
Modular Control Plane Verification
via Temporal Invariants

PLDI 2023

Timothy Alberdingk Thijm
Princeton University

Ryan Beckett
Microsoft Research

Aarti Gupta
Princeton University

David Walker
Princeton University

What is the Control Plane?

2

d
b

a
c

What is the Control Plane?

2

d
b

a
c

Goal: determine routes to use to forward traffic

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Goal: determine routes to use to forward traffic

0

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Goal: determine routes to use to forward traffic

0

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Goal: determine routes to use to forward traffic

0

Distributed, written in vendor-
specific, low-level language

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Goal: determine routes to use to forward traffic

0

1

1

Distributed, written in vendor-
specific, low-level language

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to
neighbors

Goal: determine routes to use to forward traffic

0

1

1

2

Distributed, written in vendor-
specific, low-level language

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to
neighbors

Converge to a stable state

Goal: determine routes to use to forward traffic

0

1

1

2

Distributed, written in vendor-
specific, low-level language

What is the Control Plane?

2

d
b

a
c

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to
neighbors

Converge to a stable state

Goal: determine routes to use to forward traffic

0

1

1

2

Distributed, written in vendor-
specific, low-level language

Policies for security, traffic
engineering, fault tolerance, cost, etc.

How Do We Verify Control Planes?

3

Network configuration files

Policies for security, traffic engineering,
fault tolerance, cost, etc.

How Do We Verify Control Planes?

3

Analyze all configurations together to
find property violations using a

control plane verifier
(e.g., Batfish, ARC, Minesweeper,

Bagpipe, Tiramisu, Plankton, Hoyan)

Network configuration files

Policies for security, traffic engineering,
fault tolerance, cost, etc.

How Do We Verify Control Planes?

3

Analyze all configurations together to
find property violations using a

control plane verifier
(e.g., Batfish, ARC, Minesweeper,

Bagpipe, Tiramisu, Plankton, Hoyan)

Network configuration files

Repeat when configurations change

Policies for security, traffic engineering,
fault tolerance, cost, etc.

Scaling Control Plane Verification

4

Many networks are too big and too complex to verify monolithically!

Scaling Control Plane Verification

4

modular verification to the rescue!

Many networks are too big and too complex to verify monolithically!

Our Contributions

5

demonstrate why naive stable states
analysis is unsuitable for modular

verification

present time-based theory for
modular control plane analysis, with

SMT-based verification procedure

verify properties of 2000-node data
centers and complex wide-area

networks in seconds!

How (Not) to Modularly Verify

6

Modular Network Verification

7

u3

u2
u1

v

Modular Network Verification

7

u3

u2
u1

v

sound modular analysis:
captures all monolithic routing behavior

Modular Network Verification

7

u3

u2
u1

v
split the network up into node-local
components to verify independently

sound modular analysis:
captures all monolithic routing behavior

Modular Network Verification

7

u3

u2
u1

v
split the network up into node-local
components to verify independently

represent cross-component
dependencies using interfaces

sound modular analysis:
captures all monolithic routing behavior

Interfaces

8

User

u3

u2
u1

v

2
3

4

3

s ≤ 2
s ≤ 3

s > 3

s ≤ 3

Interfaces

8

User

u3

u2
u1

v

2
3

4

3

interface over-approximates the converged states of the node with a set of states A v A(v)

s ≤ 2
s ≤ 3

s > 3

s ≤ 3

Bear’s Modular Verification Procedure

9

u3

u2
u1

v

A(u1)

A(u2)

A(u3)

A(v)
Verification condition:

If receives any routes satisfying ,

does its selected route satisfy ?

v A(u1), A(u2), …, A(um)
A(v)

An Example Network

10

un vfilter

An Example Network

10

un vfilter

routes: or

select by highest , lowest

⟨𝗅𝗉 : ℕ, 𝗅𝖾𝗇 : ℕ⟩ ∞
𝗅𝗉 𝗅𝖾𝗇

An Example Network

10

un vfilter

routes: or

select by highest , lowest

⟨𝗅𝗉 : ℕ, 𝗅𝖾𝗇 : ℕ⟩ ∞
𝗅𝗉 𝗅𝖾𝗇

filter external routes

An Example Network

10

un vfilter

routes: or

select by highest , lowest

⟨𝗅𝗉 : ℕ, 𝗅𝖾𝗇 : ℕ⟩ ∞
𝗅𝗉 𝗅𝖾𝗇

⟨100, 0⟩

filter external routes

An Example Network

10

un vfilter

routes: or

select by highest , lowest

⟨𝗅𝗉 : ℕ, 𝗅𝖾𝗇 : ℕ⟩ ∞
𝗅𝗉 𝗅𝖾𝗇

⟨100, 0⟩ ∞

filter external routes

An Example Network

10

un vfilter

routes: or

select by highest , lowest

⟨𝗅𝗉 : ℕ, 𝗅𝖾𝗇 : ℕ⟩ ∞
𝗅𝗉 𝗅𝖾𝗇

⟨100, 0⟩

filter external routes

⟨100, 1⟩

Execution Interference

11

s . 𝗅𝗉 = 200

un vfilter

𝗍𝗋𝗎𝖾 s . 𝗅𝗉 = 200

⟨100, 0⟩ ⟨100, 1⟩

Execution Interference

11

s . 𝗅𝗉 = 200

un vfilter

𝗍𝗋𝗎𝖾

 sends a route with ,

so has

v 𝗅𝗉 = 200
u 𝗅𝗉 = 200

s . 𝗅𝗉 = 200

⟨100, 0⟩ ⟨100, 1⟩

Execution Interference

11

s . 𝗅𝗉 = 200

un vfilter

𝗍𝗋𝗎𝖾

 sends a route with ,

so has

v 𝗅𝗉 = 200
u 𝗅𝗉 = 200

 sends a route with ,

so has

u 𝗅𝗉 = 200
v 𝗅𝗉 = 200

s . 𝗅𝗉 = 200

⟨100, 0⟩ ⟨100, 1⟩

Execution Interference

11

s . 𝗅𝗉 = 200

un vfilter

𝗍𝗋𝗎𝖾

 sends a route with ,

so has

v 𝗅𝗉 = 200
u 𝗅𝗉 = 200

 sends a route with ,

so has

u 𝗅𝗉 = 200
v 𝗅𝗉 = 200

s . 𝗅𝗉 = 200

⟨100, 0⟩ ⟨100, 1⟩

’s converged route does

NOT have !

v
𝗅𝗉 = 200

Execution Interference

11

s . 𝗅𝗉 = 200

un vfilter

𝗍𝗋𝗎𝖾

interfaces are unsound: exclude the legitimate converged routes, but the checks pass!

 sends a route with ,

so has

v 𝗅𝗉 = 200
u 𝗅𝗉 = 200

 sends a route with ,

so has

u 𝗅𝗉 = 200
v 𝗅𝗉 = 200

s . 𝗅𝗉 = 200

⟨100, 0⟩ ⟨100, 1⟩

’s converged route does

NOT have !

v
𝗅𝗉 = 200

Timepiece’s Temporal Model

12

Temporal Interfaces

13

interface over-approximates the converged states of the node with a set of states A v A(v)

u3

u2
u1

v

A(u1)

A(u2)

A(u3)

A(v)

temporal interface over-approximates the states of the node at time with a set of states A v t A(v)(t)

Temporal Interfaces

13

u3

u2
u1

v

A(u1)

A(u2)

A(u3)

