
SMARTCOOKIE: Blocking Large-Scale SYN Floods
with a Split-Proxy Defense on Programmable Data Planes

Sophia Yoo
Princeton University

sophiayoo@princeton.edu

Xiaoqi Chen
Princeton University

xiaoqic@cs.princeton.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

Abstract
Despite decades of mitigation efforts, SYN flooding attacks

continue to increase in frequency and scale, and adaptive ad-
versaries continue to evolve. Meanwhile, volumes of benign
traffic in modern networks are also growing rampantly. As
a result, network providers, which run thousands of servers
and process 100s of Gbps of traffic, find themselves urgently
requiring defenses that are secure against adaptive adver-
saries, scalable against large volumes of traffic, and highly
performant for benign applications. Unfortunately, existing
defenses local to a single device (e.g., purely software-based
or hardware-based) are failing to keep up with growing at-
tacks and struggle to provide performance, security, or both.
In this paper, we present SMARTCOOKIE, the first system
to run cryptographically secure SYN cookie checks on high-
speed programmable switches, for both security and perfor-
mance. Our novel split-proxy defense leverages emerging
programmable switches to block 100% of SYN floods in
the switch data plane and also uses state-of-the-art kernel
technologies such as eBPF to enable scalability for serving
benign traffic. SMARTCOOKIE defends against adaptive ad-
versaries at two orders of magnitude greater attack traffic
than traditional CPU-based software defenses, blocking at-
tacks of 136.9 Mpps without packet loss. We also achieve
2x-6.5x lower end-to-end latency for benign traffic compared
to existing switch-based hardware defenses.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks have been stud-
ied for decades, but despite this rich history, volumetric attacks
are still an important and unsolved problem today. In 2023,
attacks increased by over 300% [5, 44], with downtime cost-
ing companies an average of $20,000-$40,000 hourly [25,32].
One driving factor behind this growth is the widespread avail-
ability of DDoS-for-hire services, costing as little as $10
hourly and making it increasingly easy to launch attacks [34].
In recent years, DDoS attacks have also shaped political land-
scapes and played major roles in cyber warfare [23,24,29,39].

One of the most common DDoS attacks, namely SYN floods,
consume server memory until the server is forced to drop
benign traffic [37,38,58]. SYN floods constituted up to 94.7%
of all DDoS attacks in 2020 [49] and continue to remain a
critical threat today [50]. Additionally, benign traffic volumes
also continue to grow exponentially, reaching staggering loads
of up to hundreds of Gbps in cloud-provider networks [63].

To respond to growing threats and traffic volumes, net-
work providers (e.g., cloud providers, enterprise networks,
ISPs) urgently require scalable defenses that block volumet-
ric attacks without compromising security against adaptive
adversaries or degrading application performance [21,40,58].
In other words, they need defenses with three key require-
ments: security (blocking attacks from adaptive adversaries),
scalability (handling large amounts of benign and attack traf-
fic), and performance (low latency for benign clients).

While state-of-the-art SYN-flooding defenses using SYN
cookies have been proposed and standardized for many years,
existing solutions have failed to simultaneously provide secu-
rity, scalability, and performance [2, 3, 51, 67, 72]. Designing
and practically implementing modern SYN-flooding defenses
that meet each of these requirements is particularly challeng-
ing. Compared to defenses against many other volumetric
attacks (e.g., ACK floods, RST floods, UDP amplification),
SYN-flooding defenses cannot simply drop, rate-limit, or ig-
nore unsolicited traffic. Doing so might cause denial of benign
client requests, particularly since adversaries often spoof at-
tack packets using legitimate addresses. Instead, defenses
must identify and block large-scale attacks (requiring costly
compute) while keeping per-flow state to track large numbers
of verified connections (requiring large chunks of memory).

