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Analyzing Distributed Control Planes

Lots of great work, including…


Batfish [Fogel et al., NSDI 2015]


Bagpipe [Weitz et al., OOPSLA 2016]


Minesweeper [Beckett, Gupta, Mahajan, Walker, 
SIGCOMM 2018]


NV [Giannarakis, Loehr, Beckett, Walker, PLDI 2020]


Tiramisu [Abhashkumar, Gember-Jacobson, Akella, 
NSDI 2020]


Plankton [Prabhu et al., NSDI 2020]
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But all these tools must analyze 
entire network at once!
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Modularity Is Essential

Cloud providers have networks with millions of nodes, 


and they are growing…


Thinking about our networks one piece at a time makes them


easier to reason over, and


supports incremental changes and updates
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Modular Network Verification

Identify the network’s components


Annotate component boundaries with 
an interface


Break up the network into fragments 
to analyze separately
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Modular Network Verification
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Modular Network Verification

Satisfiability Modulo Theories (SMT)-based verification 
time


Nonlinear in size of network (worst case exponential)


Bottlenecks analysis (NP-complete problem)


Splitting up network takes linear time 


…but with better-than-linear improvements!


Our experiments saw SMT times improve by over 
100,000x 
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Modular Network Verification

fragment 1

fragment 2

network verifier

interface

network
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 sends route  to c1 ⟨d,2⟩ a5

 sends route  to a4 ⟨d,3⟩ c0

…

Modular Network Verification

interface

network fragment 1

fragment 2

network verifier
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Verification counterexamples 
localized to particular 

fragments.
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Modular Network Verification

network verifi

interface

network fragment 1

fragment 2

Users can specify arbitrary cuts for 
fragments of different granularities, 

accommodating annotation cost.
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Our Contributions

21

A theory of network interfaces and fragments 


based on assume-guarantee reasoning,


proved fragment verification sound and complete w.r.t. monolithic verification


A checking procedure to verify properties using fragments


and to check if a given interface is correct


An extension Kirigami for the network verification language NV


evaluated on benchmarks, with over 100,000x improvement in SMT time
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Roadmap

An Example Modular Verification Problem


A Theory of Network Fragments


Implementation


Evaluation


Takeaways
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Verifying a Data Center
The Stable Routing Problem

G = (V, E)

25
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Verifying a Data Center
The Stable Routing Problem

G = (V, E)

⟨e6,0⟩

topology graph with nodes  and edges V E

routes (routing announcements) :  

identifier  and a cost metric 

⟨p, x⟩
p x
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Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩
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The Stable Routing Problem

⟨e6,0⟩

29

a4 a5

e6 e7

∞ ∞

∞

⟨e6,1⟩ ⟨e6,1⟩

Nodes broadcast updated routes to all 
neighbors, incrementing the route’s cost.



Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩
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Nodes compare received routes to select 
the route with the smallest cost.



Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩
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Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

32

a4 a5

e6 e7

⟨e6,1⟩ ⟨e6,1⟩

∞

⟨e6,2⟩

⟨e6,2⟩

⟨e6,2⟩
⟨e6,2⟩

⟨e6,0⟩

…and so on…



Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩
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⟨e6,2⟩

until every node has 
a stable, locally-best 

route (a solution)
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Verifying a Data Center
The Stable Routing Problem
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Routing converges to network solution


Check properties on nodes’ solutions


all-pairs path length 
for any choice of identifier , all 

nodes converge to a route  with 

a metric .

p
⟨p, x⟩

x ≤ 4
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⟨e6,4⟩⟨e6,0⟩
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Verifying a Data Center
The Stable Routing Problem
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Routing converges to network solution


Check properties on nodes’ solutions


all-pairs path length 
for any choice of identifier , all 

nodes converge to a route  with 

a metric .

p
⟨p, x⟩

x ≤ 4

⟨e6,1⟩ ⟨e6,3⟩

⟨e6,4⟩⟨e6,0⟩

⟨e6,2⟩

Let’s modularize it!