A(v)

temporal interface over-approximates the states of the node at time with a set of states A v t A(v)(t)

Temporal Interfaces

13

u3

u2
u1

v

base check: interfaces at time
0 holds on initial routes

A(v)(0)

temporal interface over-approximates the states of the node at time with a set of states A v t A(v)(t)

Temporal Interfaces

13

u3

u2
u1

v

A(u1)(t)

A(u2)(t)

A(u3)(t)

A(v)(t + 1)

base check: interfaces at time
0 holds on initial routes

inductive check: for all times t,
interfaces at time t+1 holds
given interfaces from time t

Preventing Interference

14

𝒢(𝗍𝗋𝗎𝖾) 𝒢(s . 𝗅𝗉 = 200)𝒢(s . 𝗅𝗉 = 200)

un vfilter

⟨100, 0⟩ ∞

Preventing Interference

14

𝒢(𝗍𝗋𝗎𝖾) 𝒢(s . 𝗅𝗉 = 200)𝒢(s . 𝗅𝗉 = 200)

un vfilter

 (globally): at every point in time, the predicate holds𝒢P P P

⟨100, 0⟩ ∞

Preventing Interference

14

𝒢(𝗍𝗋𝗎𝖾) 𝒢(s . 𝗅𝗉 = 200)

Base checks fail: interfaces and do not hold for initial routes at time A(u) A(v) 0

𝒢(s . 𝗅𝗉 = 200)

un vfilter

 (globally): at every point in time, the predicate holds𝒢P P P

⟨100, 0⟩ ∞

Proving Path Length

15

𝒢(𝗍𝗋𝗎𝖾)

𝒢(s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 = 0)

un vfilter

Proving Path Length

15

𝒢(𝗍𝗋𝗎𝖾) s = ∞ 𝒰1 s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 ≤ 1

𝒢(s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 = 0)

un vfilter

Proving Path Length

15

𝒢(𝗍𝗋𝗎𝖾) s = ∞ 𝒰1 s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 ≤ 1

𝒢(s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 = 0)

un vfilter

 (until at): until time , holds; at and after , holdsP 𝒰t Q P Q t t P t Q

Proving Path Length

15

𝒢(𝗍𝗋𝗎𝖾) s = ∞ 𝒰1 s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 ≤ 1

𝒢(s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 = 0)

un vfilter

 (until at): until time , holds; at and after , holdsP 𝒰t Q P Q t t P t Q
 has no route until time v 1

Proving Path Length

15

𝒢(𝗍𝗋𝗎𝖾) s = ∞ 𝒰1 s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 ≤ 1

𝒢(s . 𝗅𝗉 = 100 ∧ s . 𝗅𝖾𝗇 = 0)

un vfilter

 (until at): until time , holds; at and after , holdsP 𝒰t Q P Q t t P t Q
 has no route until time v 1

at time , has a route with

 and

1 v
𝗅𝗉 = 100 𝗅𝖾𝗇 ≤ 1

Soundness Theorem

16

Soundness Theorem

16

If interface satisfies the base and inductive checks for all nodes,

then includes all states computable via (monolithic) simulation.

A
A

Soundness Theorem

16

If interface satisfies the base and inductive checks for all nodes,

then includes all states computable via (monolithic) simulation.

A
A

Proof by induction on time.

How to Use Timepiece

17

How to Use Timepiece

17

define network semantics in C# or
via configurations (via Batfish)

How to Use Timepiece

17

define network semantics in C# or
via configurations (via Batfish)

write interfaces using C# library of
temporal operators ()𝒢, 𝒰t, ℱt

How to Use Timepiece

17

define network semantics in C# or
via configurations (via Batfish)

write interfaces using C# library of
temporal operators ()𝒢, 𝒰t, ℱt

check VCs in parallel on every node
using Satisfiability Modulo

Theories (SMT) solver

Evaluation

18

Evaluation

19

Evaluation

19

does Timepiece scale to large networks?

how easy is it to write invariants for different properties?

does Timepiece handle complex policies?

Evaluation

19

Fat-tree data center networks
C# model of eBGP routing protocol

20–2000 nodes

how easy is it to write invariants for different properties?

does Timepiece handle complex policies?

Evaluation

19

Fat-tree data center networks
C# model of eBGP routing protocol

20–2000 nodes

Internet2 wide-area network
102,753 lines of Juniper configuration code

263 nodes (10 internal, 253 external)

how easy is it to write invariants for different properties?

Evaluation

19

Reachability Path length

Valley freedom Hijack filtering

Fat-tree data center networks
C# model of eBGP routing protocol

20–2000 nodes

Internet2 wide-area network
102,753 lines of Juniper configuration code

263 nodes (10 internal, 253 external)

No transit

Evaluation

20

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

Annotation LoC

3

7

12

21

5

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

Annotation LoC

3

7

12

21

5

Nodes

2000

2000

2000

2000

263

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

Annotation LoC

3

7

12

21

5

Nodes

2000

2000

2000

2000

263

Monolithic time

14s

>2h

>2h

>2h

>2h

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

Annotation LoC

3

7

12

21

5

Nodes

2000

2000

2000

2000

263

Monolithic time

14s

>2h

>2h

>2h

>2h

Modular time

28s

1204s

398s

142s

38s

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Evaluation

20

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Network LoC

81

88

89

146

88 (+102,753)

Annotation LoC

3

7

12

21

5

Nodes

2000

2000

2000

2000

263

Monolithic time

14s

>2h

>2h

>2h

>2h

Modular time

28s

1204s

398s

142s

38s

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Fat-tree Hijack Filtering

21

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

21

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

21

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Sends a route with symbolic prefix p

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

21

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Sends a symbolic route with trueh 𝗍𝖺𝗀

Sends a route with symbolic prefix p

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

21

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Filter routes for prefix p

Sends a symbolic route with trueh 𝗍𝖺𝗀

Sends a route with symbolic prefix p

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

21

Converged routes for prefix should not come from p h
P(v) ≡ 𝗍𝗋𝗎𝖾 𝒰4 s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

BGP misconfiguration/attack:
a “hijacker” node announces it has a path to a prefix it

doesn’t own, misleading others to route through the hijacker

Filter routes for prefix p

Sends a symbolic route with trueh 𝗍𝖺𝗀

Sends a route with symbolic prefix p

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

22

Interface composes an “eventual invariant” with a
“safety invariant”

Converged routes for prefix should not come from p h
P(v) ≡ 𝗍𝗋𝗎𝖾 𝒰4 s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

22

Interface composes an “eventual invariant” with a
“safety invariant”

Converged routes for prefix should not come from p h
P(v) ≡ 𝗍𝗋𝗎𝖾 𝒰4 s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

All nodes’ interfaces are parameterized by their
distance from 𝖽𝗂𝗌𝗍(v) e19

𝖽𝗂𝗌𝗍(c3) = 2

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

22

Nodes are eventually “internally reachable”
𝗍𝗋𝗎𝖾 𝒰𝖽𝗂𝗌𝗍(v) s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

Interface composes an “eventual invariant” with a
“safety invariant”

Converged routes for prefix should not come from p h
P(v) ≡ 𝗍𝗋𝗎𝖾 𝒰4 s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

All nodes’ interfaces are parameterized by their
distance from 𝖽𝗂𝗌𝗍(v) e19

𝖽𝗂𝗌𝗍(c3) = 2

Fat-tree Hijack Filtering

filter filter filter filter

h

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

22

Nodes are eventually “internally reachable”
𝗍𝗋𝗎𝖾 𝒰𝖽𝗂𝗌𝗍(v) s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

Nodes never use hijacking routes
𝒢(s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p → ¬s . 𝗍𝖺𝗀)

Interface composes an “eventual invariant” with a
“safety invariant”

Converged routes for prefix should not come from p h
P(v) ≡ 𝗍𝗋𝗎𝖾 𝒰4 s . 𝗉𝗋𝖾𝖿𝗂𝗑 = p ∧ ¬s . 𝗍𝖺𝗀

All nodes’ interfaces are parameterized by their
distance from 𝖽𝗂𝗌𝗍(v) e19

𝖽𝗂𝗌𝗍(c3) = 2

0 500 1,000 1,500 2,00010�1

100

101

102

103

104

t/o

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

TIMEPIECE
TIMEPIECE median
TIMEPIECE 99th p.

