be associative but they are left and right cancellative (that is, ab = ac ⇒ b = c and
ab = cb⇒ a = c).

A-Reach Problem: Let A = {(A, ∗)} be an infinite collection of algebraic structures where
each (A, ∗) is the algebraic structure with set of elements [k] = {1, 2, . . . , k} and the binary
operation ∗ defined over A. Let F be a subset of A. Consider a graph G = (V,E) and a
function φ : E → A. We extend the definition of φ to the yield of a path p = v0, v1, . . . , vm,
as φ(p) =

∏m−1
i=0 φ((vi, vi+1)) where product is the operation ∗ on the concatenated labels of

p.

Definition 1. (A-Reach) Fix an algebraic structure A. The A-Reach problem asks:
given a graph G on n vertices and the labelling function φ for the edges, two nodes s, t and

3We do not use the operator, whenever it is clear from the context. We use 1 and e interchangeably for
the identity element.

5

accepting set4 F ⊆ A, test whether there is a path p (need not be simple) from s to t such
that φ(p) ∈ F .

For studying the variants of the problem, we introduce the following notation: A-
GReach refers to the A-Reach problem defined over the algebraic structure A(Monoid,
Aperiodic Monoid, Commutative Aperiodic Monoid, Group, Quasigroup and Semigroup)
and the input graphs are restricted to the class G(Tree, Planar, DAG, k-Treewidth, Undi-
rected(U) and Bidirected(B)).

Aperiodic Monoids and Quasigroups: The monoid class DA is defined as the class
of monoids that satisfy (stu)nt(stu)n = (stu)n, for some n, for all s, t, u in the monoid. A
language L = A∗0a1A

∗
1a2 · · · akA∗k is said to be unambiguous if for all w ∈ L, there is a unique

factorization w = w0a1w1a2 · · · akwk, such that wi ∈ A∗i for i = 0, 1, . . . , k. Pin et al [16]
showed the following characterization:

Proposition 1. [16] L ⊆ A∗ is recognized by a monoid in DA if and only if L is a disjoint,
finite union of unambiguous products A∗0a1A

∗
1 · · · akA∗k, where Ai ⊆ A, ai ∈ A, for i ∈ [k].

The following was proved by Raymond et al [17, 22].

Proposition 2. ([17, 22]) Let M be a finite, non-commutative monoid. Then M is divided
by one of the following aperiodic monoids.

1. BA2, the syntactic monoid5 of (c∗ac∗bc∗)∗.

2. U , the syntactic monoid of ((b+ c)∗a(b+ c)∗b(b+ c)∗)∗

3. The syntactic monoid of c∗ac∗bc∗.

4. The syntactic monoid of c∗aA∗ or A∗ac∗.

Moreover, if M 6∈ DA, M is divided by either BA2 or U .

In [4], Beaudry et al define a comb as a left to right bracketing over a word, and claim
that any bracketing over the word, for a quasigroup, can be viewed as a finite tree with each
leaf as a comb. We state this as the following:

Proposition 3. ([4]) Let q1q2 · · · qn be a word over a quasigroup Q. If there is a bracketing
such that q1q2 · · · qn evaluates to q under that bracketing, then there is a bracketing with at
most 8|Q| combs which yields q.

4If the size of A is fixed (or even polynomially bounded) we will assume that |F | = 1. We also assume
that the accepting element a is given as a part of the input. All our results except Theorem 8 hold even if
a is fixed apriori.

5We denote the elements of this monoid by {1, α, β, αβ, βα, 0}

6

3 Logspace Upper Bounds

In this section, we explore the algebraic structure of the label set and graphs which enable
us to solve the problem in L. As our main tool, we introduce the product graph, which is
inspired by that of product graphs defined in the context of L-Reach problem by Yannakakis
et al[23].

3.1 Product Graph and Properties

Let G = (V,E) be a labelled graph, with a labelling φ : E → M , where M is a semigroup.
We construct a new directed graph G′ = (V ′, E ′) as follows. We set V ′ = V ×M , and define
the edge set E ′ as {((v1,m1), (v2,m2))|(v1, v2) ∈ E and m1φ(v1, v2) = m2}. We show the
following proposition.

Proposition 4. For s, t ∈ V , m ∈M , there is a path p from s to t in G such that φ(p) = m
if and only if there is a path from (s, e) to (t,m) in G′.

Proof. Suppose we have a path in G from s to t yielding m, say s = v1, v2, . . . , vk = t.
By construction, G′ has edges from (vi,mi) to (vi+1,miφ(vi, vi+1)). In particular, we have
edges from (s, e) to (v2, φ(s, v2)), (v2, φ(s, v2)) to (v3, φ(s, v2)φ(v2, v3)) and so on. Since∏k−1

i=1 φ(vi, vi+1) = m, this gives us a path from (s, e) to (t,m). Suppose we have a path
from (s, e) to (t,m) in G′. Let this path be (s = v1, e = m1), (v2,m2), (v3,m3), . . . , (vk =
t,mk = m). By construction, s = v1, v2, v3, . . . vk = t is a path in G. Also, for all i,
miφ(vi, vi+1) = mi+1. Hence,

∏k−1
i=1 φ(vi, vi+1) = m.

Similarly, we can argue that a path from (s,m1) to (t,m2) in G′ exists if and only if there
is a path from s to t in G, yielding m such that m1m = m2.
NL Upper Bounds: Since the above proposition holds even if G has cycles in it, this implies
that SemiGroup-Reach is in NL. In later sections, we show more properties of the product
graph. The product graph of an undirected graph labelled with a group is Eulerian. See
Theorem 2. Also, the product graph of a graph with a bounded treewidth (labelled with a
finite monoid) also has bounded treewidth. See Theorem 1.

If the algebraic structure is non-associative, we have to deal with all possible bracket-
ings. Let us denote the set of all elements obtained by different bracketings of a word w by
Yield(w). Caussinus et al [7] showed that languages recognized by finite quasigroups are reg-
ular. Hence, there exists a morphism ψ from any quasigroup Q to a monoid M , and subsets
Q′ ⊆ Q,M ′ ⊆M such that for any word w ∈ Q∗, Yield(w)∩Q′ 6= φ if and only if ψ(w) ∈M ′.
Hence, the product graph construction shows that Quasigroup-Reach can be solved in NL.

