
SmartCookie: Blocking Large-Scale SYN Floods
with a Split-Proxy Defense on Programmable Data Planes

Sophia Yoo, Xiaoqi Chen, Jennifer Rexford

33rd USENIX Security Symposium
August 14, 2024

2

A brief timeline of SYN flooding attacks

SYN Cookie Defense
(SunOS)
Oct 1996

First SYN Flood Attack
(PANIX)

Sep 1996

SYN Cookie Defense
(Linux)

Feb 1997 SYN Cookie Standards
(RFC 4987)

2007

2

A brief timeline of SYN flooding attacks

SYN Cookie Defense
(SunOS)
Oct 1996

First SYN Flood Attack
(PANIX)

Sep 1996

SYN Cookie Defense
(Linux)

Feb 1997

. . .

SYN Floods - Second Most Common DDoS
(Cloudflare Report)

2024

We are here.

SYN Cookie Standards
(RFC 4987)

2007

3

What modern SYN flood defenses really need…

Security …blocking attacks from adaptive adversaries⁉

⁉

⁉

Scalability …handling large amounts of benign and attack traffic

Performance …maintaining low latency for benign clients

4

What modern SYN flood defenses really need…

Security …blocking attacks from adaptive adversaries⁉

⁉

⁉

Scalability …handling large amounts of benign and attack traffic

Performance …maintaining low latency for benign clients

5

Network providers must performantly serve client traffic

Security …blocking attacks from adaptive adversaries⁉

⁉

⁉

Scalability …handling large amounts of benign and attack traffic

Performance …maintaining low latency for benign clients

Provider BackboneClient

Internet

Client Client

Server
(Hosts Client Services)

Client traffic
Border
Switch

6

Security …blocking attacks from adaptive adversaries⁉

⁉

⁉

Scalability …handling large amounts of benign and attack traffic

Performance …maintaining low latency for benign clients

while blocking attack traffic as early as possible in the provider network

Provider BackboneClient Adversary

Internet

Client Client

Server
(Hosts Client Services)

Attack

Client traffic
Border
Switch

Network providers must performantly serve client traffic

7

Provider BackboneClient Adversary

Internet

Client Client

Server

Attack

Client traffic
Switch

8

Provider BackboneClient Adversary

Internet

Client Client

Server

Attack SmartCookie
Software

Component

SmartCookie
Hardware

Component

Switch

SmartCookie: a collaborative, split-layer design

Client traffic

9

Provider BackboneClient Adversary

Internet

Client Client

Server

Attack

…enabled by the power of programmable targets

SmartCookie
Software

Component

SmartCookie
Hardware

Component

Switch
Client traffic

SmartCookie: a collaborative, split-layer design

10

Provider BackboneClient Adversary

Internet

Client Client

Server

Attack

where each component handles functionality based on its unique resources

SmartCookie
Software

Component

SmartCookie
Hardware

Component

Switch
Client traffic

SmartCookie: a collaborative, split-layer design

11

Provider BackboneClient Adversary

Internet

Client Client

Server

Attack

where each component handles functionality based on its unique resources

SmartCookie
Software

Component

SmartCookie
Hardware

Component

Switch

(i) Hardware blocks large bulk of attack traffic
+ passes through all client traffic

(ii) Software blocks any leftover attack traffic
+ serves all client traffic as normal

