Modular Control Plane Verification
via Temporal Invariants

Timothy Alberdingk Thijm Ryan Beckett
Princeton University Microsoft Research

Aarti Gupta David Walker
Princeton University Princeton University

PLDI 2023

What is the Control Plane?

What is the Control Plane?

Goal: determine routes to use to forward traffic

0‘0‘0

What is the Control Plane?

Goal: determine routes to use to forward traffic

Send initial route announcements

What is the Control Plane?

Goal: determine routes to use to forward traffic

Send initial route announcements

Receive announcements, process
according to configs

What is the Control Plane?

Goal: determine routes to use to forward traffic

Q Q@ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process 0

according to configs

Distributed, written in vendor-

specific, low-level language

What is the Control Plane?

Goal: determine routes to use to forward traffic

1 Q @ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process 0
according to configs

Select best announcement

Distributed, written in vendor-

specific, low-level language

What is the Control Plane?

Goal: determine routes to use to forward traffic

1 Q @ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to

neighbors

Distributed, written in vendor-

specific, low-level language

What is the Control Plane?

Goal: determine routes to use to forward traffic

1 Q @ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to

neighbors

Converge to a stable state

Distributed, written in vendor-

specific, low-level language

What is the Control Plane?

Goal: determine routes to use to forward traffic

1 Q Q@ bat examples/INTERNET 2/configs/newy32aoa.cfg

Send initial route announcements

Receive announcements, process
according to configs

Select best announcement

Broadcast selected route to

Neignpors

1

Converge to a stable state

Policies for security, traffic

engineering, fault tolerance, cost, etc.

Distributed, written in vendor-

specific, low-level language

How Do We Verify Control Planes?

Network configuration files

Policies for security, traffic engineering,
fault tolerance, cost, etc.

How Do We Verify Control Planes?

Network configuration files

Policies for security, traffic engineering,
fault tolerance, cost, etc.

' 7 7, ,'I/
\ g
] ’/
\\
\M\\ -. .
< o) \
') -) I ’I
|
nCOwPr Al

——-.;_;"/ N ’;..‘_'i"'.\~
/i

1),\ \\\ .\‘

0
W /,'l'“)‘ ‘

N\ \\\\\ A Y|
A\

Analyze all configurations together to

find property violations using a
control plane verifier
(e.g., Batfish, ARC, Minesweeper,
Bagpipe, Tiramisu, Plankton, Hoyan)

How Do We Verify Control Planes?

Network configuration files

—— /o /A WL N
,, DA

0

7
2
(4 s (g
LI/
N ")
5 ,‘
)/l

N, AR
| b \.’////‘:_'“i(‘ Y

Policies for security, traffic engineering,
fault tolerance, cost, etc.

1),\ \\\ .\‘

Analyze all configurations together to

find property violations using a
control plane verifier
(e.g., Batfish, ARC, Minesweeper,

Bagpipe, Tiramisu, Plankton, Hoyan)

N
I

Repeat when configurations change

Scaling Control Plane Verification

—

a .o . —_—

N

~ NS

SN

—_— ™ —_— . .#/ . X —
l/v‘/ /I

PR o vn.v«.lln’/".’dallfonr"
P k. T A Y
R TR AR R RN e e N
15 .- m AN ,I"ll" - — ’l‘l -
Ak ;zl/l?t, IIIIII/’ l.vfl -—
//rrlzilllill l,'” . -
,!,.,555544.;.4...«.-.

AT

A

P

YU

Many networks are too big and too complex to verity monolithically!

Scaling Control Plane Verification

..“,f'};fg‘:;jy/ «,// ’-/(\ m,) X .
. -’:‘I \ / ;;) f
T v..) /“.-\

e[1

pa—

——— —
=5 = e
I
. ‘l.".-

. n
8 I
’, R . 1NN

e) ’ Wi 4
’“‘“‘ it “ : &mjﬂm@
it £ N —
0 L i —_—
- g

Many networks are too big and too complex to verity monolithically!

——

u.

Our Contributions

' A _ \‘

demonstrate vvy naiv stable states |

analysis is unsuitable for modular
verification

present time-based theory for
modular control plane analysis, with
SMT-based verification procedure

verity properties of 2000-node data

centers and complex wide-area
networks in seconds!