Original Graph vs Product Graph while Group Labelling: It is a natural question
to ask when the original graph appears as a subgraph in the product graph. We answer this
for group labelled graphs.

Let G = (V,E) be a directed acyclic graph, labelled with a group H, via labelling φ. Let
the product graph be G′. Suppose G is a tree. We show that G′ contains a copy of G. Let
us start with any vertex v. For any g ∈ H, (v, g) is in G′. Now, consider all neighbors of

7

v in G. If (v, u) is an edge in G, we have a corresponding edge ((v, g), (u, gφ(v, u))) in G′.
Similarly, if (u, v) is an edge in G, ((u, gφ(u, v)−1), (v, g)) is an edge in G′. Continuing in a
breadth first search manner, we get a copy of G in G′. Hence, it is easy to see that if G is a
tree, G′ contains G as a subgraph. To extend this to general DAGs, we need to understand
when (undirected) cycles of G appear in G′. If all cycles (undirected) of G appear in the
product graph, G also appears in the product graph.

Let C = v1, v2, . . . vk be an undirected cycle in G. We define ψ(vi, vj) as follows:
ψ(vi, vj) = φ(vi, vj) if (vi, vj) ∈ E and φ(vj, vi)

−1 if (vj, vi) ∈ E.

Proposition 5. G appears as a subgraph in G′ if and only if for each cycle C = v1, v2, . . . vk
in G,

∏k
i=1 ψ(vi, vi+1) = ψ(vk, v1)

−1

Proof. It is sufficient to prove the following claim: C is present inG′ if and only if ψ(v1, v2)ψ(v2, v3) · · ·ψ(vk−1, vk)ψ(vkv1) =
1, where 1 is the identity element of H. We argue both implications. The forward direction
follows from the definition of G′. Indeed, the product graph has edges connecting (vi, g)
and (vi+1, gψ(vi, vi+1)), for all i ∈ {1, 2, . . . k − 1}, g ∈ H. Hence, the product graph has the
(undirected) path

(v1, g), (v2, gψ(v1, v2)), (v3, gψ(v1, v2)ψ(v2, v3)), . . . , (vk, g
k−1∏
i=1

ψ(vi, vi+1)).

It also has an edge between (vk, g
∏k−1

i=1 ψ(vi, vi+1)) and (v1, g(
∏k−1

i=1 ψ(vi, vi+1)ψ(vk, v1) = g).
Hence, the cycle exists in G′ for each g ∈ H.

For the reverse direction, suppose ψ(v1, v2)ψ(v2, v3) . . . ψ(vk−1, vk)ψ(vkv1) = h. Now,
for every g ∈ H, consider the vertex (v1, g). As seen earlier, we have an (undirected) path
(v1, g), (v2, gψ(v1, v2)), (v3, gψ(v1, v2)ψ(v2, v3)), . . . (vk, g

∏k−1
i=1 ψ(vi, vi+1)). The last edge, how-

ever is between (vk, g
∏k−1

i=1 ψ(vi, vi+1)) and (v1, gh), not (vk, g
∏k−1

i=1 ψ(vi, vi+1)) and (v1, g).
Since this is true for all g, this cycle never appears in G′.

3.2 Bounded Treewidth and Monoid Labelling

Das et al [9] showed that reachability in bounded treewidth graphs can be tested in L. We
show that, when a bounded treewidth graph G is labelled with a constant sized monoid M ,
the product graph of G still has constant treewidth, and hence, reachability in the labelled
graph is also in L.

Theorem 1. Monoid-k-TreewidthReach is in L.

Proof. Let M be the given finite monoid, and G = (V,E) be the given graph, with labelling
φ : E → M . Since the treewidth of G is given to be a constant k, we can compute
a tree decomposition T of G in L [10]. Let G′ be the product graph of G. We give a
tree decomposition T ′ for G′ such that the width is (k + 1)|M | − 1. Since k and M are
constants, the treewidth of G′ is a constant. We create T ′ as follows. For each node n =

8

{vi0 , vi1 , . . . , vik} ∈ T , we create node n′ = {(vij ,m)|0 ≤ j ≤ k,m ∈ M}. For each edge
(ni, nj) ∈ T , we add edge (n′i, n

′
j) ∈ T ′. We notice that T ′ is a tree, and the size of each

node n′ is a constant. We need to show that for each edge (vi,m), (vj,m
′) ∈ E ′, there exists

a node n′p, such that (vi,m), (vj,m
′) ∈ n′p. Since (vi, vj) ∈ E, there exists an n` such that

vi, vj ∈ n`. Thus, by our definition of T ′, (vi,m), (vj,m
′) ∈ n′`. The last condition for T ′ to

be a constant treewidth decomposition of G′ is that if nodes n′i and n′j contain vertex (v,m),
all nodes in the path between n′i and n′j should also contain (v,m). This is immediately
true, as all nodes in the path between ni and nj in T contain v, and hence, in T ′, they
contain (v,m). Hence, G′ has constant treewidth, and connectivity in G′ can be tested in L
[9].

3.3 Group Labelled Graphs

Now we show that the A-Reach problem can be solved in L, when the graph is undirected,
and labelled with elements of a group, when the group size is polynomial in the size of the
graph.

Theorem 2. Group-UReach is L-complete.