Client traffic

SmartCookie: a collaborative, split-layer design

Adversary

12

Server

SYN Flooding: an asymmetric attack on resources

SYN
SYN
SYN

Adversary

12

Server

SYN Flooding: an asymmetric attack on resources

SYN
SYN
SYN

Adversary

12

Server

SYN Flooding: an asymmetric attack on resources

stores state needed
for the connection

Memory

Memory

Memory

SYN
SYN

SYN-ACK

SYN-ACK

SYN

Adversary

12

SYN-ACK

Server

SYN Flooding: an asymmetric attack on resources

stores state needed
for the connection

Memory

Memory

Memory

SYN
SYN

SYN-ACK

SYN-ACK

SYN

No return ACK

Adversary

12

SYN-ACK

Server

SYN Flooding: an asymmetric attack on resources

stores state needed
for the connection

Memory

Memory

Memory

Memory

Memory

Memory

SYN
SYN

SYN-ACK

SYN-ACK

SYN

No return ACK

Adversary

13

SYN-ACK

Server

Server memory is depleted, leading to DoS for new requests

stores state needed
for the connection

SYN Flooding: an asymmetric attack on resources

14

Adversary Server

SYN Cookies: a stateless solution

Memory

Memory

Memory

14

Adversary Server

SYN Cookies: a stateless solution
Trading memory…

SYN
SYN
SYN

Memory

Memory

Memory

15

Adversary Server

SYN Cookies: a stateless solution
…for compute

SYN
SYN
SYN

Memory

Memory

Memory

16

ServerAdversary Server

Cryptographically secure “cookie” computed to store the relevant state

SYN
SYN
SYN

SYN Cookies: a stateless solution

Memory

Memory

Memory

SYN-ACK

SYN-ACK

SYN-ACK

17

ServerAdversary Server

Cryptographically secure “cookie” computed to store the relevant state

SYN
SYN
SYN

SYN Cookies: a stateless solution

Memory

Memory

Memory

SYN-ACK

SYN-ACK

SYN-ACK

17

Server

No return ACK

Adversary Server

Cryptographically secure “cookie” computed to store the relevant state

SYN
SYN
SYN

SYN Cookies: a stateless solution

Memory

Memory

Memory

SYN-ACK

SYN-ACK

SYN-ACK

18

Server

No return ACK

Adversary Server

SYN
SYN
SYN

Memory protected for legitimate connection requests
SYN Cookies: a stateless solution

Why is a secure, scalable, and performant defense so hard?

Software-Only Solutions Can’t Scale Compute
Computational cost to identify attacks leads to early CPU exhaustion.

19

20

Cryptographically computing cookies in software is costly

Attack

Adversary Server

Cryptographic cookie computation and packet processing for every potential connection

20

Cryptographically computing cookies in software is costly

Attack

Adversary Server

Cryptographic cookie computation and packet processing for every potential connection

Computational strain becomes new attack vector

20

Cryptographically computing cookies in software is costly

Attack

Adversary Server

Cryptographic cookie computation and packet processing for every potential connection

Computational strain becomes new attack vector

Server CPU capacity easily overwhelmed under heavy loads

20

Cryptographically computing cookies in software is costly

Attack

Adversary Server

Cryptographic cookie computation and packet processing for every potential connection

Computational strain becomes new attack vector

Server CPU capacity easily overwhelmed under heavy loads

Application performance degraded, clients experience DoS (again)

20

Cryptographically computing cookies in software is costly

Attack

Adversary Server

21

Why not move the cookie defense to a hardware proxy?

Attack

Adversary ServerHardware
Proxy

21

Why not move the cookie defense to a hardware proxy?

Attack

Adversary ServerHardware
Proxy

…like a high-speed programmable switch!

Why is a secure, scalable, and performant defense so hard?

Software-Only Solutions Can’t Scale Compute
Computational cost to identify attacks leads to early CPU exhaustion.

Hardware-Only Solutions Can’t Scale Memory
Usage of limited memory compromises performance.

Hardware-Only Solutions Are Insecure
Weak hashing for cookie generation breaks security.

22

Why is a secure, scalable, and performant defense so hard?

Software-Only Solutions Can’t Scale Compute
Computational cost to identify attacks leads to early CPU exhaustion.

Hardware-Only Solutions Can’t Scale Memory
Usage of limited memory compromises performance.

Hardware-Only Solutions Are Insecure
Weak hashing for cookie generation breaks security.