Server-Based Solutions. Server-based SYN cookie de-
fenses are the time-honored way to provide security and can
scalably handle benign traffic by default [2, 3, 67]. However,
under large-scale attacks, software-based packet-processing
and cryptographic cookie computation incur high overheads
and lead to CPU exhaustion (§8). Ultimately, once the server’s
limited CPU capacity is overwhelmed by volumetric attacks,
these defenses collapse and again result in DoS.

Switch-Based Solutions. High-speed programmable hard-
ware switches present a unique opportunity to overcome
this additional attack vector on end host CPU consumption.
Switches provide packet-processing at orders of magnitude
faster rates, and thus have the potential to execute the re-
quired cryptography more performantly than end hosts. How-
ever, purely switch-based solutions [51, 72] must operate un-
der strict hardware constraints, including limited compute
and limited memory. First, cryptographic primitives are not
natively supported in switches and are computationally ex-
pensive. As a result, existing switch-based defenses use the
insecure CRC32 to compute SYN cookies [51, 72], abandon-
ing security and defeating the purpose of the SYN cookie
check (§2.4). Additionally, because switches have only tens
of MBs of memory [48], memory-intensive SYN-flooding de-
fenses which track per-connection state struggle to scale [72]
or degrade application performance [51] (§2.5).

Division of Labor to the Rescue. To overcome the limi-
tations of existing solutions, we propose SMARTCOOKIE:
a novel split-proxy defense that leverages collaborative pro-
grammable data planes on hardware and software targets.
Our design intelligently partitions the defense workload to
maximize the benefits of both switch-based and server-based
defenses, while minimizing the limitations of each approach.

Key Insight. Our key insight for motivating SMART-
COOKIE’s novel division of labor is two-fold. Switches are
highly performant and have potential to quickly and securely
block volumetric attacks, but they are memory-limited and
scale poorly at keeping exact state for verified flows. This
makes switches excellent as a first line of defense, but they
should not be required to keep per-flow state. Meanwhile,
servers enjoy superior memory resources, but are prohibitively
slow at packet processing. This makes them ideal for exactly
tracking benign flows, without the burden of blocking attacks.

At a high level, SMARTCOOKIE takes traditional SYN
cookie defense elements, refactors them, splits them between
a co-designed switch agent (running on the switch data plane)
and server agent (running on the Linux kernel data plane), and
stitches switch agent and server agent together with a collabo-
rative protocol. We identify three key elements of existing de-
fenses: F1) SYN cookie checks, F2) TCP sequence number
translations, and F3) keeping state for verified connections.
Following our key insight, we refactor and map defense ele-
ments F1-F3 to switch and server as follows: SMARTCOOKIE
switch agent securely performs cookie checks to quickly stop
bad traffic (F1) and approximately tracks verified connections
(F3.A) instead of keeping exact state, while SMARTCOOKIE
server agent handles sequence number translations (F2) and
exactly tracks verified connections (F3.B).

SMARTCOOKIE switch agent maintains approximate state
using compact data structures with well-defined accuracy
guarantees (§6.3). Note that in contrast to prior work, our
defense does not require exact state at the switch, but still
achieves overall exact defense results, due to its split design.

Contributions and Roadmap. This work makes the fol-
lowing contributions:

• The first system to run cryptographically secure SYN
cookies on programmable switches, using robust hashes
instead of the insecure CRC32 used in prior works (§5).

• The first split-proxy SYN-flooding defense for modern
programmable data planes, using in-switch compact data
structures for memory scalability and server-side eBPF
for immediate deployability (§6).

• An end-to-end SMARTCOOKIE prototype with a switch
agent implemented in P4 on Tofino switches and a server
agent written in eBPF on Linux servers, which is resilient
against attack rates of 136.9 Mpps (about 92Gbps) with-
out any packet loss, with potential for easily reaching
even higher rates (§8).

• 19x-105x throughput improvement over software solu-
tions resulting from offloading of cookie computation
and verification to high-speed switch hardware (§8.2)
and 48-84% latency improvement with our novel split
design over existing hardware-only designs (§8.3).