Proof. To show that Group-UReach is in L, we reduce the problem to Reach on Eulerian
graphs, by showing that the product graph G′ is Eulerian. From [19] we know that this
problem can be solved in L and hence, this is sufficient. To solve this in L, Reingold et
al [19] observed (without proof) that, when each component of the given directed graph
is Eulerian, a directed edge can be replaced by an undirected edge, and this does not alter
connectivity of the graph. For completeness, we include the proof of this in the appendix
A.1.
To show that G′ is Eulerian, consider an edge (vi, vj) in G. Let φ((vi, vj)) = g. Each vertex
(vi, gk), is hence connected to (vj, gkg). We notice that for each k, gkg defines a different
element in H. Similarly, each vertex (vj, g`) is adjacent to (vi, g`g). Hence, the edge (vi, vj)
in G corresponds to 2|H| edges in G′, and these edges are such that each vertex of the form
(vi, gk) and (vj, g`) each have an indegree of 1 and an outdegree of 1. Since each edge in G
increases the indegree and outdegree of any vertex in G′ by the same amount, G′ is Eulerian.
Using the result from [19] we see that Group-UReach is in L. To show hardness, we see
that Group-UReach is the undirected reachability problem when the underlying group is
trivial. Hence, Group-UReach is complete for L.

Observing that, for any g ∈ G, gkg, is a different element for all k, and that each edge
(vi, vj) in G gives rise to one incoming and one outgoing edge for each (vi, gk) holds even
when the graph is bidirected. Hence, we conclude the following corollary.

Corollary 1. Group-BReach is L-complete.

9

3.4 Logspace algorithm for Quasigroup-UReach

We notice from the proof of Theorem 2, that the product graph G′ is Eulerian if the H has
right cancellation, that is, if ab = cb ⇒ a = c. Since this holds for quasigroups as well, the
constructed graph is Eulerian when H is a quasigroup. However, since evaluation of a word
is over all possible bracketings, checking for a path from (s, e) to (t, h) is no longer sufficient
(since this would correspond to only checking a left to right bracketing). We use Proposition
3 to prove the below theorem.

Theorem 3. Quasigroup-UReach is L-complete.

Proof. Let G = (V,E) be the given graph, labelled with a quasigroup Q, via a mapping φ.
Let s, t ∈ V and q ∈ Q. We denote the all possible bracketings among 8|Q| combs by T . Let
k = 8|Q|.

The main idea of the algorithm is to break a walk from s to t into finitely many subwords,
evaluate each subword as a comb, and check if any bracketing over results of the comb gives
us the required element.

Input: Graph G = (V,E), Quasigroup Q, mapping φ : E → Q, s, t ∈ V, q ∈ Q
Output: Accept, if there exists a walk from s to t yielding q and Reject,

otherwise.
Notation: k = 8|Q|, G′ is the product graph of G.
T is the set of all possible bracketings between 8|Q| combs.
for (q1, q2, . . . , qk) ∈ Qk do

for (v1, v2, . . . , vk−1) ∈ V k−1 do
Initialize v0 = s; vk = t;
if ∀i there is a path from (vi−1, e) to (vi, qi) in G′ then

if ∃τ ∈ T such that τ(q1, q2, . . . , qk) = q then
Accept

end

end

end

end
Reject

Algorithm 1: Deterministic Logspace Algorithm for Quasigroup-UReach
We claim that above algorithm solves the problem in L, when Q is finite. This follows

since k is finite, implying V k−1 is polynomial in the size of the input, and Qk and T are finite.
Since the algorithm runs over all possible values of (q1, q2, . . . , qk), we see that it checks all
possible values the k combs can take. By running over (v1, v2, . . . , vk−1), it also verifies if
there are paths in the graph evaluating to corresponding quasigroup element. Moreover,
the algorithm also verifies that there is a bracketing between (q1, q2, . . . , qk) which yields q.
From Proposition 3, we know that this gives us all possible evaluations of the word. Since
the algorithm only accepts when there is a path and a bracketing which yields q, the other
direction follows. Hence, the algorithm is correct.

10

To show hardness, we notice that Quasigroup-UReach is equivalent to testing reach-
ability in undirected graphs when the quasigroup is trivial. Hence, Quasigroup-UReach
is complete for L.

4 Symmetrizing by Labelling

In this section, we explore the question of whether we can reduce (in logspace) reachability
over directed acyclic graphs to labelled reachability over undirected paths. We call this task
as symmetrization by labelling. We first observe that symmetrization can be done when the
algebraic structure is a specific aperiodic monoid or a specific, finitely generated, matrix
group over Q.

4.1 Labelling with Aperiodic Monoids

We give a labelling with a non-commutative aperiodic monoid, which makes the A-Reach
problem NL-hard. In [15], Komarath et al give a labelling with (ab)∗, for all directed acyclic
graphs. We show that the syntactic monoid of this language is aperiodic. We give the
multiplication table of the monoid below:

0 1 α β αβ βα
0 0 0 0 0 0 0
1 0 1 α β αβ βα
α 0 α 0 αβ 0 α
β 0 β βα 0 β 0
αβ 0 αβ α 0 αβ 0
βα 0 βα 0 β 0 βα

To see that it is aperiodic, we verify that for all a in the monoid, a3 = a2. Hence, this monoid
is aperiodic with index 2. We also observe that the monoid is non-commutative.

4.2 Labelling with a Finitely Presented Group

In this subsection, we show that for matrix groups (even of size 2) with entries from Q,
symmetrization can be done. In section 3, we saw that if symmetrization is done when
the algebraic structure is either a polynomially growing group or a fixed size quasigroup, it
implies that NL = L.

Theorem 4. A is the group of invertible k × k matrices with rational entries. A-BReach
is NL-hard.

11

Proof. We first show this for k = 2. We work over the following subgroup, H =

{[
1 α
0 1

]
: α ∈ Z

}
.

This group is finitely generated, since

[
1 1
0 1

]
and

[
1 −1
0 1

]
generate H. We define ele-

ment a =

[
1 1
0 1

]
. Given an instance (G(V,E), s, t) of Reach we construct an instance

(G′(V ′, E ′), H, s, t, e) of Group-BReach as follows. For every edge (vi, vj) ∈ E, we add 2
edges (vi, vj) and (vj, vi) to E ′. We label edge (vi, vj) with e, and edge (vj, vi) with a.