Monolithic

Fat-tree Hijack Filtering

23

0 500 1,000 1,500 2,00010�1

100

101

102

103

104

t/o

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

TIMEPIECE
TIMEPIECE median
TIMEPIECE 99th p.

Monolithic

Fat-tree Hijack Filtering

23

Monolithic verification times
out (>2h) at 80 nodes

0 500 1,000 1,500 2,00010�1

100

101

102

103

104

t/o

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

TIMEPIECE
TIMEPIECE median
TIMEPIECE 99th p.

Monolithic

Fat-tree Hijack Filtering

23

Monolithic verification times
out (>2h) at 80 nodes

max. wall clock time:
~2.2 minutes

0 500 1,000 1,500 2,00010�1

100

101

102

103

104

t/o

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

TIMEPIECE
TIMEPIECE median
TIMEPIECE 99th p.

Monolithic

Fat-tree Hijack Filtering

23

Monolithic verification times
out (>2h) at 80 nodes

max. wall clock time:
~2.2 minutes

99% of nodes complete
checks in <5 seconds

0 500 1,000 1,500 2,00010�1

100

101

102

103

104

t/o

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

TIMEPIECE
TIMEPIECE median
TIMEPIECE 99th p.

Monolithic

Fat-tree Hijack Filtering

23

Monolithic verification times
out (>2h) at 80 nodes

max. wall clock time:
~2.2 minutes

99% of nodes complete
checks in <5 seconds

verification time proportional
to node’s degree

24

Takeaways

Big, complex control planes need modular tools

24

Takeaways

Big, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

24

Takeaways

Big, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

Scale to thousands of nodes & complex policies

24

Takeaways

Big, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

Scale to thousands of nodes & complex policies

Read the paper to learn more!

24

Takeaways

25

Ryan Beckett
Microsoft Research

Aarti Gupta
Princeton

Dave Walker
Princeton

cs.princeton.edu/~tthijm
I’m looking for a job!

Tim Alberdingk Thijm
PrincetonOur paper

Extra slides

26

Closed Completeness Theorem

27

Closed Completeness Theorem

27

Starting from fixed initial routes, if is the (monolithic) state

of node at time , then the interface satisfies
the base and inductive checks for all nodes.

σ(v)(t)
v t A(v)(t) = {σ(v)(t)}

Closed Completeness Theorem

27

Starting from fixed initial routes, if is the (monolithic) state

of node at time , then the interface satisfies
the base and inductive checks for all nodes.

σ(v)(t)
v t A(v)(t) = {σ(v)(t)}

Proof by induction on time.

Evaluation

28

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Nodes

20-2000

20-2000

20-2000

20-2000

263

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Nodes

20-2000

20-2000

20-2000

20-2000

263

Network
LoC

81

88

89

146

88
(+102,753)

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Nodes

20-2000

20-2000

20-2000

20-2000

263

Network
LoC

81

88

89

146

88
(+102,753)

Annotation
LoC

3

7

12

21

5

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Nodes

20-2000

20-2000

20-2000

20-2000

263

Network
LoC

81

88

89

146

88
(+102,753)

Annotation
LoC

3

7

12

21

5

Monolithic hits 2h timeout?

No (fixed dest.)
80 nodes (symbolic dest.)

80 nodes (fixed dest.)
20 nodes (symbolic dest.)

180 nodes

80 nodes (fixed dest.)
20 nodes (symbolic dest.)

Yes

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

No transit

Nodes

20-2000

20-2000

20-2000

20-2000

263

Network
LoC

81

88

89

146

88
(+102,753)

Annotation
LoC

3

7

12

21

5

Monolithic hits 2h timeout?

No (fixed dest.)
80 nodes (symbolic dest.)

80 nodes (fixed dest.)
20 nodes (symbolic dest.)

180 nodes

80 nodes (fixed dest.)
20 nodes (symbolic dest.)

Yes

Modular verification time

28s (fixed 2000 nodes)
336s (symbolic 2000 nodes)

1204s (fixed 2000 nodes)
3953s (symbolic 2000 nodes)

398s (fixed 2000 nodes)
3506s (symbolic 1280 nodes)

142s (2000 nodes)
2196s (symbolic 2000 nodes)

38s

Related Work

29

Related Work

Satisfiability Modulo Theories
(SMT)-based verification

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

Abstract
Internet Service Providers (ISPs) use the Border Gateway
Protocol (BGP) to announce and exchange routes for de-
livering packets through the internet. ISPs must carefully
configure their BGP routers to ensure traffic is routed reli-
ably and securely. Correctly configuring BGP routers has
proven challenging in practice, and misconfiguration has led
to worldwide outages and traffic hijacks.

This paper presents Bagpipe, a system that enables ISPs
to declaratively express BGP policies and that automatically
verifies that router configurations implement such policies.
The novel initial network reduction soundly reduces policy
verification to a search for counterexamples in a finite space.
An SMT-based symbolic execution engine performs this
search efficiently. Bagpipe reduces the size of its search space
using predicate abstraction and parallelizes its search using
symbolic variable hoisting.

Bagpipe’s policy specification language is expressive:
we expressed policies inferred from real AS configurations,
policies from the literature, and policies for 10 Juniper
TechLibrary configuration scenarios. Bagpipe is efficient:
we ran it on three ASes with a total of over 240,000 lines of
Cisco and Juniper BGP configuration. Bagpipe is effective:
it revealed 19 policy violations without issuing any false
positives.

Categories and Subject Descriptors D.2.4 [Software Engi-

neering]: Software/Program Verification

Keywords Bagpipe, BGP, domain-specific language, solver-
aided languages, correctness

1. Introduction
Over 3 billion people are connected to the Internet through
university and corporate networks, regional ISPs, and nation-
wide ISPs [18]. These networks, collectively known as Au-
tonomous Systems (ASes), use the Border Gateway Protocol
(BGP) to exchange route announcements, which describe
paths that traffic can take across the Internet. To route traf-
fic reliably and securely, ASes must configure their BGP-
speaking border routers to implement policies restricting how
route announcements can be used and exchanged.

Router misconfigurations are common and have led to
many visible failures [8, 35, 28, 27]. For example, in 2008,
in response to a government order, the Pakistan Telecom AS
intended to block YouTube by announcing a non-existent
YouTube route to ASes within Pakistan. Due to a misconfigu-
ration, this route was also advertised to an AS outside Pak-
istan, PPCC. PPCC forwarded the route to its neighbors. The
non-existent route to YouTube then quickly spread through-
out the Internet and was selected for packet forwarding by
most ASes. YouTube was then unavailable to most Internet
users, as their packets to YouTube were incorrectly forwarded
to Pakistan Telecom. About two hours later, PPCC fixed the
problem by disconnecting Pakistan Telecom from the Inter-
net [5]. If Pakistan Telecom had correctly implemented its
policy to only block YouTube to ASes within Pakistan, or if
PPCC had correctly implemented its policy to only import
routes that an AS actually owns, this outage could have been
avoided.