We present limitations of existing defenses in §2 and de-
scribe the threat model, problem setting, and architecture of
SMARTCOOKIE in §3 and §4. We include a security analysis
in §7, discuss additional features and future directions in §9,
present related work in §10, and conclude in §11.

Ethics Statement. This work raises no ethical issues.

2 Limitations of Existing Defenses

2.1 Limitations of Server-based Defenses
Traditional server-based SYN-flooding defenses use SYN
cookies to protect server memory, encoding state normally
saved to server-side Transmission Control Blocks (TCB) dur-
ing connection setup in a cryptographically computed cookie
instead [2] (Figure 1a). The server uses the SYN cookie as the
initial sequence number (ISN) that is placed in the sequence
number field (seq_no) of the SYN-ACK packet sent to the
client. Clients automatically return the cookie in the acknowl-
edgment number of the final ACK of the TCP handshake, as
ack_no = seq_no + 1. This returned cookie is then verified
by the server.

In server-based defenses, the server cryptographically com-
putes and verifies cookies and performs packet processing for
every potential connection, introducing an added attack vec-
tor on server compute resources. Because these defenses run
on general-purpose CPUs, they can easily be overwhelmed
under heavy attack loads, due not only to cookie computation
but also to software-based packet-processing overheads (§8,
Table 1). Thus, server-based defenses struggle to scalably stop
volumetric attacks, degrading application performance and
again resulting in denial-of-service for benign clients.

SYN-ACK

Server

TCB
TCB
TCB

SYN

No return ACK

Adversary

SYN

SYN-ACK

SYN

SYN-ACK

(a) Server-based defense.

SYN-ACK

Server

TCB
TCB
TCB

No return ACK

Adversary

SYN-ACKSYN-ACK

Switch

SYN
SYN

SYN

(b) Switch-based defense.

Provider
Backbone

SYN

Server

Adversary

TCB
TCB
TCB

No return ACK

Switch
Agent

Server
AgentSYN

SYN

SYN-ACK

SYN-ACK

SYN-ACK

(c) SMARTCOOKIE: a split defense.

Figure 1: SMARTCOOKIE versus server-based and switch-based defenses.

2.2 Limitations of SYN Cookie Proxies

To protect the server from CPU exhaustion, the SYN cookie
mechanism can run in a proxy placed in the NIC of the server
or in a switch near the server (Figure 1b). Proxies perform
cookie computation and verification in place of the server,
only establishing a connection with the server for verified
clients and thus defending against attacks that cause excessive
consumption of server CPU cycles [33, 60]. Defense proxies
also monitor previously verified connections to determine
which packets require cookie checks.

However, this approach has fundamental drawbacks as well.
First, proxies incur overheads related to connection setup.
Specifically, after a proxy verifies a client, it must perform a
second, separate proxy-to-server setup handshake to establish
the connection from the server’s point-of-view. This increases
latency since the proxy must buffer any packets received from
the client while it establishes the server-side connection. Ad-
ditionally, proxies need to translate TCP sequence numbers
between client and server, because there is a mismatch be-
tween the ISN chosen by the proxy as the SYN cookie value
and the ISN chosen randomly by the server [60]. This forces
the proxy to keep exact per-flow state to track verified connec-
tions (in addition to the per-flow state kept by the server), and
the proxy must perform costly sequence number translations
on every packet throughout the remainder of the connection.
We note the SYN proxy design also relies on assumptions of
symmetric routing, since all packets must pass through the
proxy in both directions for sequence number translations.

2.3 Opportunities of Programmable Switches

Programmable switches are similar in price to fixed-function
enterprise-grade switches. They are an attractive option for
high-speed, flexible, and cost-efficient defenses against large-
scale attacks [18,19,51,72,73]. While it is clear that switches
have significantly more potential than servers for a performant
and robust defense, we argue that programmable switches also
showcase concrete benefits over SmartNICs as well.

