/ |]
o~ ! https://penntoday .upenn .edu/sites/default /files/2020-01/kirigami_closeup.jpg
\ '\ 3 ‘ \\

> ngamrthe Verlflable Art of N
Nefwork Cuttln% j

ICNP 2022

Tim Alberdlngk Thljm Ryan Beckett, Aarti Gupta,

titute

tersins

.

httpss ;;utersinstitute.politics.ox.ac.u K/sites/d j"'}

“ | As enterprises face a possible recession, will uptake of cloud services slow?

6000 OCO0

By Anirban Ghoshal
_ A Senior Writer, InfoWorld
/ (2
NEWS

Microsoft weathers the financial storm with 12%
revenue growth

Despite some tricky global headwinds, Microsoft continues to post strong results,
buoyed by its cloud business, which surpassed $25 billion in quarterly revenue for the §

first time.
‘\d I ‘

,Y

in%ége_O.jpg

e ! After config error takes down Rogers, it
promises to spend billions on reliability

Routers flooded with internet traffic in filter blunder, watchdog told

* | As enterprises face a possible recession, will uptake of cloud services slc

,_' ﬁ O @ @ @ A Brandon Vigliarolo Mon 25 Jul 2022 18:45 UTC
@ \ By Anirban Ghoshal " / /) .
E B senior Writer, Infoworld |
- — Cloudflare outage on June 21,
F / . . /{ W ,
_ " A
NEWS

2022
Microsoft weathers the financial stormwith12% §
revenue growth

Despite some tricky global headwinds, Microsoft continues to post strong results, ;
buoyed by its cloud business, which surpassed $25 billion in quarterly revenue for the i
first time. {2

gf Jeremy Hartman

3
b
o

WEB / TECH / FACEBOOK

What is BGP, and what role did it play in
Facebook’s massive outage

efauft/fitesinlincaimages/ News %205t Oimage_0.jpg
/ - .\\\‘ S : iga.
\ - N ‘ . - 5 e '-';:, X % ._ ;

\ VN Rogers, it
\

| on reliability
Jk wvatchdog told

'> 18:45 UTC

Hn June 21,

Wiki =

£ wikiHow is where trusted research and expert knowledge come together. Learn why people trust wikiHow

% AS enteT’pTISE ADDICTIONS » TECHNOLOGY DEPENDENCE

6 OoOd®c Howto Avoid Being Overwhelmed by

’ .. Information
6~ By Anirb:
- Senior Writer, InfoWorld ~ .

NEWS

Microsoft weath:
revenue growth

Despite some tricky global |
buoyed by its cloud busines
first time.

BNy N
RN
. ‘.\ \‘ \
NN
|

Analyzing Distributed Control Planes

Lots of great work, including...
Batfish [Fogel et al.,, NSDI 2015]
Bagpipe [Weitz et al., OOPSLA 2016]

Minesweeper [Beckett, Gupta, Mahajan, Walker,
SIGCOMM 2018] But all these tools must analyze

NV [Giannarakis, Loehr, Beckett, Walker, PLDI 2020] entire network at once!

Tiramisu [Abhashkumar, Gember-Jacobson, Akella,
NSDI 2020]

Plankton [Prabhu et al., NSDI 2020]

Analyzing Distributed Control Planes

Lots of great work, including...
Batfish [Fogel et al., NSDI 2015]
Bagpipe [Weitz et al., OOPSLA 2016]

Minesweeper [Beckett, Gupta, Mahajan, Walker,
SIGCOMM 2018] But all these tools must analyze

NV [Giannarakis, Loehr, Beckett, Walker, PLDI 2020] entire network at once!

Tiramisu [Abhashkumar, Gember-Jacobson, Akella,
NSDI 2020]

Plankton [Prabhu et al., NSDI 2020]

Modularity Is Essential

Cloud providers have networks with millions of nodes,

and they are growing...

Thinking about our networks one piece at a time makes them
easier to reason over, and

supports incremental changes and updates

Modular Network Verification

ldentify the network’s components

Annotate component boundaries with DS e
: Y=V

an interface @

Break up the network into fragments @ ‘@ @’ @ @’&

to analyze separately

Modular Network Verification

ldentify the network’s components

Annotate component boundaries with /™\ XSS
an interface ' ‘

Break up the network into fragments

to analyze separately

10

Modular Network Verification

/dentify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

i

Modular Network Verification

ldentify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

Modular Network Verification

Satisfiability Modulo Theories (SMT)-based verification

time
Nonlinear in size of network (worst case exponential)

Bottlenecks analysis (NP-complete problem)

SMT Time

Splitting up network takes linear time

...but with better-than-linear improvements!

Network size

Our experiments saw SMT times improve by over
100,000x

13

Modular Network Verification

Satisfiability Modulo Theories (SMT)-based verification

time
Nonlinear in size of network (worst case exponential)

Bottlenecks analysis (NP-complete problem)

SMT Time

Splitting up network takes linear time

...but with better-than-linear improvements!