Cutting Down Fattrees
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Cut fattree SRP  into fragments


each pod  in its own fragment , 


spine nodes in a fragment 


Represent routes that cross the cut


interface annotating every cut edge 
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Cut fattree SRP  into fragments


each pod  in its own fragment , 


spine nodes in a fragment 


Represent routes that cross the cut


interface annotating every cut edge 

S

i T𝗉i

T𝗌𝗉𝗂𝗇𝖾𝗌
⟨d,1⟩

⟨d,2⟩ ⟨d,2⟩

⟨d,3⟩



Cutting Down Fattrees
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𝖺𝗌𝗌(a4) 𝖺𝗌𝗌(a5) 𝖺𝗌𝗌(a8) 𝖺𝗌𝗌(a9) 𝖺𝗌𝗌(a12) 𝖺𝗌𝗌(a13) 𝖺𝗌𝗌(a16) 𝖺𝗌𝗌(a17)

input node

output node 𝗀𝗎𝖺𝗋(c0) 𝗀𝗎𝖺𝗋(c1) 𝗀𝗎𝖺𝗋(c2) 𝗀𝗎𝖺𝗋(c3)

Interface defines 


input nodes: assume the annotated route,


output nodes: guarantee (check) node converges to the annotated route
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Cutting Down Fattrees
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𝖺𝗌𝗌(a5) 𝖺𝗌𝗌(a8) 𝖺𝗌𝗌(a9) 𝖺𝗌𝗌(a12) 𝖺𝗌𝗌(a13) 𝖺𝗌𝗌(a16) 𝖺𝗌𝗌(a17)

input node

output node 𝗀𝗎𝖺𝗋(c1) 𝗀𝗎𝖺𝗋(c2) 𝗀𝗎𝖺𝗋(c3)

assume ⟨d,1⟩

guarantee ⟨d,2⟩

Interface defines 


input nodes: assume the annotated route,


output nodes: guarantee (check) node converges to the annotated route
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Cutting Down Fattrees
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𝗀𝗎𝖺𝗋(a4) 𝗀𝗎𝖺𝗋(a5)

𝖺𝗌𝗌(c0) 𝖺𝗌𝗌(c1) 𝖺𝗌𝗌(c2) 𝖺𝗌𝗌(c3)

If we assume an annotation in one fragment, we guarantee it in another.

c0 c1 c2 c3

a4 a5

e6 e7

guarantee ⟨d,1⟩

assume ⟨d,2⟩
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Catching Bugs with Modular Verification
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⟨d,1⟩ ⟨d,3⟩ ⟨d,3⟩ ⟨d,3⟩

⟨d,2⟩ ⟨d,2⟩ ⟨d,2⟩ ⟨d,2⟩

⟨d,1⟩ ⟨d,3⟩ ⟨d,3⟩ ⟨d,3⟩

Suppose we annotated our fattree network with this interface…
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Catching Bugs with Modular Verification
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Imagine  is reconfigured incorrectly, causing it to 
drop incoming routes (i.e., blackhole)…

c0
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Catching Bugs with Modular Verification
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Given the assumptions on ’s input nodes, it will converge to the  route.c0 ∞

∞

assume ⟨d,1⟩ assume ⟨d,3⟩ assume ⟨d,3⟩ assume ⟨d,3⟩
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Catching Bugs with Modular Verification
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∞

assume ⟨d,1⟩ assume ⟨d,3⟩ assume ⟨d,3⟩ assume ⟨d,3⟩

’s  route isn’t what the interface guaranteed, so verification fails, and 

the solver returns the  route as a counterexample.

c0 ∞
∞

guarantee ⟨d,2⟩
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Catching Bugs with Modular Verification
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We can now identify and fix the bug at , 
without checking any other fragment!

c0



A Theory of Network Fragments

Proven sound


if we cut SRP  using interface  into fragments , 


if the fragments have solutions, their combined solutions are a solution to .


Proven complete


if we cut SRP  using interface  into fragments , 


if  annotates the nodes with their solutions in , the fragments have solutions.

S I T1, T2, …

S

S I T1, T2, …

I S
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Implementation
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Kirigami 


an extension to NV, a network modelling system & analysis tool


lets users define interfaces in the NV language for their networks


The “end-to-end” NV verification pipeline


preprocess network


if interface defined, cut into fragments using Kirigami


encode network/fragments as SMT formulae


hand off encoding(s) to the Z3 SMT solver to check properties & guarantees



Evaluation

We wanted to find out…


Does Kirigami scale better than NV?


How do different cuts affect verification time?


Evaluated on a variety of benchmarks


Fattrees, random networks, wide-area networks


Simple shortest-path, valley-free routing, 1-
node fault tolerance


Single-node reachability, all-ToR reachability

49

Kirigami improves maximum Z3 
solve time by up to 100,000x, and 
end-to-end NV verification time by 

up to 10x.