We now argue correctness of this construction. Suppose there was a directed path from
s to t in G. Let this path be v0 = s, v1, v2, . . . , vk = t. Now, in G′, we have the same path.
Moreover, since each edge within the path is labelled with e, the entire path multiplies out
to the identity element. Thus, we have a path from s to t in G′ whose yield is identity.

Suppose there is no path from s to t in G, but there is a path from s to t in G′ which
yields identity. Let this path be s = v0, v1, v2, . . . vm = t. Since this path does not exist in
G, there must be an i such that (vi, vi+1) 6∈ E. Hence, the label on this edge must be a.
We can have several edges like this in the path. Thus, the yield of the path is ak, for some
k ≥ 1. Since the path yields identity, we have[

1 1
0 1

]k
=

[
1 0
0 1

]

However, we see that ak =

[
1 k
0 1

]
. Hence, the yield cannot be identity, and there is no path

from s to t in G′ yielding identity.
To extend this to k × k matrices, we notice that we can embed a into a k × k matrix b

by setting

b[i, j] =

a[i, j], if i ≤ 2, j ≤ 2
1, if i, j > 2, and i = j
0, if i, j > 2, and i 6= j

The forward direction of the proof is easy to see. The reverse direction follows from the fact
that bk can never be identity, for k > 1.

5 A Dichotomy Theorem for Aperiodic Labelling

In this section, we prove the main result of the paper, which is the dichotomy theorem for
finite aperiodic monoids with respect to the reachability in labelled graphs. We first settle
the complexity in the case of commutative monoids. For non-commutative monoids, we show
the dichotomy using the classification of aperiodic monoids by [17, 22] (see Proposition 2).
We show deterministic logspace algorithms when the monoid is in DA and for the other cases
(when the monoids are divided by U or BA2), we show that the reachability is complete for
NL.

12

5.1 Logspace algorithm for CommutativeAperiodic-Ureach

Let M = {1, α1, α2, . . . , αk} be a commutative aperiodic monoid.

Theorem 5. Let G be an undirected graph labelled with elements from M , a commutative
aperiodic monoid. Checking if there is a path from s to t which evaluates to an element α
can be done in L.

Proof. We notice that any element α in M can be thought of as several tuples of integers
(n1, n2, . . . , nk), such that α = αn1

1 α
n2
2 · · ·α

nk
k . Hence, checking if a path evaluates to par-

ticular element is equivalent to checking if the the number of occurrences of each element
in each path is one of the tuples associated with the element. We also know that M is
aperiodic with index q (∀α ∈ M,αq+1 = αq). This implies that, if α = αn1

1 α
n2
2 · · ·α

q
i · · ·α

nk
k ,

then α = αn1
1 α

n2
2 · · ·α

q+1
i · · ·αnk

k . Hence, checking for tuples where each value is bounded by
q is sufficient.

Let G = (V,E) be the given graph, labelled with a commutative aperiodic monoid M , via
a mapping φ. Let s, t ∈ V and (n1, n2, . . . , nk) be a tuple, where ni ≤ q,∀i. Let N =

∑
i ni.

The algorithm is as follows:

Input: Graph G = (V,E), Aperiodic Commutative Monoid M = {α1, α2, · · · , αk}
with index q, T = (n1, n2, . . . , nk), mapping φ : E →M , s, t ∈ V . Let
N = n1 + n2 + · · ·+ nk

Output: Accept, if there exists a walk from s to t whose yield is T Reject,
otherwise

for (u1, v1), (u2, v2), . . . , (uN , vN) in EN do
if Labels of (u1, v1) . . . (uN , vN) is T then

v0 = s;uk+1 = t;
P = {e} ∪ {αi|ni = q}
Let G′ be G with edges labelled only from the set P .
if ∀i there is a path from vi to ui+1 in G′ then

Accept
end

end

end
Reject

Algorithm 2: CommutativeAperiodic-UReach in in L
We see that the algorithm uses only logspace, since N is at most qk.
Correctness: The algorithm iterates over all possible edges, such that the labels of the
edges give the tuple. For each set of edges, it verifies if there is a path between these edges,
which uses only those labels which have crossed the index (captured by set P). This ensures
that the resulting path also evaluates to the same element.

For the reverse direction, since every graph accepted by this algorithm has a path whose
tuple is of the form (n′1, n

′
2, . . . , n

′
k), where n′i = ni if ni < q, and n′i ≥ ni if ni = q. Hence,

the elements that both these tuples evaluate to must be the same.

13

5.2 Logspace algorithm for DA-Ureach

We give a logspace algorithm to solve DA-UReach, when the graph is labelled with letters
from an unambiguous concatenation L = A∗0a1A

∗
1a2 · · · akA∗k, where A is the alphabet, Ai ⊆

A, ai ∈ A,∀i. From Proposition 1, this is sufficient to show that DA-UReach can be solved
in logspace.

Theorem 6. Let G be an undirected graph labelled with elements from an alphabet A. Let s
and t be given vertices in G. Let L = A∗0a1A1a2A

∗
2 · · · akA∗k be an unambiguous concatenation,

where Ai ⊆ A, ai ∈ A, ∀i. Checking if there is a path from s to t, whose yield is in L can be
done in logspace.

Proof. Let G = (V,E) be the given graph, labelled with an alphabet A, via a mapping φ.
Let L = A∗0a1A

∗
1a2 · · · akA∗k. Let s, t ∈ V . The algorithm does the following:

Input: Graph G = (V,E), Alphabet A, L = A∗0a1A
∗
1a2 · · · akA∗k, mapping φ : E → A,

s, t ∈ V
Output:
Accept, if there exists a walk from s to t whose yield is in L
Reject, otherwise
for (u1, v1), (u2, v2), . . . , (uk, vk) in Ek do

if ∀i, φ(ui, vi) = ai then
v0 = s
uk+1 = t
Let Gi be G with only the edges labelled with elements from Ai.
if ∀i, there is a path from vi to ui+1 in Gi then

Accept
end

end

end
Reject

Algorithm 3: Determinsitic Logspace Algorithm for DA-UReach
Since k is finite, we see that the algorithm chooses all possible edges for the ai’s, and check

if paths between these edges are in A∗i . The algorithm uses only logspace. The correctness
of this algorithm is easy to see - if there exists a path from s to t in L, the algorithm will
eventually find it, since it runs over all possible edges. For the other direction, we notice
that the algorithm only accepts paths in L.