23

24

Tracking verified connections in hardware is costly

Proxy-Server
Connection

Client-Proxy
Connection

Client ServerSwitch
Proxy

24

Tracking verified connections in hardware is costly

Header translation required between client-proxy and proxy-server

Proxy-Server
Connection

Client-Proxy
Connection

Client ServerSwitch
Proxy

24

Tracking verified connections in hardware is costly

Header translation required between client-proxy and proxy-server

Switch proxy must keep per-flow state for ongoing connections Proxy-Server
Connection

Client-Proxy
Connection

Client ServerSwitch
Proxy

24

Tracking verified connections in hardware is costly

Header translation required between client-proxy and proxy-server

Switch proxy must keep per-flow state for ongoing connections

Exhausts limited memory of high-speed switch hardware

Proxy-Server
Connection

Client-Proxy
Connection

Client ServerSwitch
Proxy

24

Tracking verified connections in hardware is costly

Header translation required between client-proxy and proxy-server

Switch proxy must keep per-flow state for ongoing connections

Exhausts limited memory of high-speed switch hardware

Jaqen[1] avoids memory usage, at a performance cost (extra RTT and added latency for all benign flows)

[1] Liu, et al. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches. USENIX Security Symposium, 2021.

Proxy-Server
Connection

Client-Proxy
Connection

Client ServerSwitch
Proxy

Why is a secure, scalable, and performant defense so hard?

Software-Only Solutions Can’t Scale Compute
Computational cost to identify attacks leads to early CPU exhaustion.

Hardware-Only Solutions Can’t Scale Memory
Usage of limited memory compromises performance.

Hardware-Only Solutions Are Insecure
Weak hashing for cookie generation breaks security.

25

26

Insecure hashing breaks cookie security

Cookie = hash(4-tuple, secret)

26

Insecure hashing breaks cookie security

4-tuple = [src_ip, dst_ip, src_port, dst_port]

Hash must be strong enough to withstand manipulated hash collisions

Cookie = hash(4-tuple, secret)

26

Insecure hashing breaks cookie security

4-tuple = [src_ip, dst_ip, src_port, dst_port]

Hash must be strong enough to withstand manipulated hash collisions

Cookie = hash(4-tuple, secret)

26

Insecure hashing breaks cookie security

4-tuple = [src_ip, dst_ip, src_port, dst_port]

[2] Zhang, et al. Poseidon: Mitigating volumetric DDoS attacks with programmable switches. Network and Distributed System Security Symposium, 2020.
[1] Liu, et al. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches. USENIX Security Symposium, 2021.

Hardware solutions (Jaqen[1], Poseidon[2]) rely on CRC Checksum for hashing - insecure!

Hash must be strong enough to withstand manipulated hash collisions

Cookie = hash(4-tuple, secret)

26

Insecure hashing breaks cookie security

4-tuple = [src_ip, dst_ip, src_port, dst_port]

[2] Zhang, et al. Poseidon: Mitigating volumetric DDoS attacks with programmable switches. Network and Distributed System Security Symposium, 2020.
[1] Liu, et al. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches. USENIX Security Symposium, 2021.

Hardware solutions (Jaqen[1], Poseidon[2]) rely on CRC Checksum for hashing - insecure!

Security abandoned, compute AND memory consumed

Why is a secure, scalable, and performant defense so hard?

Software-Only Solutions Can’t Scale Compute
Computational cost to identify attacks leads to early CPU exhaustion.

Hardware-Only Solutions Can’t Scale Memory
Usage of limited memory compromises performance.

Hardware-Only Solutions Are Insecure
Weak hashing for cookie generation breaks security.

27

Outline

Motivation

SmartCookie

Results

Conclusion

28

SmartCookie solves these challenges!

29

Key Insight:
modern SYN flood defenses must be layered,
a collaborative split-layer design of hardware + software

SmartCookie solves these challenges!

30

Intelligent division of labor

SmartCookie solves these challenges!

30

Intelligent division of labor
What functionality should be partitioned?
How should it be partitioned?

31

What functionality should be partitioned?

31

What functionality should be partitioned?
We observe three key elements of SYN cookie proxy defenses

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

32

How should this functionality be partitioned?

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

32

How should this functionality be partitioned?