Other failures could also have been prevented by correctly
implementing appropriate BGP policies [15]. However, do-
ing so with little to no tool support is difficult and expensive,
particularly since large ASes maintain millions of lines of fre-
quently changing configurations distributed across hundreds
of routers [19, 40].

This paper presents Bagpipe1, which uses automatic veri-
fication to prevent router misconfiguration. An AS operator
expresses control-plane policies as declarative specifications.

1 Bagpipe is open-source, see http://bagpipe.uwplse.org

A General Approach to Network Configuration Verification
Ryan Beckett

Princeton University
Aarti Gupta

Princeton University

Ratul Mahajan
Microsoft Research & Intentionet

David Walker
Princeton University

ABSTRACT
We present Minesweeper, a tool to verify that a network satis-
�es a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network con�guration �les
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satis�able, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under �ve
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
• Networks→ Network reliability;

KEYWORDS
Network veri�cation; Control plane analysis
ACM Reference format:
Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
General Approach to Network Con�guration Veri�cation. In Proceedings of
SIGCOMM ’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
DOI: 10.1145/3098822.3098834

1 INTRODUCTION
The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to
exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4653-5/17/08. . . $15.00
DOI: 10.1145/3098822.3098834

tra�c depends on their local con�guration �les. These �les tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, con�guration errors that lead to costly outages are
all-too-common. Indeed, every few months con�guration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that con�guration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for �nding errors in network con�gurations. We broadly classify
these tools along two dimensions: i) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates di�erent data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help �nd con�guration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veri�ow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only �nd
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Bat�sh [13] can �nd con-
�guration errors proactively, before deploying potentially buggy
con�gurations. Bat�sh takes the network con�guration (i.e., its con-
trol plane) and a speci�c environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under di�erent environments. Still, each
run of Bat�sh allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to veri�cation—that is, reasoning
about many or all data planes that can be generated by the control
plane. However, each such tool trades network design coverage for

29

Related Work

Satisfiability Modulo Theories
(SMT)-based verification

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

Abstract
Internet Service Providers (ISPs) use the Border Gateway
Protocol (BGP) to announce and exchange routes for de-
livering packets through the internet. ISPs must carefully
configure their BGP routers to ensure traffic is routed reli-
ably and securely. Correctly configuring BGP routers has
proven challenging in practice, and misconfiguration has led
to worldwide outages and traffic hijacks.

This paper presents Bagpipe, a system that enables ISPs
to declaratively express BGP policies and that automatically
verifies that router configurations implement such policies.
The novel initial network reduction soundly reduces policy
verification to a search for counterexamples in a finite space.
An SMT-based symbolic execution engine performs this
search efficiently. Bagpipe reduces the size of its search space
using predicate abstraction and parallelizes its search using
symbolic variable hoisting.

Bagpipe’s policy specification language is expressive:
we expressed policies inferred from real AS configurations,
policies from the literature, and policies for 10 Juniper
TechLibrary configuration scenarios. Bagpipe is efficient:
we ran it on three ASes with a total of over 240,000 lines of
Cisco and Juniper BGP configuration. Bagpipe is effective:
it revealed 19 policy violations without issuing any false
positives.

Categories and Subject Descriptors D.2.4 [Software Engi-

neering]: Software/Program Verification

Keywords Bagpipe, BGP, domain-specific language, solver-
aided languages, correctness

1. Introduction
Over 3 billion people are connected to the Internet through
university and corporate networks, regional ISPs, and nation-
wide ISPs [18]. These networks, collectively known as Au-
tonomous Systems (ASes), use the Border Gateway Protocol
(BGP) to exchange route announcements, which describe
paths that traffic can take across the Internet. To route traf-
fic reliably and securely, ASes must configure their BGP-
speaking border routers to implement policies restricting how
route announcements can be used and exchanged.

Router misconfigurations are common and have led to
many visible failures [8, 35, 28, 27]. For example, in 2008,
in response to a government order, the Pakistan Telecom AS
intended to block YouTube by announcing a non-existent
YouTube route to ASes within Pakistan. Due to a misconfigu-
ration, this route was also advertised to an AS outside Pak-
istan, PPCC. PPCC forwarded the route to its neighbors. The
non-existent route to YouTube then quickly spread through-
out the Internet and was selected for packet forwarding by
most ASes. YouTube was then unavailable to most Internet
users, as their packets to YouTube were incorrectly forwarded
to Pakistan Telecom. About two hours later, PPCC fixed the
problem by disconnecting Pakistan Telecom from the Inter-
net [5]. If Pakistan Telecom had correctly implemented its
policy to only block YouTube to ASes within Pakistan, or if
PPCC had correctly implemented its policy to only import
routes that an AS actually owns, this outage could have been
avoided.

Other failures could also have been prevented by correctly
implementing appropriate BGP policies [15]. However, do-
ing so with little to no tool support is difficult and expensive,
particularly since large ASes maintain millions of lines of fre-
quently changing configurations distributed across hundreds
of routers [19, 40].

This paper presents Bagpipe1, which uses automatic veri-
fication to prevent router misconfiguration. An AS operator
expresses control-plane policies as declarative specifications.

1 Bagpipe is open-source, see http://bagpipe.uwplse.org

A General Approach to Network Configuration Verification
Ryan Beckett

Princeton University
Aarti Gupta

Princeton University

Ratul Mahajan
Microsoft Research & Intentionet

David Walker
Princeton University

ABSTRACT
We present Minesweeper, a tool to verify that a network satis-
�es a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network con�guration �les
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satis�able, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under �ve
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
• Networks→ Network reliability;

KEYWORDS
Network veri�cation; Control plane analysis
ACM Reference format:
Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
General Approach to Network Con�guration Veri�cation. In Proceedings of
SIGCOMM ’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
DOI: 10.1145/3098822.3098834

1 INTRODUCTION
The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to
exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4653-5/17/08. . . $15.00
DOI: 10.1145/3098822.3098834

tra�c depends on their local con�guration �les. These �les tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, con�guration errors that lead to costly outages are
all-too-common. Indeed, every few months con�guration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that con�guration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for �nding errors in network con�gurations. We broadly classify
these tools along two dimensions: i) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates di�erent data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help �nd con�guration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veri�ow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only �nd
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Bat�sh [13] can �nd con-
�guration errors proactively, before deploying potentially buggy
con�gurations. Bat�sh takes the network con�guration (i.e., its con-
trol plane) and a speci�c environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under di�erent environments. Still, each
run of Bat�sh allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to veri�cation—that is, reasoning
about many or all data planes that can be generated by the control
plane. However, each such tool trades network design coverage for

29

simulation-based verification

Plankton: Scalable network configuration verification through model checking

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P. Brighten Godfrey, Matthew Caesar
University of Illinois at Urbana-Champaign

Abstract
Network configuration verification enables operators to en-
sure that the network will behave as intended, prior to de-
ployment of their configurations. Although techniques rang-
ing from graph algorithms to SMT solvers have been pro-
posed, scalable configuration verification with sufficient pro-
tocol support continues to be a challenge. In this paper,
we show that by combining equivalence partitioning with
explicit-state model checking, network configuration verifi-
cation can be scaled significantly better than the state of the
art, while still supporting a rich set of protocol features. We
propose Plankton, which uses symbolic partitioning to man-
age large header spaces and efficient model checking to ex-
haustively explore protocol behavior. Thanks to a highly ef-
fective suite of optimizations including state hashing, partial
order reduction, and policy-based pruning, Plankton success-
fully verifies policies in industrial-scale networks quickly
and compactly, at times reaching a 10000◊ speedup com-
pared to the state of the art.