Network size

Our experiments saw SMT times improve by over
100,000x

14

Modular Network Verification

fragment 1 network verifier

fragment 2

S é

15

Modular Network Verification

fragment 1 network verifier

s

fragment 2

@@@ ;,>%§]

16

Modular Network Verification

network verifier

fragment 1

656
) x:@@
Y6
. 626,
QSO
LAl
%636
©20

network

fragment 2

Interface

17

N

B

-
D
ﬁ
=
O
=
=

%6 IS
%6

36
6390,
626 1S,

Interface

i

Modular Network Verification

fragment 1 network verifier
@ \
DO
(Do D)5
g
\ fragment 2
© @ O

(=)

18

network

INterrace

Modular Network Verification

fragment 1 network verifier

19

Modular Network Verification

fragment 1 network verifier
SOl 000 o (& o)
g
\ fragment 2

Our Contributions

A theory of network interfaces and fragments

based on assume-guarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification
A checking procedure to verify properties using fragments

and to check if a given interface is correct
An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

21

Our Contributions

A theory of network interfaces and fragments

based on assume-quarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification
A checking procedure to verify properties using fragments

and to check if a given interface is correct
An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

22

Our Contributions

A theory of network interfaces and fragments

based on assume-quarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification
A checking procedure to verify properties using fragments

and to check if a given interface is correct
An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

23

Roadmap

An Example Modular Verification Problem
A Theory of Network Fragments
Implementation

Evaluation

Takeaways

24

Verifying a Data Center

The Stable Routing Problem
topology graph with nodes V and edges E

25

Verifying a Data Center

The Stable Routing Problem
topology graph with nodes V and edges E

routes (routing announcements) (p, x):

identifier p and a cost metric x

26

Verifying a Data Center

The Stable Routing Problem

A

’,’
.
.

Verifying a Data Center

The Stable Routing Problem

28

Verifying a Data Center

The Stable Routing Problem

29

Verifying a Data Center

The Stable Routing Problem

= {5
OO mjm
=N/

30

Verifying a Data Center

The Stable Routing Problem

.
(€q,1)

@& 3 ¥ gl

<e6,0> @ @ -

31

Verifying a Data Center

The Stable Routing Problem

.
(€g,1)

\

o .
s’ -
e—
(€

.
|

1)

<e692>

— ——

(€6,2)

32

Verifying a Data Center

The Stable Routing Problem

33

Verifying a Data Center

The Stable Routing Problem

Routing converges to network solution
Check properties on nodes’ solutions

all-pairs path length

for any choice of identifier p, all

nodes converge to a route (p, x) with

a metric x < 4.

34

Verifying a Data Center

The Stable Routing Problem

Routing converges to network solution
Check properties on nodes’ solutions

all-pairs path length

for any choice of identifier p, all

nodes converge to a route (p, x) with

a metric x < 4.

35

Verifying a Data Center

The Stable Routing Problem

Routing converges to network solution (e:.2)
Check properties
all-pairs path lg

for any choice of identifier p, all

nodes converge to a route (p, x) with

a metric x < 4.

36

Cutting Down Fattrees

Cut fattree SRP S into fragments

each pod zin its own fragment 1,

spine nodes in a fragment /.

Represent routes that cross the cut

interface annotating every cut edge

37

Cutting Down Fattrees

Cut fattree SRP § into fragments

each pod 7in its own fragment 1,

spine nodes in a fragment /.

Represent routes that cross the cut

interface annotating every cut edge

38

Cutting Down Fattrees

output node guar(cy) guar(c;) guar(c,) guar(c;)

input node

ass(a,) ass(as) ass(ag) ass(aq) ass(a;,) ass(a,z) ass(a;¢) ass(a;-)
Interface defines

input nodes: assume the annotated route,

output nodes: guarantee (check) node converges to the annotated route

39

Cutting Down Fattrees

output node quaran)guar(cl) guar(c,) guar(cs)

input node

@ , ass(as) ass(ag) ass(ag) ass(ay,) ass(a,3) ass(a,q) ass(a;-)

Interface defines
input nodes: assume the annotated route,

output nodes: guarantee (check) node converges to the annotated route

40

Cutting Down Fattrees
f r ' ass(cy) ass(c,) ass(c;)

@:uar)

If we assume an annotation in one fragment, we quarantee it in another.

Catching Bugs with Modular Verification

Catching Bugs with Modular Verification

Catching Bugs with Modular Verification

Catching Bugs with Modular Verification

Catching Bugs with Modular Verification

A Theory of Network Fragments

Proven sound

if we cut SRP §$ using interface [into fragments 7, 715, ...,

if the fragments have solutions, their combined solutions are a solution to .

Proven complete

if we cut SRP S using interface / into fragments 77, 7>, ...,

if / annotates the nodes with their solutions in S, the fragments have solutions.

47

Implementation

Kirigami
an extension to NV, a network modelling system & analysis tool
lets users define interfaces in the NV language for their networks
The “end-to-end” NV verification pipeline
preprocess network
if interface defined, cut into fragments using Kirigami
encode network/fragments as SMT formulae

hand off encoding(s) to the Z3 SMT solver to check properties & guarantees

48

Evaluation

We wanted to find out...