How (Not) to Modularly Verify

Modular Network Verification

@
ohdC

Modular Network Verification

sound modular analysis.
captures all monolithic routing behavior

Modular Network Verification

sound modular analysis.
captures all monolithic routing behavior

split the network up into node-local
components to verify independently

Modular Network Verification

sound modular analysis.
captures all monolithic routing behavior

split the network up into node-local
components to verify independently

represent cross-component
dependencies using interfaces

Interfaces

‘ 3

Interfaces

interface A over-approximates the converged states of the node v with a set of states A(v)

Bear’s Modular Verification Procedure
A(u,)
A(’/ﬁ) A(u3)

@, L.

A(v)

Verification condition:

A S
s NN
A
\ N
3 3
- - AR,
P,
-) AN
A A\ .-‘.‘u. X
cES, \ AR,
s \ UL % 4
o A R -
- | AL o
.. \ v | S S
> 2 o
o B
S v) -:.:-
nh : v A o
- v LV Wi
NN Ay L 5 AN
S e J \ AR TN
— ') BN f1
i~ . o A
L o
ey R 5
1 D e
! B
‘@) - W —
" o) at
A

s AN -
AT .
Ll O
e

ASe

\ Y ~

1 PR RN AN
AN
hk S S W
i\

fvreceives any routes satisfying A(u,), A(i,), ..., A(u,,),

N

s

- >N
S N

does its selected route satisfy A(v)?

An Example Network

O @@

An Example Network

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

O @0

10

An Example Network

filter external routes

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

@ ~@—0

10

An Example Network

filter external routes

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

@ ~@—0

(100, 0)

10

An Example Network

filter external routes

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

- -0—@

(100, 0)

10

An Example Network

routes: {Ip : N, len : N) or oo

select by highest Ip, lowest len

filter external routes

@ ~@—0

(100, 0) (100, 1)

10

Execution Interference

true s.lp =200 s.lp =200

O @0

(100, 0) (100, 1)

i

Execution Interference

v sends a route with Ip = 200,
so u has Ip = 200

v
true s.lp =200 s.lp =200

O —~@_—@

(100, 0) (100, 1)

i

Execution Interference

v sends a route with Ip = 200, M= ;; sends a route with Ip = 200,
so u has lp = 200 ¢ so v has Ip = 200

V V
true s.lp =200 s.lp =200

O —~@_—@

(100, 0) (100, 1)

i

Execution Interference

v sends a route with Ip = 200, M= ;; sends a route with Ip = 200,
so u has lp = 200 ¢ so v has Ip = 200

V V
true s.lp =200 s.lp =200

O —~@_—@

(100, 0) (100, 1)

i

Execution Interference

v sends a route with Ip = 200, M= ;; sends a route with Ip = 200,
so u has lp = 200 ¢ so v has Ip = 200

V V
true s.lp =200 s.lp =200

O —~@_—@

(100, 0) (100, 1)

interfaces are unsound: exclude the legitimate converged routes, but the checks pass!

i

Timepiece’s Temporal Model

Temporal Interfaces
A(u,)
A(uy) A(u3)

@@,@

A(v)

interface A over-approximates the converged states of the node v with a set of states A(v)

13

Temporal Interfaces
A(u,)
A(uy) A(u3)

@@,@

A(v)

temporal interface A over-approximates the states of the node v at time ¢ with a set of states A(v)(#)

13

Temporal Interfaces

base check: interfaces at time @
O holds on initial routes @

A()(0)

temporal interface A over-approximates the states of the node v at time ¢ with a set of states A(v)(#)

13

Temporal Interfaces

A(uy)(1)
A(uy)(7) A(uz)(7)
| | inductive check: for all times t,

base check: interfaces at time | |
L @ * @ interfaces at time t+1 holds
O holds on initial routes | | |

@ given interfaces from time t

AW)(t+ 1)

temporal interface A over-approximates the states of the node v at time ¢ with a set of states A(v)(#)

13

Preventing Interference

Z(true) G(s.lp=200) &(s.lp = 200)

O -O—@

(100, 0)

Preventing Interference

G P (globally P): at every point in time, the predicate P holds

Z(true) G(s.lp=200) &(s.lp = 200)

O -O—@

(100, 0)

14

Preventing Interference

G P (globally P): at every point in time, the predicate P holds

Z(true) G(s.lp=200) &(s.lp = 200)

O -O—@

(100, 0)

Base checks fail: interfaces A(u) and A(v) do not hold for initial routes at time O

14

Proving Path Length

G (true)

O @@

G(s.lp=100As.len =0)

Proving Path Length

G (true) s=o00 %'s.Ip=100As.len < 1

O -@_—@

G(s.lp=100As.len =0)