The above algorithm does not use the fact that the concatenation is unambiguous. We
show that, if the concatenation is not unambiguous, the resultant language is not recognized
by an aperiodic monoid. We know that any aperiodic monoid not in DA can be divided by
one of BA2 or U . We argue that the languages recognized by BA2 or U cannot be written
as an concatenation of the form A∗0a1A

∗
1a2 · · · akA∗k. Hence, no language which divides these

monoids can be written in that form.

14

Theorem 7. BA2, the syntactic monoid of L1 = (c∗ac∗bc∗)∗ and U , the syntactic monoid
of L2 = ((b + c)∗a(b + c)∗b(b + c)∗)∗ cannot be expressed as a disjoint union of products
A∗0a1A

∗
1 · · · akA∗k, where Ai ⊆ A, ai ∈ A, for i ∈ [k].

Proof. Case 1: BA2

If any of the Ai, 0 ≤ i ≤ k, contains a or b, then the A∗i can generate strings which contains
consecutive a’s or b’s. But it is clear that there is no two consecutive a’s and no two
consecutive b’s in L1. So for all i, Ai can contains only c’s and the language generated by the
product A∗0a1A

∗
1 · · · akA∗k consists only finite a’s and b’s. Hence, BA2 cannot be expressed as

the disjoint union of the products A∗0a1A
∗
1 · · · akA∗k.

Case 2: U
Similar argument holds for L2 also. If any of the Ai, 0 ≤ i ≤ k, contains a, then the A∗i
can generate strings which conatins consecutive a’s. But it is clear that there is no two
consecutive a’s in L2. So for all i, Ai must not contains a’s and the language generated
by the product A∗0a1A

∗
1 · · · akA∗k contains only finite number of a’s. Hence, U cannot be

expressed as the disjoint union of the products A∗0a1A
∗
1 · · · akA∗k.

5.3 Labelling with Non-commutative Aperiodic Monoids

We show that labelling an undirected graph with either BA2 or U makes the A-Reach
problem NL-hard. Komarath et al [15] give a labelling with (ab)∗, for all directed acyclic
graphs. This immediately gives us a labelling with BA2. We give a similar labelling with U .
We know that any non-commutative aperiodic monoid M not in DA is divisible by either
U or BA2. Hence, we have a surjective morphism from a submonoid of M to either U or
BA2. We show that labelling an undirected graph with BA2 or U makes the A-Reach
problem NL-hard. By using the morphism, we can get instances of A-Reach problem over
undirected graphs, labelled with M , which are NL-hard.

Theorem 8. A-Reach for undirected graphs is NL-complete when the graph is labelled with
U .

Proof. We give a labelling from L = (b∗ab∗bb∗)∗ (whose syntactic monoid is U) similar to
that in [15]. Let G = (V,E) be a directed acyclic graph, with vertices s and t. Without
loss of generality, we assume that s is a source (that is, it has only outgoing edges). We
create a labelled, undirected graph G′ = (V ′, E ′) as follows. Each vertex in V is copied to
V ′. Additionally, for each directed edge (vi, vj), we add a vertex mij to V ′. Edges and labels
are constructed as follows. If (vi, vj) is an edge in G, (vi,mij), (mij, vj) are edges in G′, with
(vi,mij) being labelled with b, and (mij, vj) is labelled with a. That is, we split each edge,
labelling the first half with b, and the second half with a. We also add a new vertex t′, and
add an edge (t, t′), labelled with b. We claim that there is a path from s to t in G if and
only if there is a path from s to t′ in G′, whose yield is in L.

The forward direction is easy to see. Suppose there is a path from s to t in G. Let the path
be s = vi1 , vi2 , . . . , vim = t. We claim that the path s = vi1 ,mi1i2 , vi2 ,mi2i3 , vi3 , . . . ,mim−1im , vim =

15

t, t′ exists in G′ and the yield of the path is in L. By our construction, each of these edges
exist in G′. To see the yield, we notice that since (vi` , vi`+1

) is in E, (vi` ,mi`i`+1
) is labelled

with b, whereas (mi`i`+1
, vi`+1

) is labelled with a, for all `. Hence, the yield is (ba)mb which
is in L.

Suppose we do not have a path from s to t in G, but there is a path from s to t′ in
G′ with a yield in L. Since there is no path in G, the path in G′ must have taken some
edges incorrectly. Let (u, v) be the first incorrect edge taken. That is, suppose (vi, vj) ∈ E.
The edge taken is either of the form (vj,mij) or (mij, vi). For the first, the yield up to this
point is (ba)`, for some `, and the edge is labelled with a. This results in two consecutive
a’s, which cannot be in the language, and the path in G′ cannot have any edge of this form.
For the second, we see that since (mij, ai) is the first incorrect edge taken, the edge taken
before this is (ai,mij), and both these edges can be ignored. Thus, if all incorrect edges
taken are of the second form, we can create a path from s to t in G, contradicting our initial
assumption.

6 Planarizing by Labelling

We now present a reduction from the reachability problem to A-Reach over planar DAGs
when A is the fixed monoid BA2. The same reduction can be achieved with group labelling
when the size of the groups is allowed to be exponentially growing.

6.1 By Labelling with a Fixed Monoid

We give a reduction from Reach to Monoid-PlanarReach and hence it is NL-hard.

Theorem 9. Let G = (V,E) be a graph. Let φ : E → BA2 be a labelling function. Then
Reach reduces to Monoid-PlanarReach.