All-ToR Reachability
Evaluation set-up

k-fattree topologies


20 (k=4) to 500 (k=20) nodes


Simple shortest-path Border Gateway 
Protocol (BGP) routing to a symbolic 
destination ToR node


4 different cuts considered for fattrees


Finer cuts require more annotations, but 
should take less time to solve


Generated annotations using a script, 
using node tier and pod to determine 
shortest path to destination
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All-ToR Reachability
SMT Performance

Time taken by the slowest SMT query 
among all fragments (1 query/fragment)


Smaller fragments ⇒ faster queries


At 500 nodes, monolithic benchmark 
times out after 2h


… pods queries take at most 3.54s


… full query take at most 0.24s


SMT results are similar across other 
benchmarks
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All-ToR Reachability
End-to-end Performance

Time taken by NV verification pipeline


Parallelized over 32 CPU cores, 128GB/core


Partitioned networks scale past monolithic


At 320 nodes, ~10x speedup


At 500 nodes, full cut spends 87% of time 
cutting network


Pods cut fully parallelizable, balances 
cutting time with solving time to achieve 
best overall time
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Practical Kirigami Usage

Annotations are a small burden relative to writing the rest of the config


Users should annotate during development


Caveat: how difficult is it to come up with the correct annotations?


Easiest in a highly-structured network such as a data center


May need to cut more granularly to obtain interface with correct guarantees


Counterexamples can help refine interface if annotations don’t match 
network behavior
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Limitations

Assumes networks converge to unique solutions


Uncommon in practice?


Easy to see for some protocols, e.g., distance-vector protocols


Requires exact annotations


Stable routes ensure we don’t admit spurious (incorrect) annotations
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Takeaways

Modularity has critical benefits for network verification


Makes interactive behavior explicit and easier to reason about


Localizes verification and error correction


Accelerates and parallelizes analysis time


Kirigami brings modularity to network control plane verification


…with a sound theoretical framework


…and proven benefits on many topologies and policies!
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Comparison of Related Work
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Tool
Bagpipe  

(OOPSLA 2016)
Minesweeper  

(SIGCOMM 2018)
Tiramisu  

(NSDI 2020)
Plankton  

(NSDI 2020)
Kirigami 

(ICNP 2022)

Underlying 
technique

Encode BGP 
network to SMT

Encode network to 
SMT

Simulate policy 
over multi-layer 

graph

Use explicit-state 
model checking 

over policy model

Cut network, 
encode fragments 

to SMT

Arbitrary symbolic 
reasoning?

Yes Yes No No* Yes

Scales to large 
networks?

No No Yes Yes Yes

Modular? No No No No Yes
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Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. Scalable 
Verification of Border Gateway Protocol Configurations with an SMT Solver. In OOPSLA 2016.  
http://www.konne.me/assets/bagpipe.pdf

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. Plankton: Scalable network 
configuration verification through model checking. In NSDI 2020.  
https://www.usenix.org/system/files/nsdi20-paper-prabhu.pdf



A Closer Look at the Implementation
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include “fat.nv”


(* Associate each node with a fragment *)

let partition node = match node with

  | 0n | 1n | 2n | 3n -> 0 (* spines *)

  | 4n | 5n | 6n | 7n -> 1 (* pod 0 *)

  | 8n | 9n | 10n | 11n -> 2 (* pod 1 *)

  | 12n | 13n | 14n | 15n -> 3 (* pod 2 *)

  | 16n | 17n | 18n | 19n -> 4 (* pod 3 *)


(* Associate each edge with an annotation *)

let interface edge route = match edge with

  | 0~_ | 1~_ | 2~_ | 3~_ -> route = { id = d; cost = 2; }

  | 4~_ | 5~_ ->             route = { id = d; cost = if d >= 4 && d <= 7 then 1 else 3; }

  | 8~_ | 9~_ ->             route = { id = d; cost = if d >= 8 && d <= 9 then 1 else 3; }

  | 12~_ | 13~_ ->           route = { id = d; cost = if d >= 12 && d <= 15 then 1 else 3; }

  | 16~_ | 17~_ ->           route = { id = d; cost = if d >= 16 && d <= 19 then 1 else 3; }



Why Exact Annotations?

Limitation of our approach: couldn’t we overapproximate?


Exact routes ensure spurious annotations are not admitted


Other modular techniques also require a well-founded ordering


Different tradeoffs to provide this ordering
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