
Kirigami, the Verifiable Art of
Network Cutting

Tim Alberdingk Thijm, Ryan Beckett, Aarti Gupta, David Walker

ICNP 2022

https://penntoday.upenn.edu/sites/default/files/2020-01/kirigami_closeup.jpg

1

2

https://reutersinstitute.politics.ox.ac.uk/sites/default/files/inline-images/News%20story%20image_0.jpg

3

https://reutersinstitute.politics.ox.ac.uk/sites/default/files/inline-images/News%20story%20image_0.jpg

4

https://reutersinstitute.politics.ox.ac.uk/sites/default/files/inline-images/News%20story%20image_0.jpg

5

https://reutersinstitute.politics.ox.ac.uk/sites/default/files/inline-images/News%20story%20image_0.jpg

Analyzing Distributed Control Planes

Lots of great work, including…

Batfish [Fogel et al., NSDI 2015]

Bagpipe [Weitz et al., OOPSLA 2016]

Minesweeper [Beckett, Gupta, Mahajan, Walker,
SIGCOMM 2018]

NV [Giannarakis, Loehr, Beckett, Walker, PLDI 2020]

Tiramisu [Abhashkumar, Gember-Jacobson, Akella,
NSDI 2020]

Plankton [Prabhu et al., NSDI 2020]

6

But all these tools must analyze
entire network at once!

Analyzing Distributed Control Planes

Lots of great work, including…

Batfish [Fogel et al., NSDI 2015]

Bagpipe [Weitz et al., OOPSLA 2016]

Minesweeper [Beckett, Gupta, Mahajan, Walker,
SIGCOMM 2018]

NV [Giannarakis, Loehr, Beckett, Walker, PLDI 2020]

Tiramisu [Abhashkumar, Gember-Jacobson, Akella,
NSDI 2020]

Plankton [Prabhu et al., NSDI 2020]

7

But all these tools must analyze
entire network at once!

Modularity Is Essential

Cloud providers have networks with millions of nodes,

and they are growing…

Thinking about our networks one piece at a time makes them

easier to reason over, and

supports incremental changes and updates

8

Modular Network Verification

Identify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

9

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Modular Network Verification

Identify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

10

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Modular Network Verification

Identify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

11

a4 a5

e6 e7

 sends route to c1 ⟨d,2⟩ a5 sends route to a4 ⟨d,3⟩ c0

Modular Network Verification

Identify the network’s components

Annotate component boundaries with
an interface

Break up the network into fragments
to analyze separately

12

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Modular Network Verification

Satisfiability Modulo Theories (SMT)-based verification
time

Nonlinear in size of network (worst case exponential)

Bottlenecks analysis (NP-complete problem)

Splitting up network takes linear time

…but with better-than-linear improvements!

Our experiments saw SMT times improve by over
100,000x

13

Network size

SM
T

Ti
m

e

Modular Network Verification

Satisfiability Modulo Theories (SMT)-based verification
time

Nonlinear in size of network (worst case exponential)

Bottlenecks analysis (NP-complete problem)

Splitting up network takes linear time

…but with better-than-linear improvements!

Our experiments saw SMT times improve by over
100,000x

14

Network size

SM
T

Ti
m

e

Modular Network Verification

fragment 1

fragment 2

network verifier

interface

network

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

15

Modular Network Verification

fragment 1

fragment 2

network verifi

interface

network

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

16

Modular Network Verification

fragment 1

fragment 2

network verifi

interface

network

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

17

Modular Network Verification

fragment 1

fragment 2

network verifier

interface

network

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

18

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

Modular Network Verification

interface

network fragment 1

fragment 2

network verifier

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Verification counterexamples
localized to particular

fragments.

19

c0 c1 c2 c3

a4 a5

e6 e7

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Modular Network Verification

network verifi

interface

network fragment 1

fragment 2

Users can specify arbitrary cuts for
fragments of different granularities,

accommodating annotation cost.

 sends route to c1 ⟨d,2⟩ a5

 sends route to a4 ⟨d,3⟩ c0

…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

20

Our Contributions

21

A theory of network interfaces and fragments

based on assume-guarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification

A checking procedure to verify properties using fragments

and to check if a given interface is correct

An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

Our Contributions

22

A theory of network interfaces and fragments

based on assume-guarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification

A checking procedure to verify properties using fragments

and to check if a given interface is correct

An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

Our Contributions

23

A theory of network interfaces and fragments

based on assume-guarantee reasoning,

proved fragment verification sound and complete w.r.t. monolithic verification

A checking procedure to verify properties using fragments

and to check if a given interface is correct

An extension Kirigami for the network verification language NV

evaluated on benchmarks, with over 100,000x improvement in SMT time

Roadmap

An Example Modular Verification Problem

A Theory of Network Fragments

Implementation

Evaluation

Takeaways

24

Verifying a Data Center
The Stable Routing Problem

G = (V, E)

25

topology graph with nodes and edges V E

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Verifying a Data Center
The Stable Routing Problem

G = (V, E)

⟨e6,0⟩

topology graph with nodes and edges V E

routes (routing announcements) :  

identifier and a cost metric

⟨p, x⟩
p x

26

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

27

a4 a5

e6 e7

Suppose announces a route to itself.e6

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

28

a4 a5

e6 e7

∞ ∞

∞

Other nodes start with no route ().∞

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

29

a4 a5

e6 e7

∞ ∞

∞

⟨e6,1⟩ ⟨e6,1⟩

Nodes broadcast updated routes to all
neighbors, incrementing the route’s cost.

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

30

a4 a5

e6 e7 ∞

∞ ∞

⟨e6,1⟩ ⟨e6,1⟩
⟨e6,1⟩⟨e6,1⟩

Nodes compare received routes to select
the route with the smallest cost.

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

31

a4 a5

e6 e7 ∞

⟨e6,1⟩ ⟨e6,1⟩

⟨e6,2⟩⟨e6,2⟩
…and so on…

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

32

a4 a5

e6 e7

⟨e6,1⟩ ⟨e6,1⟩

∞

⟨e6,2⟩

⟨e6,2⟩

⟨e6,2⟩
⟨e6,2⟩

⟨e6,0⟩

…and so on…

Verifying a Data Center
The Stable Routing Problem

⟨e6,0⟩

33

a4 a5

e6 e7

⟨e6,1⟩ ⟨e6,1⟩

⟨e6,2⟩

until every node has
a stable, locally-best

route (a solution)

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Verifying a Data Center
The Stable Routing Problem

34

Routing converges to network solution

Check properties on nodes’ solutions

all-pairs path length 
for any choice of identifier , all

nodes converge to a route with

a metric .

p
⟨p, x⟩

x ≤ 4

⟨e6,1⟩ ⟨e6,3⟩

⟨e6,4⟩⟨e6,0⟩

⟨e6,2⟩

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Verifying a Data Center
The Stable Routing Problem

35

Routing converges to network solution

Check properties on nodes’ solutions

all-pairs path length 
for any choice of identifier , all

nodes converge to a route with

a metric .

p
⟨p, x⟩

x ≤ 4

⟨e6,1⟩ ⟨e6,3⟩

⟨e6,4⟩⟨e6,0⟩

⟨e6,2⟩

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Verifying a Data Center
The Stable Routing Problem

36

Routing converges to network solution

Check properties on nodes’ solutions

all-pairs path length 
for any choice of identifier , all

nodes converge to a route with

a metric .

p
⟨p, x⟩

x ≤ 4

⟨e6,1⟩ ⟨e6,3⟩

⟨e6,4⟩⟨e6,0⟩

⟨e6,2⟩

Let’s modularize it!

Cutting Down Fattrees

37

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Cut fattree SRP into fragments

each pod in its own fragment ,

spine nodes in a fragment

Represent routes that cross the cut

interface annotating every cut edge

S

i T𝗉i

T𝗌𝗉𝗂𝗇𝖾𝗌

Cutting Down Fattrees

38

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Cut fattree SRP into fragments

each pod in its own fragment ,

spine nodes in a fragment

Represent routes that cross the cut

interface annotating every cut edge

S

i T𝗉i

T𝗌𝗉𝗂𝗇𝖾𝗌
⟨d,1⟩

⟨d,2⟩ ⟨d,2⟩

⟨d,3⟩

Cutting Down Fattrees

39

𝖺𝗌𝗌(a4) 𝖺𝗌𝗌(a5) 𝖺𝗌𝗌(a8) 𝖺𝗌𝗌(a9) 𝖺𝗌𝗌(a12) 𝖺𝗌𝗌(a13) 𝖺𝗌𝗌(a16) 𝖺𝗌𝗌(a17)

input node

output node 𝗀𝗎𝖺𝗋(c0) 𝗀𝗎𝖺𝗋(c1) 𝗀𝗎𝖺𝗋(c2) 𝗀𝗎𝖺𝗋(c3)