1 Introduction

Ensuring correctness of networks is a difficult and critical
task. A growing number of network verification tools are tar-
geted towards automating this process as much as possible,
thereby reducing the burden on the network operator. Verifi-
cation platforms have improved steadily in the recent years,
both in terms of scope and scale. Starting from offline data
plane verification tools like Anteater [19] and HSA [13], the
state of the art has evolved to support real-time data plane
verification [15, 12], and more recently, analysis of configu-
rations [6, 5, 7, 1, 25].

Configuration analysis tools such as Batfish [6], ERA [5],
ARC [7] and Minesweeper [1] are designed to take as input a
given network configuration, a correctness specification, and
possibly an “environment” specification, such as the maxi-
mum expected number of failures, external route advertise-
ments, etc. Their task is to determine whether, under the
given environment specification, the network configuration

will always meet the correctness specification. As with most
formal verification domains, the biggest challenge in con-
figuration analysis is scalability. Being able to analyze the
behavior of multiple protocols executing together is a non-
trivial task. Past verifiers have used a variety of techniques
to try to surmount this scalability challenge. While many of
them sacrifice their correctness or expressiveness in the pro-
cess, Minesweeper maintains both by modeling the network
using SMT constraints and performing the verification us-
ing an SMT solver. However, we observe that this approach
scales poorly with increasing problem size (4+ hours to
check a 245-device network for loops, in our experiments).
So, this paper addresses the following question: Can a con-
figuration verification tool have broad protocol support, and
also scale well?

We begin our work by observing that scalability chal-
lenges in configuration verification stem from two factors
— the large space of possible packet headers, and the pos-
sibly diverse outcomes of control plane execution, particu-
larly in the presence of failures. We believe that general pur-
pose SAT/SMT techniques are not as well equipped to tackle
these challenges as domain-specific techniques specifically
designed to address them. In fact, these challenges have been
studied extensively, in the domains of data plane verification
and software verification. Data plane verification tools an-
alyze the large header space to determine all possible data
plane behaviors and check their correctness. Software veri-
fication techniques explore the execution paths of software,
including distributed software, and identify undesirable ex-
ecutions that often elude testing. Motivated by the success
of the analysis algorithms in these domains, we attempted
to combine the two into a scalable configuration verification
platform. The result — Plankton — is a configuration ver-
ifier that uses equivalence partitioning to manage the large
header space, and explicit-state model checking to explore
protocol execution. Thanks to these efficient analysis tech-
niques, and an extensive suite of domain-specific optimiza-
tions, Plankton delivers consistently high verification perfor-
mance.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 953

Tiramisu: Fast Multilayer Network Verification
Anubhavnidhi Abhashkumar⇤, Aaron Gember-Jacobson†, Aditya Akella⇤

University of Wisconsin - Madison
⇤
, Colgate University

†

Abstract: Today’s distributed network control planes are
highly sophisticated, with multiple interacting protocols op-
erating at layers 2 and 3. The complexity makes network
configurations highly complex and bug-prone. State-of-the-
art tools that check if control plane bugs can lead to violations
of key properties are either too slow, or do not model com-
mon network features. We develop a new, general multilayer
graph control plane model that enables using fast, property-
customized verification algorithms. Our tool, Tiramisu can
verify if policies hold under failures for various real-world
and synthetic configurations in < 0.08s in small networks
and < 2.2s in large networks. Tiramisu is 2-600X faster than
state-of-the-art without losing generality.

1 Introduction

Many networks employ complex topologies and distributed
control planes to realize sophisticated network objectives. At
the topology level, networks employ techniques to virtual-
ize multiple links into logically isolated broadcast domains
(e.g., VLANs) [8]. Control planes employ a variety of rout-
ing protocols (e.g., OSPF, eBGP, iBGP) which are configured
to exchange routing information with each other in intricate
ways [9, 21]. Techniques to virtualize the control plane (e.g.,
virtual routing and forwarding (VRF)) are also common [8].

Bugs can easily creep into such networks through errors
in the detailed configurations that the protocols need [9, 21].
In many cases, bugs are triggered when a failure causes the
control plane to reconverge to new paths. Such bugs can lead
to a variety of catastrophic outcomes: the network may suf-
fer from reachability blackholes [5]; services with restricted
access may be rendered wide open [4]; and, expensive paths
may be selected over inexpensive highly-preferred ones [4].

A variety of tools attempt to verify if networks could vi-
olate important policies. In particular, control plane analyz-

ers [6,12–14,23,29] proactively verify if the network satisfies
policies against various environments, e.g., potential failures
or external advertisements. State-of-the-art examples include:
graph-algorithm based tools, such as ARC [14] which models
all paths that may manifest in a network as a series of weighted
digraphs; satisfiability modulo theory (SMT) based tools, such
as Minesweeper [6] which models control planes by encoding
routing information exchange, route selection, and failures
using logical constraints/variables; and, explicit-state model
checking (ESMC) based tools, such as Plankton [23]1 which
models routing protocols in a custom language, such that an
explicit state model checker can explore the many possible
data plane states resulting from the control plane’s execution.

Unfortunately, these modern control plane tools still fall

1Plankton was developed contemporaneously with our system

short because they make a hard trade-off between perfor-
mance and generality (§2). ARC abstracts many low level
control plane details which allows it to leverage polynomial
time graph algorithms for verification, offering the best perfor-
mance of all tools. But the abstraction ignores many network
design constructs, including commonly-used BGP attributes,
and iBGP. While these are accounted for by the other classes
of tools [6, 23] that model control plane behavior at a much
lower level, the tools’ detailed encoding renders verification
performance extremely poor, especially when exploring fail-
ures (§8). Finally, all existing tools ignore VLANs, and VRFs.

This paper seeks a fast general control plane verification
tool that also accounts for layer 2.5 protocols, like VLANs.

We note that today’s trade-off between performance and
generality is somewhat artificial, and arises from an unnatural
coupling between the control plane encoding and the verifi-
cation algorithm used. For example, in existing graph-based
tools, graph algorithms are used to verify the weighted di-
graph control plane model. In SMT-based tools, the detailed
constraint-based control plane encoding requires a general
constraint solver to be used to verify any policy. ESMC-based
tools’ encoding forces a search over the many possible data
plane states, mirroring software verification techniques that
exhaustively explore the execution paths of a general program.

The key insight in our framework, Tiramisu, is to decouple
encoding from verification algorithms. Tiramisu leverages a
new, rich encoding for the network that models various control
plane features and network design constructs. The encoding
allows Tiramisu to use different custom verification algo-

rithms for different categories of policies that substantially
improve performance over the state-of-the-art.

Tiramisu’s network model uses graphs as the basis, similar
to ARC. However, the graph model is multi-layered and uses
multi-attribute edge weights, thereby capturing dependencies
among protocols (e.g., iBGP depending on OSPF-provided
paths) and among virtual and physical links, and accounting
for filters, tags, and protocol costs/preferences.