Target Choice. Although some state-of-the-art SoC-based
SmartNICs offer larger memory banks and cryptographic ac-
celerators for specific primitives (e.g., MACsec/IPsec encryp-

tion) [55], switches have faster packet processing and offer
better performance to cost/power ratios than alternative Smart-
NIC approaches [46, 51, 55]. For our target setting of large
cloud enterprises, gateway switches can save bandwidth in
the network core by blocking attacks directly at the network
edge, before malicious traffic reaches the internal network
and hosts’ NICs. Still, SMARTCOOKIE could be deployed on
SmartNICS, but given their lower capacity, these are better
for smaller edge networks, and we choose to target switches.

2.4 Security Limitations of Switch Defenses
Prior works have leveraged high-speed switches as SYN
cookie proxies in the network [51, 72]. Unfortunately, these
systems have a crippling security flaw: they use the insecure
CRC32 checksum as the "hash" for computing SYN cookies,
abandoning security against adaptive adversaries.

The Need for a Secure Hash. SYN cookies are computed
with a hash of the connection 4-tuple (source/destination IP
addresses and port numbers), along with some secret key and
a timestamp, so an adversary cannot perform a replay attack
with the cookie at a later time. For security, this hash must
be cryptographically robust, such that an adversary cannot
easily craft a cookie that would pass as legitimate during
a cookie check. Otherwise, the adversary could send many
forged cookies to the victim, launching an attack more power-
ful than the original one: after verifying forged cookies, the
victim must also prepare for new connections and allocate
memory, wasting both compute and memory resources.

Insecurity of CRC. CRC is an error-detection checksum,
not a cryptographic hash. When incorrectly used as a hash, it
can be trivially cracked by an adaptive adversary performing
key recovery and cookie forging attacks [70]. There are two
broad attack vectors against CRC that can result in breaking
the cookie defense: collision induction and nonce deduction.

Collision Induction. An adaptive adversary can exploit
the fact that CRC is not collision-resistant to construct hash
collisions. Without assuming security by obscurity, adver-
saries with knowledge of a CRC-based defense can simply
send probe packets with different inputs to uncover a hash
collision. Note the adversary has constant feedback on CRC
outputs, as the defense must respond to all SYN packets.

Secure
Hash

High-
Throughput

Non-
Disruptive

Scales Beyond
Switch Memory

Server-Based
Cookies [2, 57, 60] ✓ ✗ ✓ –

Poseidon [72] ✗ ✓ ✓ ✗

Jaqen [51] ✗ ✓ ✗ ✓

SMARTCOOKIE ✓ ✓ ✓ ✓

Table 1: Compared to existing defenses, SMARTCOOKIE is
secure, high-throughput, non-disruptive, and scalable.

Nonce Deduction. Due to its linear nature, CRC is vulner-
able to nonce deduction; an adaptive adversary can trivially
crack CRC-based cookies in a few simple steps (we refer
interested readers to §A for details). The simplicity and effec-
tiveness of this attack leaves the door wide open for adaptive
adversaries to completely break the CRC-based SYN cookie
defenses of both [51] and [72]. In contrast, SMARTCOOKIE se-
curely computes SYN cookies in the programmable data plane
using a robust hash with strong security guarantees [8] (§5).

2.5 Performance Limitations of Switch
Defenses

Existing switch-based defenses also struggle to provide mem-
ory scalability and good application performance [51, 72].

Poor Scalability. Poseidon [72] keeps per-flow state in
the switch to perform sequence number translations for ongo-
ing flows. Given limited switch memory, this simply cannot
scale, as processing hundreds of thousands of flows at net-
work speeds is a memory-intensive task (Table 1). In contrast,
SMARTCOOKIE avoids keeping exact state in the switch by
offloading it to the server, allowing the defense to scale (§6).