Proving Path Length

P 2" Q (P until Q at 1): until time ¢, P holds: at and after ¢, O holds

G (true) s=o00 %'s.Ip=100As.len < 1

O —~@_@

G(s.lp=100As.len =0)

15

Proving Path Length

P 2" Q (P until Q at 1): until time ¢, P holds: at and after ¢, O holds

vy has no route until time 1

G (true) S =00 %' s.Ip=100As.len < 1

O @@

G(s.lp=100As.len =0)

15

Proving Path Length

P 2" Q (P until Q at 1): until time ¢, P holds: at and after ¢, O holds

vy has no route until time 1

G (true) S =00 %' s.Ip=100As.len < 1

filter ¥attmel v has a route with
Ip = 100 andlen < 1

G(s.lp=100As.len =0)

15

Soundness Theorem

f interface A satisfies the base and inductive checks for all nodes,

then A includes all states computable via (monolithic) simulation.

N 7 SNCHLE TS

Proof by induction on time.

o
00000
-y

16

How to Use Timepiece

How to Use Timepiece

N

- P
by ~—~—
- -
-_—

\W, Wl "]i 4/
L W) 1%;.'1]""! il {1/ 2o
T S AR |
= " I | }}wﬂ Y

;\\il‘; Iu%‘knm ““hm h .’ !/}"\A

N\ _ ’-
SO\ AR
\ O\ - "_' i Y\"
R '

i

define network semantics in C# or
via configurations (via Batfish)

17

How to Use Timepiece

NI

e
' A v y
. doele ' - N .
’ o) , . . . - -
'l' '. v \‘ . !
e A '.ll. 2 Py ‘v‘
”‘lll ' y X .
» 'c' ! N
R .
N 7 —_—
? v —— — - -
O - |
M / - /

| O et \
N - .y . - .~
| “ i T 1111
W\ N\ w222 - N
AN\ AT drsesl
Y A\ Y .,."..:.-",‘;lbiﬂ! l'\| 1-'. "\
\ . :‘_:',H "‘. "‘ l
NG
S \Ill K

write interfaces using C# library of

define network semantics in C# or
temporal operators (€, %', F")

via configurations (via Batfish)

17

How to Use Timepiece

; -
— o

- et &

a | -

=% 4]

=

j—

- ~ N \Ar"' y -
- . ST
J W A y 24

A m“ I A . — : :
check VCs in parallel on every node

. :"..‘l '.h TP N \\) :
\ \ o o S w !
q \\ ':‘ g ' - le b '-"I‘ ' .
) J NI el e A
- 'l:: . ’r\ .. . " -..
. - l"‘ ﬂ! " -) _.":.
\ N LGN I | \1 w "

‘ ;5:‘.-?‘ ',"y!. l\|‘
"‘i"“%ﬂ\i\\
define network semantics in C# or | | write interfaces using C# library of , -
| : N via Batfish) : | ors (€. U F using Satistiability Modulo
via configurations (via Batfis
. MPOTatOperators e, &, Theories (SMT) solver

17

Evaluation

19

Evaluation

does Timepiece scale to large networks? does Timepiece handle complex policies?

how easy is it to write invariants for different properties?

19

Evaluation

'
/\. /\

/ \ / \ / \ / \

Fat-tree data center networks

C# model of eBGP routing protocol does Timepiece handle complex policies?

20-2000 nodes

how easy is it to write invariants for different properties?

19

'
\. ./

/

Evaluation

\

/ \ / \ / \ / \
Fat-tree data center networks Internet? wide-area network
C# model of eBGP routing protocol 102,753 lines of Juniper configuration code

20-2000 nodes

263 nodes (10 internal 253 external)

how easy is it to write invariants for different properties?

19

'
\. ./

/

Evaluation

\

/ \ / \ / \ / \
Fat-tree data center networks Internet? wide-area network
C# model of eBGP routing protocol 102,753 lines of Juniper configuration code
20-2000 nodes 263 nodes (10 internal 253 external)
Reachability Path length No transit
Valley freedom Hijack filtering

19

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

NO transit

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC

Reachability 81

Path length 33
Valley freedom 39
Hijack filtering 146

NO transit

33 (+102,/53)

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC
Reachability 381 3
Path length 33 I

Valley freedom 89 12

Hijack filtering 146 21

NO transit

33 (+102,/53) 5

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC Nodes
Reachability 381 3 2000
Path length 38 ! 2000
Valley freedom 89 12 2000
Hijack filtering 146 21 2000