Does Kirigami scale better than NV?

How do different cuts affect verification time? [
Evaluated on a variety of benchmarks

Fattrees, random networks, wide-area networks

Simple shortest-path, valley-free routing, 1-
node fault tolerance

Single-node reachability, all-ToR reachability

49

All-ToR Reachability

Evaluation set-up

vertical horizontal

k-fattree topologies
20 (k=4) to 500 (k=20) nodes

Simple shortest-path Border Gateway
Protocol (BGP) routing to a symbolic
destination ToR node

4 different cuts considered for fattrees

Finer cuts require more annotations, but
should take less time to solve

Generated annotations using a script,
using node tier and pod to determine
shortest path to destination

50

All-ToR Reachability

SMT Performance

Time taken by the slowest SMT query

104 | | | —e— monolithic
among all fragments (1 query/fragment) SMT timeout —»— vertical

1 [—=— horizontal
T|—— pods
full

Smaller fragments = faster queries

At 500 nodes, monolithic benchmark
times out after 2h

SMT Time |s]

... pods queries take at most 3.54s

... full query take at most 0.24s

SMT results are similar across other

5 | | | | .
0 100 200 300 400 500
Nodes

benchmarks

51

All-ToR Reachability

End-to-end Performance

Time taken by NV verification pipeline

Parallelized over 32 CPU cores, 128GB/core

Partitioned networks scale past monolithic
At 320 nodes, ~10x speedup

At 500 nodes, full cut spends 87% of time
cutting network

Pods cut fully parallelizable, balances
cutting time with solving time to achieve
best overall time

NV Time [s]

- ER VAl

—e— monolithic
—»— vertical
—=— horizontal
—— pods
full

-

52

|
100

| |
200 300
Nodes

|
400

500

Practical Kirigami Usage

Annotations are a small burden relative to writing the rest of the config
Users should annotate during development
Caveat: how difficult is it to come up with the correct annotations?
Easiest in a highly-structured network such as a data center
May need to cut more granularly to obtain interface with correct guarantees

Counterexamples can help refine interface if annotations don’t match
network behavior

53

Limitations

Assumes networks converge to unique solutions

Uncommon in practice?

Easy to see for some protocols, e.g., distance-vector protocols
Requires exact annotations

Stable routes ensure we don’t admit spurious (incorrect) annotations

54

Takeaways

Modularity has critical benefits for network verification
Makes interactive behavior explicit and easier to reason about
Localizes verification and error correction
Accelerates and parallelizes analysis time

Kirigami brings modularity to network control plane verification
...with a sound theoretical framework

...and proven benefits on many topologies and policies!

55

Comparison of Related Work

Bagpipe Minesweeper Tiramisu Plankton Kirigami
(OOPSLA 2016) @ (SIGCOMM 2018) (NSDI 2020) (NSDI1 2020) (ICNP 2022)
, Simulate policy Use explicit-state Cut network,
Underlying Encode BGP Encode network to , ,
, over multi-layer model checking encode fragments
technique network to SMT SMT ,
graph over policy model to SMT
Arbitrary symbolic
, Yes Yes No No* Yes
reasoning?
Scales to large
No No Yes Yes Yes
networks?
Modular? No No No No Yes

Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. Tiramisu: Fast multilayer network verification. In

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general approach to network configuration
NSDI 2020. https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf

verification. In SIGCOMM, August 2017. https://doi.org/10.1145/3098822.3098834

Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. Scalable
Verification of Border Gateway Protocol Configurations with an SMT Solver. In OOPSLA 2016.
http://www.konne.me/assets/bagpipe.pdf

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. Plankton: Scalable network

configuration verification through model checking. In NSDI 2020.
56 https://www.usenix.org/system/files/nsdi20-paper-prabhu.pdf

A Closer Look at the Implementation

include “fat.nv”

(¥ Associate each node with a fragment =*)
let partition node = match node with

On 1n 2N 3n => O (* spilnes *)

4n 5n 6N n => 1 (% pod O %)

8n on 10n 1ln -=> 2 (* pod 1 *)
12n 13n 14n 15n -=> 3 (% pod 2 *)
16n 17n 18n 19n -> 4 (% pod 3 =*)

(¥ Assocliate each edge with an annotation)
let interface edge route = match edge with

O~_ 1~ | 2~ _ ‘ 3~ -=> route = { id = d; cost = 2; }

4~ 5~ —> route = { 1d = d; cost = 1if d >= 4 & d <= 7 then 1 else 3; }
8~ O~ —> route = { id = d; cost = if d >= 8 & d <= 9 then 1 else 3; }
12~ | 13~ -> route = { id = d; cost = if d >= 12 && d <= 15 then 1 else 3; }
16~ 17~ -> route = { 1d = d; cost = 1f d >= 16 & d <= 19 then 1 else 3; }

Why Exact Annotations?

Limitation of our approach: couldn’t we overapproximate?
Exact routes ensure spurious annotations are not admitted
Other modular techniques also require a well-founded ordering

Different tradeoffs to provide this ordering

58