Disruptive Performance. Jaqen [51] also avoids keeping
per-flow state on switches. However, it does so by disruptively
forcing all benign clients to undergo a reset during connection
setup, even after passing the SYN cookie check (Table 1). Af-
ter this reset, clients eventually attempt a second handshake,
which the Jaqen proxy allows through to the server, with
some probability of false positive error. This enables server
and client to directly choose sequence numbers without in-
volving the Jaqen proxy. Unfortunately, Jaqen’s design incurs
extra latency (1-2 round-trip times) for benign connections, an
especially undesirable performance penalty for clients across
wide-area networks. In contrast, SMARTCOOKIE is transpar-
ent to clients, requiring a single handshake and maintaining
good application-level performance (§8).

3 SMARTCOOKIE Problem Setting

The problems that state-of-the-art defenses experience against
large-scale SYN floods are challenging to resolve, because
they arise from the inherent hardware constraints of available
targets and from the threat model experienced by network

providers tasked with providing security, scalability, and per-
formance. SMARTCOOKIE overcomes these challenges and
presents a practical defense for large network operators, who
control backbone switches and servers in their network. This
setting opens unique opportunities for a division of labor that
SMARTCOOKIE intelligently exploits (Figure 1c).

3.1 Threat Model

There are four key players in our threat model: clients, adver-
saries, switches, and servers. Switches and servers are con-
trolled by the same network operator, which seeks to protect
its servers from resource strain, while concurrently protecting
network bandwidth. Under the same administrative authority,
switches and servers can safely cooperate.

Clients. Client communications to any of the servers hosted
by the provider backbone should be protected from SYN
flooding disruption. Clients should also not experience de-
graded performance as a result of any deployed defense.

Adversaries. Our threat model focuses on asymmetric
SYN-flooding attacks, where adversaries require orders of
magnitude fewer resources than defenses. Asymmetric at-
tacks are generally regarded as more challenging to defend
against [17, 26], and their lower cost is likely what makes
them so prevalent in the wild [50]. In our threat model, ad-
versaries can spoof source IP addresses or utilize a limited
number of compromised devices to send a flood of connection
handshake requests that appear to be from unique clients and
must be individually handled [7]. When spoofing, adversaries
cannot gain feedback from the defense, as response packets
to spoofed addresses never reach the adversary. Adversaries
can also send some probe packets without spoofing to observe
the resulting cookies and attempt to crack the cookie hash,
as well as launch replay attacks using earlier cookies (§2.4).
We assume the adversary can send attack traffic at up to Tbps
rates. The adversary does not have physical access to the net-
work switches or servers hosted by the provider backbone,
and traffic from the adversary cannot reach the server without
traversing a participating switch. In other words, the adver-
sary cannot tamper with packets between the switches and
servers internal to the provider backbone.

Switches. The switches are programmable, high-speed net-
work hardware capable of Tbps processing rates. They are
controlled by the same network provider and deployed at the
network edge. Since the switches and servers are under the
same centralized operator, we assume the communication
channel between the switches and the servers is secure.

Servers. Physical servers, hereafter simply called servers,
are owned, operated, and trusted by the network provider,
and thus can be modified. Trusted defense modules run on
the servers, but for immediate deployability, changes to the
TCP/IP stack of the server’s Linux kernel are not required.
However, modest changes to the server TCP/IP stack can
open further defense opportunities in the future (see §D). We

note that tenant VMs running on the physical servers are not
trusted and thus are unmodified by the network provider. Also,
in order to not affect the performance of applications running
on the server, it is critical that any defense mechanism does
not consume excessive CPU cycles.

3.2 Challenges

Modern programmable switches support flexible packet pro-
cessing optimized for Tbps speeds [14,42,45]. They exert fine-
grained control over packet forwarding in the data plane with
line-rate throughput guarantees, but do so at the cost of strict
constraints enforced by the underlying hardware [12, 13, 42].
Thus, there are fundamental challenges to overcome to realize
the potential of a high-speed switch defense.