Interface defines

input nodes: assume the annotated route,

output nodes: guarantee (check) node converges to the annotated route

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Cutting Down Fattrees

40

𝖺𝗌𝗌(a5) 𝖺𝗌𝗌(a8) 𝖺𝗌𝗌(a9) 𝖺𝗌𝗌(a12) 𝖺𝗌𝗌(a13) 𝖺𝗌𝗌(a16) 𝖺𝗌𝗌(a17)

input node

output node 𝗀𝗎𝖺𝗋(c1) 𝗀𝗎𝖺𝗋(c2) 𝗀𝗎𝖺𝗋(c3)

assume ⟨d,1⟩

guarantee ⟨d,2⟩

Interface defines

input nodes: assume the annotated route,

output nodes: guarantee (check) node converges to the annotated route

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Cutting Down Fattrees

41

𝗀𝗎𝖺𝗋(a4) 𝗀𝗎𝖺𝗋(a5)

𝖺𝗌𝗌(c0) 𝖺𝗌𝗌(c1) 𝖺𝗌𝗌(c2) 𝖺𝗌𝗌(c3)

If we assume an annotation in one fragment, we guarantee it in another.

c0 c1 c2 c3

a4 a5

e6 e7

guarantee ⟨d,1⟩

assume ⟨d,2⟩

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Catching Bugs with Modular Verification

42

⟨d,1⟩ ⟨d,3⟩ ⟨d,3⟩ ⟨d,3⟩

⟨d,2⟩ ⟨d,2⟩ ⟨d,2⟩ ⟨d,2⟩

⟨d,1⟩ ⟨d,3⟩ ⟨d,3⟩ ⟨d,3⟩

Suppose we annotated our fattree network with this interface…

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Catching Bugs with Modular Verification

43

Imagine is reconfigured incorrectly, causing it to
drop incoming routes (i.e., blackhole)…

c0

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Catching Bugs with Modular Verification

44

Given the assumptions on ’s input nodes, it will converge to the route.c0 ∞

∞

assume ⟨d,1⟩ assume ⟨d,3⟩ assume ⟨d,3⟩ assume ⟨d,3⟩

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Catching Bugs with Modular Verification

45

∞

assume ⟨d,1⟩ assume ⟨d,3⟩ assume ⟨d,3⟩ assume ⟨d,3⟩

’s route isn’t what the interface guaranteed, so verification fails, and

the solver returns the route as a counterexample.

c0 ∞
∞

guarantee ⟨d,2⟩

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

Catching Bugs with Modular Verification

46

We can now identify and fix the bug at ,
without checking any other fragment!

c0

A Theory of Network Fragments

Proven sound

if we cut SRP using interface into fragments ,

if the fragments have solutions, their combined solutions are a solution to .

Proven complete

if we cut SRP using interface into fragments ,

if annotates the nodes with their solutions in , the fragments have solutions.

S I T1, T2, …

S

S I T1, T2, …

I S

47

Implementation

48

Kirigami

an extension to NV, a network modelling system & analysis tool

lets users define interfaces in the NV language for their networks

The “end-to-end” NV verification pipeline

preprocess network

if interface defined, cut into fragments using Kirigami

encode network/fragments as SMT formulae

hand off encoding(s) to the Z3 SMT solver to check properties & guarantees

Evaluation

We wanted to find out…

Does Kirigami scale better than NV?

How do different cuts affect verification time?

Evaluated on a variety of benchmarks

Fattrees, random networks, wide-area networks

Simple shortest-path, valley-free routing, 1-
node fault tolerance

Single-node reachability, all-ToR reachability

49

Kirigami improves maximum Z3
solve time by up to 100,000x, and
end-to-end NV verification time by

up to 10x.