NO transit

33 (+102,/53) 5 263

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC Nodes Monolithic time
Reachability 381 3 2000 14
Path length 33 I 2000 >2N
Valley freedom 89 12 2000 >2h
Hijack filtering 146 21 2000 >2N
No transit 38 (+102,/53) 5 263 >2h

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC Nodes Monolithic time Modular time
Reachability 381 3 2000 14 23S
Path length 88 ! 2000 >2N 1204s
Valley freedom 89 12 2000 >2N 398s
Hijack filtering 146 21 2000 >2N 1425
No transit 38 (+102,/53) 5 263 >2h 38S

20

Evaluation

on Microsoft Azure D96s VM with 96 vCPUs and 384GB RAM

Benchmark Network LoC Annotation LoC Nodes Monolithic time Modular time

Reachability 81 3 2000 145 23S
Path length 88 ! 2000 >2N 1204s
Valley freedom 89 12 2000 >2N 398s
Hijack filtering 146 21 2000 >2N 1425

NO transit 88 (+102.753) 5 263 >N 335

20

Fat-tree Hijack Filtering

BGP misconfiguration/attack:
a ‘hijacker’” node announces it has a path to a prefix it
doesn't own, misleading others to route through the hijacker

21

Fat-tree Hijack Filtering

Joy

filter filter filter filter

NS
é*"

@
(PeEIT ey
) (&) @9 @) @) 9 @3

BGP misconfiguration/attack:
3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker

21

Fat-tree Hijack Filtering

Joy

filter filter filter filter

NS
ét‘:’ -

\ SIS/
KT LR R
ORONTRATKTRTRD

O
e

BGP misconfiguration/attack: | | |
s) | o Sends a route with symbolic prefix p
3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker

21

Fat-tree Hijack Filtering

Sends a symbolic route i with tag true
PON

filter filter filter filter

) A,

‘: o\

/'%é)\

@ @”’(
56 &%

@,\

BGP misconfiguration/attack:
3 ‘hijacker’ node announces it has a path to a prefix it
doesn't own, misleading others to route through the hijacker

21

a,
9

17
® &'

Sends a route with symbolic prefix p

Fat-tree Hijack Filtering

Sends a symbolic route i with tag true
PON
~ilter routes for prefix p
filter filter filter filter

CEOWIOWE®
a,
Dy

OgOR ’(/'}@)‘
58 & &0 &

17

BGP misconfiguration/attack:

o ’ . - Sends a route with symbolic prefix p
3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker

21

Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A Sends a symbolic route i with tag true
_ 4 : -
P(v) = true %~ s . prefix = p A s . tag
<! ~ilter routes for prefix p

filter filter filter filter
s @%:\ S/
Y e N
0o (@) Y
" X ’
() (&) (9 @3 DED

17

BGP misconfiguration/attack: | |
Sends a route with symbolic prefix p

3 ‘hijacker’ node announces it has a path to a prefix it

doesn't own, misleading others to route through the hijacker

21

Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A

P(v) = true %* s . prefix = p A s . tag

Interface composes an “eventual invariant” with a ﬂl}\

filter filter filter filter
‘safety invariant”

,\.«@
/ \

5% 6B &

¢

g2 *‘@
@"@

T
©

22

Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A

P(v) = true %* s . prefix = p A s . tag

Interface composes an “eventual invariant” with a ﬂl}\

filter filter filter filter, dist(c;) = 2

‘safety invariant’

(D A2) Ao,
All nodes interfaces are parameterized by their é:’: :‘

<7\ \

distance dist(v) from eyq

\\
P

.‘ 3

€9 @ @@?

0g0 T
5% ©

22

Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A

P(v) = true %* s . prefix = p A s . tag

Interface composes an “eventual invariant” with a ﬂl}\

filter filter filter filter, dist(c;) = 2

‘safety invariant’

'

All nodes interfaces are parameterized by their ~

(&0
Y
OV

@\ ~
RIS ‘\
distance dist(v) from e /’Q \’/ Q\\
” OGCRCYORTY IRy T

Nodes are eventually “internally reachable” " ‘ ’ "
true %) s . prefix = p A -5 . tag @ @ @ @ @ @

&

O9
=,

22

Fat-tree Hijack Filtering

Converged routes for prefix p should not come from A

P(v) = true %* s . prefix = p A s . tag

Interface composes an “eventual invariant” with a
‘safety invariant’