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

Insight 1: Switches are highly performant, but severely memory-limited

33

How should this functionality be partitioned?

Insight 1: Switches are highly performant, but severely memory-limited
…switches are an excellent first line of defense, but should not keep per-flow state!

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

34

How should this functionality be partitioned?

Insight 1: Switches are highly performant, but severely memory-limited
…switches are an excellent first line of defense, but should not keep per-flow state!

Insight 2: Servers are provisioned with memory for benign flows, but they are slower

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

35

How should this functionality be partitioned?

Insight 1: Switches are highly performant, but severely memory-limited
…switches are an excellent first line of defense, but should not keep per-flow state!

Insight 2: Servers are provisioned with memory for benign flows, but they are slow
…servers are ideal for exactly tracking benign flows, but should not block attacks!

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

36

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Client

Adversary

SmartCookie’s Split-Proxy Architecture

(F1) Cookie checks (F2) Header translations (F3) Keeping state for
verified connections

37

Switch agent performs secure cookie checks with a robust hash, not CRC (F1)

(F2) Header translations

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Client

Adversary

(F3) Keeping state for
verified connections (F1) Cookie checks

SmartCookie’s Split-Proxy Architecture

37

Switch agent performs secure cookie checks with a robust hash, not CRC (F1)

(F2) Header translations

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Client

Adversary

(F1) Cookie checks

(F3) Keeping state for
verified connections

SmartCookie’s Split-Proxy Architecture

38

Switch agent approximately tracks verified connections (F3.A)

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Client

Adversary

(F3) Keeping state for
verified connections

(F3) Keeping state for
verified connections (F2) Header translations

SmartCookie’s Split-Proxy Architecture

(F1) Cookie checks

38

Switch agent approximately tracks verified connections (F3.A)

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Client

Adversary

(F3.A) Approx records

(F3) Keeping state for
verified connections (F2) Header translations

SmartCookie’s Split-Proxy Architecture

(F1) Cookie checks

39

Server agent handles header translations on behalf of switch agent (F2)

(F3) Keeping state for
verified connections

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary Server

(F2) Header translations

SmartCookie’s Split-Proxy Architecture

(F3.A) Approx records

(F1) Cookie checks

39

Server agent handles header translations on behalf of switch agent (F2)

(F3) Keeping state for
verified connections

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary Server

(F2) Header translations

SmartCookie’s Split-Proxy Architecture

(F3.A) Approx records

(F1) Cookie checks

40

Server agent exactly tracks verified connections (F3.B)

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary

(F3) Keeping state for
verified connections

Server

SmartCookie’s Split-Proxy Architecture

(F2) Header translations

(F3.A) Approx records

(F1) Cookie checks

40

Server agent exactly tracks verified connections (F3.B)

Provider Backbone

No return ACK

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary

(F3.B) Exact records

Server

SmartCookie’s Split-Proxy Architecture

(F2) Header translations

(F3.A) Approx records

(F1) Cookie checks

41

Custom collaborative protocol between SmartCookie components

Provider Backbone

No return ACK

Custom Setup Packet

Custom Confirmation

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary Server

SmartCookie’s Split-Proxy Architecture

(F3.B) Exact records

(F2) Header translations

(F3.A) Approx records

(F1) Cookie checks

42

…does not require any modifications to the client or server’s network stack

Provider Backbone

No return ACK

Custom Setup Packet

Custom Confirmation

SYN-ACK ACK

SYN

SYN-ACKSYN

Switch
Agent

Server
Agent

TCP
Stack

Client

Adversary Server

SmartCookie’s Split-Proxy Architecture

(F3.B) Exact records

(F2) Header translations

(F3.A) Approx records

(F1) Cookie checks

43

Robust hashing for
secure cookies on switch

(F1), §5

Approximate data structures
for switch memory scalability

(F3.A), §6.3 - §6.4

Efficient server-side eBPF
support with exact memory
(F2) + (F3.B), §6.1 - §6.2

SmartCookie delivers security, scalability, and performance

Please read our paper for more details!