For custom verification, Tiramisu notes that most policies
studied in the literature can be grouped into three categories
(Table 1): (i) policies that require the actual path that mani-
fests in the network under a given failure; (ii) policies that
care about certain quantitative properties of paths that may
manifest (e.g., maximum path length); and, finally, (iii) poli-
cies that merely care about whether a path exists. Tiramisu
leverages the underlying model’s graph structure to develop
performant verification algorithms for each category.

To verify category (i) policies, Tiramisu efficiently solves
the stable paths problem [15] using the Tiramisu Path Vector

Protocol (TPVP). TPVP simulates control plane computa-

Related Work

modular SMT-based verification

Kirigami, the Verifiable Art of Network Cutting
Timothy Alberdingk Thijm

Princeton University
Princeton, USA

tthijm@cs.princeton.edu

Ryan Beckett
Microsoft Research

Redmond, USA
ryan.beckett@microsoft.com

Aarti Gupta
Princeton University

Princeton, USA
aartig@cs.princeton.edu

David Walker
Princeton University

Princeton, USA
dpw@cs.princeton.edu

Abstract—Satisfiability Modulo Theories (SMT)-based analysis
allows exhaustive reasoning over complex distributed control
plane routing behaviors, enabling verification of routing under
arbitrary conditions. To improve scalability of SMT solving, we
introduce a modular verification approach to network control
plane verification, where we cut a network into smaller frag-
ments. Users specify an annotated cut which describes how
to generate these fragments from the monolithic network, and
we verify each fragment independently, using these annotations
to define assumptions and guarantees over fragments akin to
assume-guarantee reasoning. We prove this modular network
verification procedure is sound and complete with respect to
verification over the monolithic network. We implement this
procedure as Kirigami, an extension of NV [25] — a network
verification language and tool — and evaluate it on industrial
topologies with synthesized policies. We observe a 10x improve-
ment in end-to-end NV verification time, with SMT solve time
improving by up to 6 orders of magnitude.

Index Terms—modular verification, network control plane,
control plane verification, routing protocols

I. INTRODUCTION

Today’s networks are labyrinthine and hard-to-analyze sys-
tems. To determine the best paths routers may use to forward
traffic, networks typically run distributed routing protocols.
Despite advances like software-defined networking, these pro-
tocols remain widely used in data centers [40] and wide-area
networks. Millions of lines of decentralized, low-level router
configuration code control protocol behaviors, and operators
must update these device configurations over time. This over-
whelming complexity has led to several notable and costly
outages [47], [52], [54], [55]. Often, the culprits behind these
incidents are subtle network misconfigurations.

In response, researchers have developed a variety of verifica-
tion tools and techniques to catch errors before outages occur.
Some [7], [34], [36]–[38], [43], [46], [49] have targeted the
network data plane, which is responsible for forwarding traffic
from point A to point B. This work has produced scalable,
efficient methods for modeling the data plane and checking
properties of how packets traverse it.

The data plane is produced by the control plane. It uses
the aforementioned routing protocols to decide which routes
forwarding should use. Occasionally, these protocols may

This work was supported in part by the National Science Foundation awards
NeTS 1704336, FMitF 1837030, SHF 2107138, and Facebook Research
Award on “Network control plane verification at scale.”

update their choice of routes — e.g., following a device failure
— and recompute new paths. When this happens, the data
plane is regenerated, and the user must repeat any data plane
analysis. Control plane errors can lead to further issues like
route flapping, leaving human operators to hunt for subtle bugs
in a Kafkaesque morass of router configurations.

To address this problem, researchers have developed another
suite of tools to analyze the control plane [1], [9]–[11],
[17], [19], [22], [24], [25], [50], [57], [58]. Control plane
analyses consider which routes the data plane will use in
given network environments, and check properties of the
network in such environments. One branch of control plane
verification, starting from Minesweeper [9], encodes a network
as a Satisfiability Modulo Theories (SMT) formula and then
asks an SMT solver [8] to check properties of the encoded
network. SMT-based verification has some advantages over
other approaches: it is expressive and can reason symbolically
about network behavior, allowing analyses about all possible
routes a neighbor might announce; it also may form a basis
for network synthesis and repair [21]. Unfortunately, it suf-
fers from scalability issues. Prior work has explored using
abstractions to resolve this problem, e.g., using symmetries in
topologies to compress networks [10], [24]. These abstractions
offer some relief, but cannot always handle arbitrary networks.

Control plane verification users thus face a trade-off: they
may use semi-symbolic or simulation-based tools [1], [11],
[22], [25], [44], [50], [58] to analyze industrial-sized networks
when the flexibility of SMT-based symbolic reasoning is not
necessary; or they must contend with SMT-based verifiers
which may not scale to networks with more than a few hundred
nodes. This paper offers another option: using a user’s own in-
sights about their network’s behavior, we leverage the inherent
modularity of the control plane to cut a monolithic network
into multiple fragments to verify independently. Networks’
modular structure — where end-to-end behaviors emerge
from individual routers’ local decisions — makes cutting an
intuitive way to scale verification. In an SMT-based context,
it allows us to verify properties in the presence of faults or
arbitrary external announcements, which is not shown with
prior abstraction approaches [10], [11]. Building on assume-
guarantee verification of modular programs [23], [32], we
present a new technique for modular verification of control
planes and implement it as Kirigami, an extension for the
NV [25] network verification tool. While we focus on SMT-
based verification, one could combine our cutting technique978-1-6654-8234-9/22/$31.00 ©2022 IEEE

LIGHTYEAR: Using Modularity to Scale BGP Control Plane Verification

Alan Tang
University of California, Los Angeles

Ryan Beckett
Microsoft

Karthick Jayaraman
Microsoft

Todd Millstein
UCLA / Intentionet

George Varghese
UCLA

Abstract
Current network control plane verification tools cannot scale
to large networks, because of the complexity of jointly rea-
soning about the behaviors of all nodes in the network. In this
paper we present a modular approach to control plane veri-
fication, whereby end-to-end network properties are verified
via a set of purely local checks on individual nodes and edges.
The approach targets the verification of safety properties for
BGP configurations and provides guarantees in the face of
both arbitrary external route announcements from neighbors
and arbitrary node/link failures. We have proven the approach
correct and also implemented it in a tool called LIGHTYEAR.
Experimental results show that LIGHTYEAR scales dramati-
cally better than prior control plane verifiers. Further, we have
used LIGHTYEAR to verify three properties of the wide area
network of a major cloud provider, containing hundreds of
routers and tens of thousands of edges. To our knowledge no
prior tool has been demonstrated to provide such guarantees
at that scale. Finally, in addition to the scaling benefits, our
modular approach to verification makes it easy to localize
the causes of configuration errors and to support incremental
re-verification as configurations are updated.

1 Introduction
Today, routing and forwarding in networks are controlled us-
ing low-level configuration on individual routers. Researchers
have developed many techniques to analyze these configu-
rations in order to verify that they meet a given specifica-
tion of the intended end-to-end network behavior. For ex-
ample, Minesweeper [4] models network behavior as SMT
constraints, ARC [11] and Tiramisu [1] model network be-
havior as a graph, and Plankton [24] uses explicit-state model
checking.

Despite their different approaches, these prior tools share
one important limitation: they model and reason about net-
work behavior monolithically. Specifically, they analyze the
network and its configuration as a whole, exhaustively explor-
ing all possible control-plane behaviors of the network that
are induced by the complex interactions among all configu-

ration directives and protocols. The requirement that entire
networks be analyzed as a unit prevents these approaches
from scaling to large networks, severely limiting their practi-
cal applicability.