All-ToR Reachability
Evaluation set-up

k-fattree topologies

20 (k=4) to 500 (k=20) nodes

Simple shortest-path Border Gateway
Protocol (BGP) routing to a symbolic
destination ToR node

4 different cuts considered for fattrees

Finer cuts require more annotations, but
should take less time to solve

Generated annotations using a script,
using node tier and pod to determine
shortest path to destination

50

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

vertical horizontal

pods full

All-ToR Reachability
SMT Performance

Time taken by the slowest SMT query
among all fragments (1 query/fragment)

Smaller fragments ⇒ faster queries

At 500 nodes, monolithic benchmark
times out after 2h

… pods queries take at most 3.54s

… full query take at most 0.24s

SMT results are similar across other
benchmarks

51

0 100 200 300 400 500

10�2

10�1

100

101

102

103

104
SMT timeout

Nodes

SM
T

Ti
m

e
[s
]

monolithic
vertical

horizontal
pods
full

All-ToR Reachability
End-to-end Performance

Time taken by NV verification pipeline

Parallelized over 32 CPU cores, 128GB/core

Partitioned networks scale past monolithic

At 320 nodes, ~10x speedup

At 500 nodes, full cut spends 87% of time
cutting network

Pods cut fully parallelizable, balances
cutting time with solving time to achieve
best overall time

52

0 100 200 300 400 500

100

101

102

103

104

Nodes

N
V

Ti
m

e
[s
]

monolithic
vertical

horizontal
pods
full

Practical Kirigami Usage

Annotations are a small burden relative to writing the rest of the config

Users should annotate during development

Caveat: how difficult is it to come up with the correct annotations?

Easiest in a highly-structured network such as a data center

May need to cut more granularly to obtain interface with correct guarantees

Counterexamples can help refine interface if annotations don’t match
network behavior

53

Limitations

Assumes networks converge to unique solutions

Uncommon in practice?

Easy to see for some protocols, e.g., distance-vector protocols

Requires exact annotations

Stable routes ensure we don’t admit spurious (incorrect) annotations

54

Takeaways

Modularity has critical benefits for network verification

Makes interactive behavior explicit and easier to reason about

Localizes verification and error correction

Accelerates and parallelizes analysis time

Kirigami brings modularity to network control plane verification

…with a sound theoretical framework

…and proven benefits on many topologies and policies!
55

Comparison of Related Work

56

Tool
Bagpipe  

(OOPSLA 2016)
Minesweeper  

(SIGCOMM 2018)
Tiramisu  

(NSDI 2020)
Plankton  

(NSDI 2020)
Kirigami 

(ICNP 2022)

Underlying
technique

Encode BGP
network to SMT

Encode network to
SMT

Simulate policy
over multi-layer

graph

Use explicit-state
model checking

over policy model

Cut network,
encode fragments

to SMT

Arbitrary symbolic
reasoning?

Yes Yes No No* Yes

Scales to large
networks?

No No Yes Yes Yes

Modular? No No No No Yes

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general approach to network configuration

verification. In SIGCOMM, August 2017. https://doi.org/10.1145/3098822.3098834
Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. Tiramisu: Fast multilayer network verification. In
NSDI 2020. https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf

Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. Scalable
Verification of Border Gateway Protocol Configurations with an SMT Solver. In OOPSLA 2016.  
http://www.konne.me/assets/bagpipe.pdf

Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. Plankton: Scalable network
configuration verification through model checking. In NSDI 2020.  
https://www.usenix.org/system/files/nsdi20-paper-prabhu.pdf

A Closer Look at the Implementation

57

include “fat.nv”

(* Associate each node with a fragment *)

let partition node = match node with

 | 0n | 1n | 2n | 3n -> 0 (* spines *)

 | 4n | 5n | 6n | 7n -> 1 (* pod 0 *)

 | 8n | 9n | 10n | 11n -> 2 (* pod 1 *)

 | 12n | 13n | 14n | 15n -> 3 (* pod 2 *)

 | 16n | 17n | 18n | 19n -> 4 (* pod 3 *)

(* Associate each edge with an annotation *)

let interface edge route = match edge with

 | 0~_ | 1~_ | 2~_ | 3~_ -> route = { id = d; cost = 2; }

 | 4~_ | 5~_ -> route = { id = d; cost = if d >= 4 && d <= 7 then 1 else 3; }

 | 8~_ | 9~_ -> route = { id = d; cost = if d >= 8 && d <= 9 then 1 else 3; }

 | 12~_ | 13~_ -> route = { id = d; cost = if d >= 12 && d <= 15 then 1 else 3; }

 | 16~_ | 17~_ -> route = { id = d; cost = if d >= 16 && d <= 19 then 1 else 3; }

Why Exact Annotations?

Limitation of our approach: couldn’t we overapproximate?

Exact routes ensure spurious annotations are not admitted

Other modular techniques also require a well-founded ordering

Different tradeoffs to provide this ordering

58