Proof. Let (G(V,E), s, t) be an instance of Reach, we construct an instance of (G′(V ′, E ′), BA2, φ, s, t, αβ)
as follows. Without loss of generality, we assume G is a layered graph. We fix an embedding
of G by assigning vertices to grid points, and having the edges as straight lines between
these points. Moreover, we assume that each edge participates in only one crossing (this can
be achieved by splitting an edge wherever necessary). For each non-crossing edge (vi, vj)
in G, we add a new vertex pij, and edges (vi, pij), and (pij, vj), labelling them with α and
β respectively. For any two crossing edges (vi, vj) and (vk, v`) we add three new vertices
mijk`, qijk` and q′ijk`. We split the edge (vk, v`) as (vk,mijk`) and (mijk`, v`), with labels α and
β respectively. We split the edge (vi, vj) into four edges: (vi, qijk`), (qijk`,mijk`), (mijk`, q

′
ijk`)

and (q′ijk`, vj), labelling them with α and β alternatively. See figure 1.
We argue the correctness of the reduction. Suppose there is a path from s to t in G, we

need to argue that there is a path from s to t in G′ whose yield is αβ. We claim something
stronger: for any path in the graph G there is a corresponding path between same pair
of vertices in G′ with the yield αβ. Let path p be a path in G′ with non-crossing edges
e1, e2, . . . , ek and crossing edges f1, f2, . . . , fk. By the construction, each non-crossing edge ei

16

s t

vi

vjvk

vl

mijkl
s t

vi

vjvk

vl

α

β

β

β

β β

β
α

α

α

α

α

α

β

psi

psk

pil

pkj

plt

pjt

qijkl

q′
ijkl

β

α

α

β

Figure 1: Reach ≤ Monoid-PlanarReach

is subdivided into two adjacent edges ei1 and ei2 with label α and β respectively. Similarly
each crossing edge fi is either subdivided into two adjacent edges fi1 and fi2 with label α,
β respectively or into four adjacent edges fi1 , fi2 , fi3 and fi4 with label α, β alternatively.
Hence the yield of p will be of the form αβαβ · · ·αβ which multiplies out to αβ.

Suppose there is no path from s to t in G. We want to argue that there is no path from
s to t in G′ whose yield is αβ. Suppose there is. Since there is no path from s to t in G, this
path must have used a newly introduced vertex mijk` for some i, j, k, `. Hence it must include
at least one pair of the edges (qijk`,mijk`) and (mijk`, v`) (or (vk,mijk`) and (mijk`, q

′
ijk`)).

But the yield corresponds to such paths contains ββ (or αα) which multiplies out to 0.
Hence any path from s to t in G corresponds to a path from s to t in G′ whose yield is

αβ.

6.2 From Bipartititeness of G to Planarity of H

In a close contrast to the results in the previous section, we show that if the labels are
coming from BA2, and in particular from the set {α, β} and the graph is bipartite, then
NL = UL. That is, if the labelling had preserved bipartiteness of the graph (which we can
ensure in the reachability instances by subdividing every edge into two edges by introducing
an intermediate vertex), then NL = UL. We show this by the following theorem.

Theorem 10. Let G = (V,E) be a planar graph whose underlying undirected graph is
bipartite, and labelled with BA2 with φ : E → {α, β}. The A-Reach problem (between any
two vertices) in G can be reduced (in logspace) to testing reachability in planar DAGs and

17

hence is in UL.

Proof. We first describe the reduction. Let G = (V,E) be bipartite, such that V = V1 ∪ V2,
V1 ∩ V2 = φ, and ∀(v1, v2) ∈ E, either v1 ∈ V1, v2 ∈ V2 or v1 ∈ V2, v2 ∈ V1.

We first consider a simple case - suppose all outgoing edges of V1 are labelled with α
and all outgoing edges of V2 are labelled with β. We describe a subgraph H of the product
graph G′. Let H be the induced subgraph of VH = {(v, αβ)|v ∈ V1} ∪ {(v, α)|v ∈ V2}. We
claim that this subgraph H is exactly a copy of G itself, with every vertex v ∈ V being
mapped to (v, g), where g is either α or αβ. Suppose (v1, v2) is an edge in E. Without loss
of generality assume that v1 ∈ V1. This implies that the label on (v1, v2) is α. We show that
((v1, αβ), (v2, α)) is an edge in H. It is easy to see that (v1, αβ) and (v2, α) are vertices in VH .
By the definition of the product graph, we also have this edge in G′, and hence, in H. Thus,
all edges in G exist in H. To see the other direction, we note that since H is a subgraph
of G′, all edges in H correspond to some edge in G. Hence, an edge ((v1, g1), (v2, g2)) in H
implies that we have an edge (v1, v2) in G. Thus, we see that H is a copy of G, and all
properties of G also exist in H. In particular, H is planar.

Now, consider the case when the edges are labelled arbitrarily with either α or β. To
begin with, notice that G is the union of two bipartite, planar graphs G1 and G2, one with
all outgoing edges of V1 labelled with α and outgoing edges of V2 labelled with β, and the
other with all outgoing edges from V1 as β and outgoing edges of V2 as α. Hence, for each
of these graphs, we can construct the subgraph of the product graph, as defined above. Let
us call these subgraphs as H1 and H2, respectively. Let H be the subgraph of G′ induced by
the vertices of H1 and H2.

Planarity: We show that the graph H defined above is planar. As seen above, H1 is a copy
of G1 and H2 is a copy of G2. Since G is planar, G1 and G2 are also planar, implying H1

and H2 are planar. The product graph G′ of G cannot have edges between vertices of H1

and H2, because this is equivalent to multiplying α by itself (or αβ by β), which yields 0.
Hence, this subgraph H of G′ is planar.

Correctness: We show the correctness of the reduction now. We argue that there is a path
from a vertex s to a vertex t(6= s) in G, such that the yield is αβ if and only if there is a
path from (s, αβ) to (t, αβ) in H, for all s and t in G. Similar arguments can be made for
α, β, and βα as well.