In this paper, we present a modular approach to con-
trol plane verification. Like the prior control-plane verifiers,
LIGHTYEAR takes as input a network’s configuration and
a property to verify. However, LIGHTYEAR additionally re-
quires the user to provide a set of local invariants that should
hold on the BGP policies of individual nodes and edges in
the network. LIGHTYEAR then automatically produces a set
of local checks on individual nodes and edges that a) verify
the user’s local invariants and b) ensure that these invariants
imply the given end-to-end property. We focus on BGP since
it is ubiquitous, and our approach targets a common class of
safety properties, which intuitively ensure that “bad” routes
never reach a particular node. For example, our approach can
express and modularly ensure that routers never install routes
to bogon addresses and that routes from one ISP are never
advertised to another one.

We have formalized our approach to modular control
plane verification, proved its correctness, and built a tool
called LIGHTYEAR based on it. Our approach can be viewed
as a general approach for control plane assume-guarantee

reasoning—a technique that has previously been applied suc-
cessfully to software verification [16,23] and to scale network
data plane [14] verification to colossal cloud networks. While
in principle a user can provide a different local invariant for
each location (node or edge) in the network, clearly this is
undesirable. Instead, we observe that in practice locations
can typically be partitioned into three sets, with all locations
in a set sharing the same local invariant. Intuitively, there
are a small number of locations whose job is to establish an
invariant (e.g., by tagging certain traffic with a community),
many locations that maintain the invariant (e.g., by not strip-
ping the community), and a small number of locations that
use the invariant to enforce a desired property (e.g., dropping
announcements that are tagged with the community). This
reasoning naturally aligns with the common partitioning of

1

ar
X

iv
:2

20
4.

09
63

5v
1

 [c
s.N

I]
 2

0
A

pr
 2

02
2

Satisfiability Modulo Theories
(SMT)-based verification

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

Abstract
Internet Service Providers (ISPs) use the Border Gateway
Protocol (BGP) to announce and exchange routes for de-
livering packets through the internet. ISPs must carefully
configure their BGP routers to ensure traffic is routed reli-
ably and securely. Correctly configuring BGP routers has
proven challenging in practice, and misconfiguration has led
to worldwide outages and traffic hijacks.

This paper presents Bagpipe, a system that enables ISPs
to declaratively express BGP policies and that automatically
verifies that router configurations implement such policies.
The novel initial network reduction soundly reduces policy
verification to a search for counterexamples in a finite space.
An SMT-based symbolic execution engine performs this
search efficiently. Bagpipe reduces the size of its search space
using predicate abstraction and parallelizes its search using
symbolic variable hoisting.

Bagpipe’s policy specification language is expressive:
we expressed policies inferred from real AS configurations,
policies from the literature, and policies for 10 Juniper
TechLibrary configuration scenarios. Bagpipe is efficient:
we ran it on three ASes with a total of over 240,000 lines of
Cisco and Juniper BGP configuration. Bagpipe is effective:
it revealed 19 policy violations without issuing any false
positives.

Categories and Subject Descriptors D.2.4 [Software Engi-

neering]: Software/Program Verification

Keywords Bagpipe, BGP, domain-specific language, solver-
aided languages, correctness

1. Introduction
Over 3 billion people are connected to the Internet through
university and corporate networks, regional ISPs, and nation-
wide ISPs [18]. These networks, collectively known as Au-
tonomous Systems (ASes), use the Border Gateway Protocol
(BGP) to exchange route announcements, which describe
paths that traffic can take across the Internet. To route traf-
fic reliably and securely, ASes must configure their BGP-
speaking border routers to implement policies restricting how
route announcements can be used and exchanged.

Router misconfigurations are common and have led to
many visible failures [8, 35, 28, 27]. For example, in 2008,
in response to a government order, the Pakistan Telecom AS
intended to block YouTube by announcing a non-existent
YouTube route to ASes within Pakistan. Due to a misconfigu-
ration, this route was also advertised to an AS outside Pak-
istan, PPCC. PPCC forwarded the route to its neighbors. The
non-existent route to YouTube then quickly spread through-
out the Internet and was selected for packet forwarding by
most ASes. YouTube was then unavailable to most Internet
users, as their packets to YouTube were incorrectly forwarded
to Pakistan Telecom. About two hours later, PPCC fixed the
problem by disconnecting Pakistan Telecom from the Inter-
net [5]. If Pakistan Telecom had correctly implemented its
policy to only block YouTube to ASes within Pakistan, or if
PPCC had correctly implemented its policy to only import
routes that an AS actually owns, this outage could have been
avoided.

Other failures could also have been prevented by correctly
implementing appropriate BGP policies [15]. However, do-
ing so with little to no tool support is difficult and expensive,
particularly since large ASes maintain millions of lines of fre-
quently changing configurations distributed across hundreds
of routers [19, 40].

This paper presents Bagpipe1, which uses automatic veri-
fication to prevent router misconfiguration. An AS operator
expresses control-plane policies as declarative specifications.

1 Bagpipe is open-source, see http://bagpipe.uwplse.org

A General Approach to Network Configuration Verification
Ryan Beckett

Princeton University
Aarti Gupta

Princeton University

Ratul Mahajan
Microsoft Research & Intentionet

David Walker
Princeton University

ABSTRACT
We present Minesweeper, a tool to verify that a network satis-
�es a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network con�guration �les
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satis�able, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under �ve
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
• Networks→ Network reliability;

KEYWORDS
Network veri�cation; Control plane analysis
ACM Reference format:
Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
General Approach to Network Con�guration Veri�cation. In Proceedings of
SIGCOMM ’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
DOI: 10.1145/3098822.3098834

1 INTRODUCTION
The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to
exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4653-5/17/08. . . $15.00
DOI: 10.1145/3098822.3098834

tra�c depends on their local con�guration �les. These �les tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, con�guration errors that lead to costly outages are
all-too-common. Indeed, every few months con�guration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that con�guration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for �nding errors in network con�gurations. We broadly classify
these tools along two dimensions: i) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates di�erent data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help �nd con�guration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veri�ow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only �nd
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Bat�sh [13] can �nd con-
�guration errors proactively, before deploying potentially buggy
con�gurations. Bat�sh takes the network con�guration (i.e., its con-
trol plane) and a speci�c environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under di�erent environments. Still, each
run of Bat�sh allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to veri�cation—that is, reasoning
about many or all data planes that can be generated by the control
plane. However, each such tool trades network design coverage for

29

simulation-based verification

Plankton: Scalable network configuration verification through model checking

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P. Brighten Godfrey, Matthew Caesar
University of Illinois at Urbana-Champaign

Abstract
Network configuration verification enables operators to en-
sure that the network will behave as intended, prior to de-
ployment of their configurations. Although techniques rang-
ing from graph algorithms to SMT solvers have been pro-
posed, scalable configuration verification with sufficient pro-
tocol support continues to be a challenge. In this paper,
we show that by combining equivalence partitioning with
explicit-state model checking, network configuration verifi-
cation can be scaled significantly better than the state of the
art, while still supporting a rich set of protocol features. We
propose Plankton, which uses symbolic partitioning to man-
age large header spaces and efficient model checking to ex-
haustively explore protocol behavior. Thanks to a highly ef-
fective suite of optimizations including state hashing, partial
order reduction, and policy-based pruning, Plankton success-
fully verifies policies in industrial-scale networks quickly
and compactly, at times reaching a 10000◊ speedup com-
pared to the state of the art.

