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What is the Control Plane?

Goal: determine routes to use to forward traffic

1 Q Q@ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to

Neignpors

1

Converge to a stable state

Policies for security, traffic

engineering, fault tolerance, cost, etc.

Distributed, written in vendor-

specific, low-level language
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Policies for security, traffic engineering,
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Analyze all configurations together to

find property violations using a
control plane verifier
(e.g., Batfish, ARC, Minesweeper,
Bagpipe, Tiramisu, Plankton, Hoyan)




How Do We Verify Control Planes?

Network configuration files
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fault tolerance, cost, etc.
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Analyze all configurations together to

find property violations using a
control plane verifier
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Scaling Control Plane Verification
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Many networks are too big and too complex to verity monolithically!
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Our Contributions
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demonstrate vvy naiv stable states |

analysis is unsuitable for modular
verification

present time-based theory for
modular control plane analysis, with
SMT-based verification procedure

verity properties of 2000-node data

centers and complex wide-area
networks in seconds!
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Modular Network Verification

sound modular analysis.
captures all monolithic routing behavior

split the network up into node-local
components to verify independently

represent cross-component
dependencies using interfaces
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Interfaces

interface A over-approximates the converged states of the node v with a set of states A(v)




Bear’s Modular Verification Procedure
A(u,)
A(’/ﬁ) A(u3)
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An Example Network

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

filter external routes
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(100, 0) (100, 1)
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Execution Interference

v sends a route with Ip = 200, M= ;; sends a route with Ip = 200,
so u has lp = 200 ¢ so v has Ip = 200

V V
true s.lp =200 s.lp =200

O —~@_—@

(100, 0) (100, 1)

interfaces are unsound: exclude the legitimate converged routes, but the checks pass!

i



Timepiece’s Temporal Model
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base check: interfaces at time @
O holds on initial routes @

A()(0)
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Temporal Interfaces

A(uy)(1)
A(uy)(7) A(uz)(7)
| | inductive check: for all times t,

base check: interfaces at time | |
L @ * @ interfaces at time t+1 holds
O holds on initial routes | | |

@ given interfaces from time t

AW)(t+ 1)

temporal interface A over-approximates the states of the node v at time ¢ with a set of states A(v)(#)
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Preventing Interference

G P (globally P): at every point in time, the predicate P holds

Z(true) G(s.lp=200) &(s.lp = 200)

O -O—@

(100, 0)

Base checks fail: interfaces A(u) and A(v) do not hold for initial routes at time O
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Proving Path Length

P 2" Q (P until Q at 1): until time ¢, P holds: at and after ¢, O holds

vy has no route until time 1

G (true) S =00 %' s.Ip=100As.len < 1

filter ¥attmel v has a route with
Ip = 100 andlen < 1

G(s.lp=100As.len =0)

15









Soundness Theorem

f interface A satisfies the base and inductive checks for all nodes,

then A includes all states computable via (monolithic) simulation.
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Proof by induction on time.
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Fat-tree data center networks Internet? wide-area network
C# model of eBGP routing protocol 102,753 lines of Juniper configuration code
20-2000 nodes 263 nodes (10 internal 253 external)
Reachability Path length No transit
Valley freedom Hijack filtering
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Reachability 81
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on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC  Annotation LoC
Reachability 381 3
Path length 33 I

Valley freedom 89 12

Hijack filtering 146 21

NO transit

33 (+102,/53) 5
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Benchmark Network LoC  Annotation LoC  Nodes
Reachability 381 3 2000
Path length 38 ! 2000
Valley freedom 89 12 2000
Hijack filtering 146 21 2000

NO transit

33 (+102,/53) 5 263
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Path length 33 I 2000 >2N
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on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC  Annotation LoC Nodes Monolithic time  Modular time
Reachability 381 3 2000 14 23S
Path length 88 ! 2000 >2N 1204s
Valley freedom 89 12 2000 >2N 398s
Hijack filtering 146 21 2000 >2N 1425
No transit 38 (+102,/53) 5 263 >2h 38S
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Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC Nodes Monolithic time Modular time