Suppose there is a path from s to t in G, yielding αβ. Let this path be s = v0, v1, . . . , vm =
t. Since all edges in G are labelled with α or β, the yield can be αβ if and only if the first
edge is labelled with α, and subsequent edges alternate between β and α. For i, when it is
even, we know that the edge (vi, vi+1) is labelled with α, and hence, (vi, αβ), (vi+1, α) are
present in H1. Similarly, for i, when it is odd, the edge (vi, vi+1) is labelled with β, and
hence, (vi, α), (vi+1, αβ) are present in H1. Hence, the path (v0, αβ), (v1, α), . . . , (vm, αβ) is
present in H1, and hence in H.

For the other direction, suppose we have a path from (s, αβ) to (t, αβ) in H. Since H
is a subgraph of the product graph G′, any path in G′ can be traced by a path in G. This
implies that there is a path from s to t in G, yielding an element m such that (αβ)m = αβ.
The only possibilities for m in this case are αβ, and 1. Since s 6= t, and the edges are

18

labelled only with α and β, the path between s and t cannot evaluate to 1, and hence, the
path evaluates to αβ.

6.3 By Labelling with a Finitely Presented Group

Following the quest for more structure in the labelling set, in this section, we now give a
reduction from Reach to Group-PlanarReach, when labelled with a group having size
exponential in the size of the graph, thus showing that it is NL-hard.

Theorem 11. Group-PlanarReach is NL-hard when the group size is Ω(2n4
) where n is

the size of the graph.

Proof. The group we will be using is Z. Given an instance (G(V,E), s, t) of Reach, we
construct an instance (G′(V ′, E ′),Z, φ, s, t, 0) of Group-PlanarReach as follows. We fix
an embedding of G as in the proof of Theorem 9. Without loss of generality, we can assume
that G is a layered graph. To construct G′, we first order the set of crossing edges, as
e1, e2, . . . , et, where t is the number of crossing edges (t = poly(n)). For simplicity, we
assume that each edge participates in only one crossing. If not, we can always split each
edge to ensure this. For crossing edges ei = (vi1 , vi2) and ej = (vj1 , vj2), we add a new
vertex mij. We also split the edge ei into (vi1 ,mij) and (mij, vi2), labelling them 2i and −2i

respectively. Similarly, we split edge ej as (vj1 ,mij) and (mij, vj2), labelling them as 2j and
−2j respectively. We label each non-crossing edge as 0.

We now argue correctness. Suppose there is a directed path from s to t in G. Let the
edges in the path be ei1 , ei2 , . . . , eik . Now, we have a corresponding path in G′. If there
are no crossing edges in this path, all edges exist in G′, and are labelled with 0, and hence,
our path evaluates to 0. Else, we have some crossing edges. Suppose ei` is one such edge.
Now, the corresponding split edges are labelled with 2i` and −2i` , and hence, the path still
evaluates to 0. Thus, we have a path from s to t in G′, which evaluates to 0.

Assume that there is no directed path in G from s to t. We need to argue that there is no
path in G′ from s to t evaluating to 0. Suppose there is. We say that a label 2i is matched if
we use the split edges labelled with 2i and −2i in the path, and unmatched otherwise. Since
the corresponding path does not exist in G, we must have used at least one newly created
vertex mij, and included either edges (vi1 ,mij) and (mij, vj2) or (vj1 ,mij) and (mij, vi2).
Hence, we have at least one unmatched label. Let 2i be the largest (absolute) value of the
unmatched labels in the path. Without loss of generality, assume the edge labelled with 2i

is in the path. Since the path evaluates to 0, the sum of all negative unmatched labels must
be −2i, or lesser. But, this sum can be at least −2i + 1, since 2i is the largest unmatched
value. Hence, the path can never evaluate to 0, and no such path exists in G′. Since there are
O(n4) crossings in the graph, the evaluation of any path cannot be more than O(2n4

). Hence,
Reach reduces to GroupPlanarReach, when the size of the group is Ω(2n4

).

19

7 Discussion & Conclusion

In this paper, we studied the variant of reachability problem on labelled graphs when the
labels come from a set having algebraic properties. We showed a complete classification of
reachability problem on labelled graphs where the labels are from an aperiodic monoid of
fixed size. We also showed logspace upper bounds for the case when the labels are from a
group, even when the size of the group is polynomial in the size of the graph.

On the monoid labeling side, an important question is whether the classification can be
extended to non-aperiodic monoids as well. More specifically, is it true that over commutative
monoids the reachability problem on labelled graphs be solved in L?

On the complexity front, observing that reachability testing on bounded treewidth graph
can be solved in L[9], a natural question is whether we can construct a monoidM such that for
the product graph G′, there is an absolute constant c > 0, for all graphs G tw(G′) ≤ tw(G)/c.
Repeating this logarithmically many times, we can get to a product graph whose treewidth
is bounded by a constant. Notice that this would immediately imply NL = L. In this
connection it important to construct labellings where the original graph does not appear as
a subgraph in the product graph. We have given one characterization for the same when the
labelling is from a group (See Proposition 5).

References

[1] Eric Allender. Reachability problems: An update. In Third Conference on Computability
in Europe, CiE 2007, pages 25–27, 2007.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[3] David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of

nc1. J. ACM, 35(4):941–952, 1988.

[4] Martin Beaudry, François Lemieux, and Denis Thérien. Finite loops recognize exactly
the regular open languages. In 24th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 110–120, 1997.

[5] François Bédard, François Lemieux, and Pierre McKenzie. Extensions to barrington’s
m-program model. In Proceedings: Fifth Annual Structure in Complexity Theory Con-
ference, Universitat Politècnica de Catalunya, Barcelona, Spain, July 8-11, 1990, pages
200–209, 1990.

[6] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reacha-
bility is in unambiguous log-space. ACM Trans. Comp. Theory, 1(1), 2009.

[7] Hervé Caussinus and François Lemieux. The complexity of computing over quasigroups.
In Foundations of Software Technology and Theoretical Computer Science, 14th Con-
ference, December 15-17, 1994, Proceedings, pages 36–47, 1994.

20

[8] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits
and associative functions. J. Comput. Syst. Sci., 30(2):222–234, 1985.

[9] Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-space algorithms for paths
and matchings in k-trees. In 27th STACS, pages 215–226, 2010.