1 Introduction

Ensuring correctness of networks is a difficult and critical
task. A growing number of network verification tools are tar-
geted towards automating this process as much as possible,
thereby reducing the burden on the network operator. Verifi-
cation platforms have improved steadily in the recent years,
both in terms of scope and scale. Starting from offline data
plane verification tools like Anteater [19] and HSA [13], the
state of the art has evolved to support real-time data plane
verification [15, 12], and more recently, analysis of configu-
rations [6, 5, 7, 1, 25].

Configuration analysis tools such as Batfish [6], ERA [5],
ARC [7] and Minesweeper [1] are designed to take as input a
given network configuration, a correctness specification, and
possibly an “environment” specification, such as the maxi-
mum expected number of failures, external route advertise-
ments, etc. Their task is to determine whether, under the
given environment specification, the network configuration

will always meet the correctness specification. As with most
formal verification domains, the biggest challenge in con-
figuration analysis is scalability. Being able to analyze the
behavior of multiple protocols executing together is a non-
trivial task. Past verifiers have used a variety of techniques
to try to surmount this scalability challenge. While many of
them sacrifice their correctness or expressiveness in the pro-
cess, Minesweeper maintains both by modeling the network
using SMT constraints and performing the verification us-
ing an SMT solver. However, we observe that this approach
scales poorly with increasing problem size (4+ hours to
check a 245-device network for loops, in our experiments).
So, this paper addresses the following question: Can a con-
figuration verification tool have broad protocol support, and
also scale well?

We begin our work by observing that scalability chal-
lenges in configuration verification stem from two factors
— the large space of possible packet headers, and the pos-
sibly diverse outcomes of control plane execution, particu-
larly in the presence of failures. We believe that general pur-
pose SAT/SMT techniques are not as well equipped to tackle
these challenges as domain-specific techniques specifically
designed to address them. In fact, these challenges have been
studied extensively, in the domains of data plane verification
and software verification. Data plane verification tools an-
alyze the large header space to determine all possible data
plane behaviors and check their correctness. Software veri-
fication techniques explore the execution paths of software,
including distributed software, and identify undesirable ex-
ecutions that often elude testing. Motivated by the success
of the analysis algorithms in these domains, we attempted
to combine the two into a scalable configuration verification
platform. The result — Plankton — is a configuration ver-
ifier that uses equivalence partitioning to manage the large
header space, and explicit-state model checking to explore
protocol execution. Thanks to these efficient analysis tech-
niques, and an extensive suite of domain-specific optimiza-
tions, Plankton delivers consistently high verification perfor-
mance.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 953

Tiramisu: Fast Multilayer Network Verification
Anubhavnidhi Abhashkumar⇤, Aaron Gember-Jacobson†, Aditya Akella⇤

University of Wisconsin - Madison
⇤
, Colgate University

†

Abstract: Today’s distributed network control planes are
highly sophisticated, with multiple interacting protocols op-
erating at layers 2 and 3. The complexity makes network
configurations highly complex and bug-prone. State-of-the-
art tools that check if control plane bugs can lead to violations
of key properties are either too slow, or do not model com-
mon network features. We develop a new, general multilayer
graph control plane model that enables using fast, property-
customized verification algorithms. Our tool, Tiramisu can
verify if policies hold under failures for various real-world
and synthetic configurations in < 0.08s in small networks
and < 2.2s in large networks. Tiramisu is 2-600X faster than
state-of-the-art without losing generality.

1 Introduction

Many networks employ complex topologies and distributed
control planes to realize sophisticated network objectives. At
the topology level, networks employ techniques to virtual-
ize multiple links into logically isolated broadcast domains
(e.g., VLANs) [8]. Control planes employ a variety of rout-
ing protocols (e.g., OSPF, eBGP, iBGP) which are configured
to exchange routing information with each other in intricate
ways [9, 21]. Techniques to virtualize the control plane (e.g.,
virtual routing and forwarding (VRF)) are also common [8].

Bugs can easily creep into such networks through errors
in the detailed configurations that the protocols need [9, 21].
In many cases, bugs are triggered when a failure causes the
control plane to reconverge to new paths. Such bugs can lead
to a variety of catastrophic outcomes: the network may suf-
fer from reachability blackholes [5]; services with restricted
access may be rendered wide open [4]; and, expensive paths
may be selected over inexpensive highly-preferred ones [4].

A variety of tools attempt to verify if networks could vi-
olate important policies. In particular, control plane analyz-

ers [6,12–14,23,29] proactively verify if the network satisfies
policies against various environments, e.g., potential failures
or external advertisements. State-of-the-art examples include:
graph-algorithm based tools, such as ARC [14] which models
all paths that may manifest in a network as a series of weighted
digraphs; satisfiability modulo theory (SMT) based tools, such
as Minesweeper [6] which models control planes by encoding
routing information exchange, route selection, and failures
using logical constraints/variables; and, explicit-state model
checking (ESMC) based tools, such as Plankton [23]1 which
models routing protocols in a custom language, such that an
explicit state model checker can explore the many possible
data plane states resulting from the control plane’s execution.

Unfortunately, these modern control plane tools still fall

1Plankton was developed contemporaneously with our system

short because they make a hard trade-off between perfor-
mance and generality (§2). ARC abstracts many low level
control plane details which allows it to leverage polynomial
time graph algorithms for verification, offering the best perfor-
mance of all tools. But the abstraction ignores many network
design constructs, including commonly-used BGP attributes,
and iBGP. While these are accounted for by the other classes
of tools [6, 23] that model control plane behavior at a much
lower level, the tools’ detailed encoding renders verification
performance extremely poor, especially when exploring fail-
ures (§8). Finally, all existing tools ignore VLANs, and VRFs.

This paper seeks a fast general control plane verification
tool that also accounts for layer 2.5 protocols, like VLANs.

We note that today’s trade-off between performance and
generality is somewhat artificial, and arises from an unnatural
coupling between the control plane encoding and the verifi-
cation algorithm used. For example, in existing graph-based
tools, graph algorithms are used to verify the weighted di-
graph control plane model. In SMT-based tools, the detailed
constraint-based control plane encoding requires a general
constraint solver to be used to verify any policy. ESMC-based
tools’ encoding forces a search over the many possible data
plane states, mirroring software verification techniques that
exhaustively explore the execution paths of a general program.

The key insight in our framework, Tiramisu, is to decouple
encoding from verification algorithms. Tiramisu leverages a
new, rich encoding for the network that models various control
plane features and network design constructs. The encoding
allows Tiramisu to use different custom verification algo-

rithms for different categories of policies that substantially
improve performance over the state-of-the-art.

Tiramisu’s network model uses graphs as the basis, similar
to ARC. However, the graph model is multi-layered and uses
multi-attribute edge weights, thereby capturing dependencies
among protocols (e.g., iBGP depending on OSPF-provided
paths) and among virtual and physical links, and accounting
for filters, tags, and protocol costs/preferences.

For custom verification, Tiramisu notes that most policies
studied in the literature can be grouped into three categories
(Table 1): (i) policies that require the actual path that mani-
fests in the network under a given failure; (ii) policies that
care about certain quantitative properties of paths that may
manifest (e.g., maximum path length); and, finally, (iii) poli-
cies that merely care about whether a path exists. Tiramisu
leverages the underlying model’s graph structure to develop
performant verification algorithms for each category.

To verify category (i) policies, Tiramisu efficiently solves
the stable paths problem [15] using the Tiramisu Path Vector

Protocol (TPVP). TPVP simulates control plane computa-

Challenges

30

synchronous network semanticsfinding the correct invariants