Reachability 81 3 2000 145 23S
Path length 88 ! 2000 >2N 1204s
Valley freedom 89 12 2000 >2N 398s
Hijack filtering 146 21 2000 >2N 1425

NO transit 88 (+102.753) 5 263 >N 335

20



Fat-tree Hijack Filtering

BGP misconfiguration/attack:
a ‘hijacker’” node announces it has a path to a prefix it
doesn't own, misleading others to route through the hijacker
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Sends a symbolic route i with tag true
PON
~ilter routes for prefix p
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o ’ . - Sends a route with symbolic prefix p
3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker
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Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A Sends a symbolic route i with tag true
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BGP misconfiguration/attack: | |
Sends a route with symbolic prefix p

3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker
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Interface composes an “eventual invariant” with a ﬂl}\
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Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A

P(v) = true %* s . prefix = p A s . tag

Interface composes an “eventual invariant” with a
‘safety invariant’

All nodes interfaces are parameterized by their

distance dist(v) from eyq

Nodes are eventually “internally reachable”

true %) s . prefix = p A -5 . tag

Nodes never use hijacking routes

G(s.prefix =p — -s.tag)
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Monolithic verification times
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Fat-tree Hijack Filtering
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Fat-tree Hijack Filtering
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Takeaways

519, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

Scale to thousands of nodes & complex policies

=Read the paper to learn more!
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of node v at time £, then the interface A(W)(£) = {o(v)(£)} satisfies R A
the base and inductive checks for all nodes. |
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Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

NO transit

Evaluation
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Benchmark Nodes
Reachability  20-2000
Path length  20-2000
Valley freedom 20-2000
Hijack filtering  20-2000
No transit 263

Evaluation
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Network

Benchmark Nodes
LoC
Reachability 20-2000 81
Path length 20-2000 88
Valley freedom 20-2000 39
Hijack filtering  20-2000 146
| 88

NoO transit 263

(+102.753)

Evaluation
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Evaluation

Network Annotation

Benchmark Nodes
LoC LoC
Reachability 20-2000 81 3
Path length 20-2000 83 !
Valley freedom 20-2000 39 12
Hijack filtering  20-2000 146 21
. 83
NO transit 263 5

(+102.753)
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Evaluation

Network Annotation

Benchmark Nodes Monolithic hits 2h timeout?
LoC LoC
N No (fixed dest.)
Reachability 20-2000 81 3 |
80 nodes (symbolic dest.)
80 nodes (fixed dest.)
Path length 20-2000 83 [ .
20 nodes (symbolic dest.)
Valley freedom 20-2000 39 12 180 nodes
) - 80 nodes (fixed dest.)
Hijack filtering  20-2000 146 21 |
20 nodes (symbolic dest.)
. 83
NoO transit 263 5 Yes

(+102.753)

28



Evaluation

Network Annotation o , L ,
Benchmark Nodes Monolithic hits 2h timeout? Modular verification time
LoC LoC
N No (fixed dest.) 285 (fixed 2000 nodes)
Reachability 20-2000 81 3 | |
80 nodes (symbolic dest.) 336s (symbolic 2000 nodes)
80 nodes (fixed dest.) 1204s (fixed 2000 nodes)
Path length 20-2000 83 [ | |
20 nodes (symbolic dest.)  3953s (symbolic 2000 nodes)
3938s (fixed 2000 nodes)
Valley freedom 20-2000 39 12 180 nodes |
3506s (symbolic 1280 nodes)
) - 80 nodes (fixed dest.) 1425 (2000 nodes)
Hijack filtering  20-2000 146 21 | |
20 nodes (symbolic dest.)  2196s (symbolic 2000 nodes)
. 83
NoO transit 263 5 Yes 335S

(+102.753)
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synchronous network semantics

finding the correct invariants
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