All nodes interfaces are parameterized by their

distance dist(v) from eyq

Nodes are eventually “internally reachable”

true %) s . prefix = p A -5 . tag

Nodes never use hijacking routes

G(s.prefix =p — -s.tag)

22

v

1T

filter filter filter filter

[sosger

O9

B

Joy

dist(cs) = 2

ay
DD
o e

$

o /

o

Fat-tree Hijack Filtering

107
10°
o
£ 102
-
O
5 !
2 10
§
109
10!

o ¢ ¢ ¥ |—e— TIMEPIECE
i | TIMEPIECE median
- - TIMEPIECE 99" p.
i 1 | —e— Monolithic
$]
I | | |]
0 500 1,000 1,500 2,000
Nodes

23

Fat-tree Hijack Filtering

Monolithic verification times
out (>2hn) at 80 nodes

10°
o
£ 102
-
O
5 !
2 10
§
109
10!

0 ¢ ¢ t [—e— TIMEPIECE
i TIMEPIECE median
- - TIMEPIECE 99" p.
i 1 | —e— Monolithic
$]
I | | |]
0 500 1,000 1,500 2,000
Nodes

23

Fat-tree Hijack Filtering

Monolithic verification times

out (>2hn) at 80 nodes

10°
o
£ 102
-
O
5 !
2 10
§
109
10!

10% -

——

+

TIMEPIECE
TIMEPIECE median

TIMEPIECE 997" p.
Monolithic

i ® ° ¢ 1
[]
i | | | _
0 500 1,000 1,500
Nodes

23

2.000

ﬂ

max. wall clock time:
~2 2 minutes

Fat-tree Hijack Filtering

10% -

Monolithic verification times = t/Oé ¢ 0 ¢ ¢ ? —e— TIMEPIECE
out (>2h) at 80 nodes i) TIMEPIECE median
10° | E TIMEPIECE 99" p.
2 - 1 [—— Monolithic
O - 1
E 102 n I
= : N
O : : max. wall clock time:
5 _] ~2.2 mi
% 10! f - minutes
3 | :
> b 1’ B 997%ofnodescomplete
10° 3 E checks in <5 seconds
101 i | | |]
0 500 1,000 1,500 2,000

Nodes

23

Fat-tree Hijack Filtering

Monolithic verification times ¢ 0 ¢ ¢ ? —a— TIMEPIECE
out (>2h) at 80 nodes | TIMEPIECE median
10° | - TIMEPIECE 99" p.
2 i 1 | —o— Monolithic
O - .
g 10* | /RI
- B - .
O : : max. wall clock time:
{5 | N - 5
.L?:: 10! : - 2.2 minutes
5 | z
> o 1’ B 997%ofnodescomplete
10° = 1 checks in <5 seconds
verification time proportional - -
to node’s degree 1071 ' ' '
’ 0 500 1,000 1,500 2,000
Nodes

23

Takeaways

24

Takeaways

519, complex control planes need modular tools

24

Takeaways

519, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

24

Takeaways

519, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

Scale to thousands of nodes & complex policies

24

Takeaways

519, complex control planes need modular tools

Temporal invariants provide a correct basis for
modular verification

Scale to thousands of nodes & complex policies

=Read the paper to learn more!

24

[m] %z [m]

I’m looking for a job!

|

cs.princeton.edu/~tthijm

| .‘
Tim Alberdingk Thijm Ryan Beckett Aarti Gupta Dave Walker
Our paper Princeton Microsoft Research Princeton Princeton

25

Extra slides

ot f,‘_ ------

J --—.-.‘\:

of node v at time £, then the interface A(W)(£) = {o(v)(r)} satisfies R £
the base and inductive checks for all nodes. |

rfre-r R}
.....
-y

27

of node v at time £, then the interface A(W)(£) = {o(v)(£)} satisfies R A
the base and inductive checks for all nodes. |

L A R R et s 5

Proof by induction on time.