Outline

Motivation

SmartCookie

Results

Conclusion

44

45

Can SmartCookie deliver security at high attack rates?

Can SmartCookie protect CPU capacity for scalability?

Can SmartCookie maintain client performance under attack?

Evaluation

46

Can SmartCookie deliver security at high attack rates?

Can SmartCookie protect CPU capacity for scalability?

Can SmartCookie maintain client performance under attack?

Evaluation

this talk

47

Protecting performance

48

� � �� �� 	� 	�
�
�
����
��������
����

�

�

��

��

	�

��
��
��

��
��

��
��
��
��

�	
��
��

�
��
�
��

��!��������������
�� ��������������������
�� ��������	�����������
���!#�����������������
���!#�����������������

�"�����������##����

Protecting performance

1.71 ms

11.12 ms

1.08 ms

48

� � �� �� 	� 	�
�
�
����
��������
����

�

�

��

��

	�

��
��
��

��
��

��
��
��
��

�	
��
��

�
��
�
��

��!��������������
�� ��������������������
�� ��������	�����������
���!#�����������������
���!#�����������������

�"�����������##����

Protecting performance

1.71 ms

11.12 ms

1.08 ms

Kernel: 3 Mpps

Jaqen: 36 Mpps

SmartCookie: 136 Mpps

48

� � �� �� 	� 	�
�
�
����
��������
����

�

�

��

��

	�

��
��
��

��
��

��
��
��
��

�	
��
��

�
��
�
��

��!��������������
�� ��������������������
�� ��������	�����������
���!#�����������������
���!#�����������������

�"�����������##����

Protecting performance

Latency reduced 48-84% vs. Jaqen

Close to baseline latency without attack

In fact, zero packet loss until 136 Mpps

Throughput outperforms
• Jaqen by one order of magnitude
• Kernel by two orders of magnitude 1.71 ms

11.12 ms

1.08 ms

Kernel: 3 Mpps

Jaqen: 36 Mpps

SmartCookie: 136 Mpps

Outline

Motivation

SmartCookie

Results

Conclusion

49

SmartCookie: Layered Hardware+Software Codesign

50

SmartCookie

sophiayoo@princeton.edu https://github.com/Princeton-Cabernet/
p4-projects/tree/master/SmartCookie

Live demo video
on YouTube

Artifact
Evaluation

https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
mailto:sophiayoo@princeton.edu
https://www.youtube.com/watch?v=oNi_4wCo9Gg
https://www.youtube.com/watch?v=oNi_4wCo9Gg

SmartCookie: Layered Hardware+Software Codesign

A split-proxy defense approach that
(i) exploits division of labor across targets;
(ii) with approximation in early layers but exact overall results;
(iii) to provide security, scalability, and performance

50

SmartCookie

sophiayoo@princeton.edu https://github.com/Princeton-Cabernet/
p4-projects/tree/master/SmartCookie

Live demo video
on YouTube

Artifact
Evaluation

https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
mailto:sophiayoo@princeton.edu
https://www.youtube.com/watch?v=oNi_4wCo9Gg
https://www.youtube.com/watch?v=oNi_4wCo9Gg

SmartCookie: Layered Hardware+Software Codesign

A split-proxy defense approach that
(i) exploits division of labor across targets;
(ii) with approximation in early layers but exact overall results;
(iii) to provide security, scalability, and performance

50

SmartCookie

sophiayoo@princeton.edu https://github.com/Princeton-Cabernet/
p4-projects/tree/master/SmartCookie

Live demo video
on YouTube

Artifact
Evaluation

Vision for future work
Split-layer design for other protocols, volumetric attacks, and IDS/IPS systems
…reducing processing and traffic inspection loads by moving parts earlier on path

https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/SmartCookie-Artifact
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
mailto:sophiayoo@princeton.edu
https://www.youtube.com/watch?v=oNi_4wCo9Gg
https://www.youtube.com/watch?v=oNi_4wCo9Gg