[10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of bodlaender and courcelle. In Foundations of Computer Science (FOCS), pages 143–
152, 2010.

[11] Jim Geelen and Bert Gerards. Excluding a group-labelled graph. J. Comb. Theory Ser.
B, 99(1):247–253, January 2009.

[12] Susan Horwitz, Thomas W. Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. on Prog.Lang. and Systems, 12(1):26–60, 1990.

[13] Tony Chi Thong Huynh. The linkage problem for group-labelled graphs. In Ph.D.
Thesis, University of Waterloo, 2009.

[14] Yasushi Kawase, Yusuke Kobayashi, and Yutaro Yamaguchi. Finding a path in group-
labeled graphs with two labels forbidden. In 42nd International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages 797–809, 2015.

[15] Balagopal Komarath, Jayalal Sarma, and K. S. Sunil. On the complexity of L-
reachability. Fundam. Inform., 145(4):471–483, 2016.

[16] Jean-Eric Pin, H. Straubing, and D. Thérien. Locally trivial categories and unambiguous
concatenation. Jl. of Pure and Applied Algebra, 52(3):297 – 311, 1988.

[17] Jean-François Raymond, Pascal Tesson, and Denis Thérien. An algebraic approach to
communication complexity. In 25th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 29–40, 1998.

[18] Omer Reingold. Undirected connectivity in log-space. Jl. of the ACM, 55(4), 2008.

[19] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular
digraphs and the RL vs. L problem. In Proceedings of STOC, pages 457–466, 2006.

[20] Thomas W. Reps. On the sequential nature of interprocedural program-analysis prob-
lems. Acta Informatica, 33(8):739–757, 1996.

[21] Thomas W. Reps. Program analysis via graph reachability. Information & Software
Technology, 40(11-12):701–726, 1998.

[22] Pascal Tesson. An algebraic approach to communication complexity. In Masters Thesis,
McGill University, Montreal, 1998.

[23] Mihalis Yannakakis. Graph-theoretic methods in database theory. In Proceedings of the
9th ACM PODS, pages 230–242, 1990.

21

A Appendix

A.1 Connectivity of Eulerian graphs can be checked in L

Reingold et al [19] observe, for an Eulerian graph, replacing directed edges by undirected
edges does not alter connectivity. Hence, testing reachability in graphs where each compo-
nent is Eulerian, can be done in L using the Reingold’s algorithm [18] for testing reachability
in undirected graphs. For completeness, we provide a proof of this observation by showing
that, for a graph with Eulerian components, each weakly connected component is strongly
connected, implying that if a path from s to t exists in the undirected setting, we also have
a path from s to t in the directed setting.

Lemma 1. For Eulerian graphs, if vertices s and t are weakly connected then s and t are
strongly connected.

Proof. Let G = (V,E) be an Eulerian graph. Suppose vertices s and t are weakly connected.
For an Eulerian graph, for each vertex v, we know that the indegree of v is equal to the

outdegree of v. We denote this by In(v), Out(v). We extend the notation of indegree and
outdegree to sets of vertices: for V ′ ⊆ V , In(V ′) = |{e = (v1, v2)|v1 ∈ V ′, v2 ∈ V \V ′}| and
Out(V ′) = |{e = (v1, v2)|v1 ∈ V \V ′, v2 ∈ V ′}|. We first prove that for any subset V ′ ⊆ V
in an Eulerian graph In(V ′) = Out(V ′), using induction on the size of V ′. This trivially
holds when |V ′| = 1, since the indegree and outdegree of any vertex are equal. Suppose this
property holds for all subsets |V ′| < k. We show that it holds for any subsets V ′, such that
|V ′| = k. Choose any vertex v ∈ V ′. We know that

In(V ′) = In(V ′\{v}) + In(v)− |{(v, v1)|v1 ∈ V ′}| − |{(v1, v)|v1 ∈ V ′}|

Out(V ′) = Out(V ′\{v}) +Out(v)− |{(v, v1)|v1 ∈ V ′}| − |{(v1, v)|v1 ∈ V ′}|

Since |V ′\{v}| = k − 1, from our induction hypothesis, In(V ′\{v}) = Out(V ′\{v}). This
immediately gives us In(V ′) = Out(V ′), when |V ′| = k. By induction, for any subset V ′ ⊆ V
in an Eulerian graph, In(V ′) = Out(V ′).

We describe an algorithm to find a path between s and t. We partition the vertex set of
the graph, and at each step, increment one of the partitions.

Initially, we start with V1 = {s}, and V2 = V \V1. We increase the size of V1 as follows.
For all vertices u ∈ V1, if (u, v) is an edge, and v 6∈ V1, we add v to V1, and remove v from
V2. We notice that if no such v exists, then, there is no cut edge between V1 and V2 - since
the number of edges crossing the cut in both directions is always equal.

We claim that when the algorithm terminates, t ∈ V1. Suppose not. Then t ∈ V2 6=
φ. However this implies that there exists a partition of the graph into V1 and V2, such
that these subgraphs are disjoint. Hence, s and t cannot be weakly connected, and this
contradicts our given statement. Hence, s and t are strongly connected if s and t are weakly
connected.

22

	Introduction
	Preliminaries
	Logspace Upper Bounds
	Product Graph and Properties
	Bounded Treewidth and Monoid Labelling
	Group Labelled Graphs
	Logspace algorithm for Quasigroup-UReach

	Symmetrizing by Labelling
	Labelling with Aperiodic Monoids
	Labelling with a Finitely Presented Group

	A Dichotomy Theorem for Aperiodic Labelling
	Logspace algorithm for CommutativeAperiodic-Ureach
	Logspace algorithm for DA-Ureach
	Labelling with Non-commutative Aperiodic Monoids

	Planarizing by Labelling
	By Labelling with a Fixed Monoid
	From Bipartititeness of G to Planarity of H
	By Labelling with a Finitely Presented Group

	Discussion & Conclusion
	Appendix
	Connectivity of Eulerian graphs can be checked in L