LI X 4 D
QQQQQ
-y

27

Evaluation

28

Benchmark

Reachability

Path length

Valley freedom

Hijack filtering

NO transit

Evaluation

28

Benchmark Nodes
Reachability 20-2000
Path length 20-2000
Valley freedom 20-2000
Hijack filtering 20-2000
No transit 263

Evaluation

28

Network

Benchmark Nodes
LoC
Reachability 20-2000 81
Path length 20-2000 88
Valley freedom 20-2000 39
Hijack filtering 20-2000 146
| 88

NoO transit 263

(+102.753)

Evaluation

28

Evaluation

Network Annotation

Benchmark Nodes
LoC LoC
Reachability 20-2000 81 3
Path length 20-2000 83 !
Valley freedom 20-2000 39 12
Hijack filtering 20-2000 146 21
. 83
NO transit 263 5

(+102.753)

28

Evaluation

Network Annotation

Benchmark Nodes Monolithic hits 2h timeout?
LoC LoC
N No (fixed dest.)
Reachability 20-2000 81 3 |
80 nodes (symbolic dest.)
80 nodes (fixed dest.)
Path length 20-2000 83 [.
20 nodes (symbolic dest.)
Valley freedom 20-2000 39 12 180 nodes
) - 80 nodes (fixed dest.)
Hijack filtering 20-2000 146 21 |
20 nodes (symbolic dest.)
. 83
NoO transit 263 5 Yes

(+102.753)

28

Evaluation

Network Annotation o , L ,
Benchmark Nodes Monolithic hits 2h timeout? Modular verification time
LoC LoC
N No (fixed dest.) 285 (fixed 2000 nodes)
Reachability 20-2000 81 3 | |
80 nodes (symbolic dest.) 336s (symbolic 2000 nodes)
80 nodes (fixed dest.) 1204s (fixed 2000 nodes)
Path length 20-2000 83 [| |
20 nodes (symbolic dest.) 3953s (symbolic 2000 nodes)
3938s (fixed 2000 nodes)
Valley freedom 20-2000 39 12 180 nodes |
3506s (symbolic 1280 nodes)
) - 80 nodes (fixed dest.) 1425 (2000 nodes)
Hijack filtering 20-2000 146 21 | |
20 nodes (symbolic dest.) 2196s (symbolic 2000 nodes)
. 83
NoO transit 263 5 Yes 335S

(+102.753)

28

Related Work

Satistiability Modulo Theories

(SMT)-based verification

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

A General Approach to Network Configuration Verification

Ryan Beckett Aarti Gupta
Princeton University Princeton University
Ratul Mahajan David Walker
Microsoft Research & Intentionet Princeton University

Related Work

29

Satistiability Modulo Theories

(SMT)-based verification

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

A General Approach to Network Configuration Verification

Ryan Beckett Aarti Gupta
Princeton University Princeton University
Ratul Mahajan David Walker
Microsoft Research & Intentionet Princeton University

Related Work

simulation-based verification

Plankton: Scalable network configuration verification through model checking

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P. Brighten Godfrey, Matthew Caesar
University of lllinois at Urbana-Champaign

Tiramisu: Fast Multilayer Network Verification
Anubhavnidhi Abhashkumar®, Aaron Gember-Jacobson', Aditya Akella*

University of Wisconsin - Madison*, Colgate University"

29

Satistiability Modulo Theories

(SMT)-based verification

Scalable Verification of Border Gateway Protocol Configurations
with an SMT Solver

Konstantin Weitz Doug Woos Emina Torlak
Michael D. Ernst Arvind Krishnamurthy Zachary Tatlock

University of Washington, USA
{weitzkon, dwoos, emina, mernst, arvind, ztatlock}@cs.washington.edu

A General Approach to Network Configuration Verification

Ryan Beckett Aarti Gupta
Princeton University Princeton University
Ratul Mahajan David Walker
Microsoft Research & Intentionet Princeton University

Related Work

simulation-based verification

Plankton: Scalable network configuration verification through model checking

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, P. Brighten Godfrey, Matthew Caesar
University of lllinois at Urbana-Champaign

Tiramisu: Fast Multilayer Network Verification
Anubhavnidhi Abhashkumar®, Aaron Gember-Jacobson', Aditya Akella*

University of Wisconsin - Madison*, Colgate University"

29

modular SMT-based verification

LIGHTYEAR: Using Modularity to Scale BGP Control Plane Verification

Alan Tang Ryan Beckett Karthick Jayaraman
University of California, Los Angeles Microsoft Microsoft
Todd Millstein George Varghese
UCLA / Intentionet UCLA

Kirigami, the Verifiable Art of Network Cutting

Timothy Alberdingk Thijm Ryan Beckett Aarti Gupta David Walker
Princeton University Microsoft Research Princeton University Princeton University
Princeton, USA Redmond, USA Princeton, USA Princeton, USA
tthijm @cs.princeton.edu ryan.beckett@microsoft.com aartig@cs.princeton.edu dpw @cs.princeton.edu

Challenges

synchronous network semantics

finding the correct invariants

30