Challenge 1: Limited In-Switch Programming Model
for Cryptographic Operations. Most programmable
switches do not natively support any cryptographic primitives,
and they can only process packets with a limited number of
available operations (e.g., addition, subtraction, and XOR, but
no multiplication or division). However, even more fundamen-
tally, to guarantee high-throughput, switches use a pipeline
model with only a limited number of stages for packet pro-
cessing. Operations can also only be performed concurrently
in a stage if there are no dependencies between operations.
Finally, the output of one computation cannot be used until
the following pipeline stage, making it difficult to fit all the
necessary operations for cryptographic SYN cookie computa-
tion within the limited number of available stages. Thus, even
if cryptographic accelerators were introduced on hardware
switches, computing secure cookies within the computational
constraints and limited stages is challenging, and could break
the performance of the switch if done naively. We show how
SMARTCOOKIE overcomes these challenges in §5.

Challenge 2: Limited In-Switch Memory for Per-
Connection State. The amount of available data plane mem-
ory is limited, and it must be shared with other applications
(e.g., routing tables) running on the switch. To perform se-
quence number translations and maintain the correctness of
packet-processing, a naive defense would need to keep cum-
bersome per-flow state on the order of 6 bytes per connection
(e.g., the 32-bit sequence number and hashed connection 5-
tuple key). Unlike other data plane applications that require
keeping significantly less state (e.g., a small 6-bit version
number along with a hashed 5-tuple key) [52], the amount of
state that must be kept by a defense cannot be further com-
pressed with a hash digest, as this would cause information
loss and break connections. Given available memory is on the
order of tens of MBs, keeping this amount of state for every
verified flow in a large network provider cannot scale to even
hundreds of thousands of connections [51], and thus we sim-
ply cannot afford to allocate switch memory for each ongoing
TCP flow. We show in §6 how SMARTCOOKIE intelligently
partitions the defense to gracefully handle this challenge.

Server-Side Setup (F2)
+ Exact Records (F3.B)

Provider Backbone

No return ACK

Setup Packet

Confirmation

SYN-ACKACK

SYN

SYN-ACKSYN

Cookie Check (F1)
+ Approx Records (F3.A)

Client

Adversary
Server

Switch
Agent

Server
Agent

TCP
Stack

Figure 2: SMARTCOOKIE’s split-proxy architecture.

4 SMARTCOOKIE Architecture

To overcome the challenges and existing limitations, SMART-
COOKIE proposes a novel split-proxy architecture (Figure 2).

Switch Agent. The SMARTCOOKIE switch agent performs
cookie checks securely (F1) and tracks verified connections
approximately (F3.A). This design is motivated by the under-
lying switch architecture, which is optimized for high-speed
packet processing up to Tbps, an order of magnitude greater
than the speeds of general-purpose CPUs. The switch agent
is an ideal location for offloading of SYN cookie checks. It
can securely and performantly block 100% of SYN floods,
without burdening the server (§5,§8). Recall that to achieve
high throughput and low latency, however, the switch only has
a limited amount of memory, and memory accesses are con-
strained. Thus, the switch agent should not be required to re-
member all the connections that have successfully passed the
cookie check. In other words, verified records should be kept
in an approximate data structure at the switch agent (§6.3).

Server Agent. Meanwhile, SMARTCOOKIE server agent is
primarily responsible for handling benign connections, con-
ducting sequence number translations (F2) and exactly track-
ing verified connections (F3.B). Servers offer greater com-
pute flexibility and have fewer constraints on memory access
and usage than switches. Thus, the server agent is ideal for
maintaining exact information about verified connections and
for performing sequence number translations on behalf of
the switch agent. This offloading of unique per-connection
sequence number translations is enabled by a special setup
procedure, which the switch agent and server agent coopera-
tively perform using custom setup request and confirmation
packets (§6). The server agent’s sequence number translation
mechanism ensures consistent sequence number progression,
preserves the correctness of the TCP protocol, and is transpar-
ent to unmodified end hosts. We note that the greater compute
flexibility at the server agent comes at the cost of lower packet-
processing speeds as compared to hardware speeds, but this
is a reasonable tradeoff since the amount of benign traffic the
server agent must process is much smaller than the amount of
attack traffic that the switch agent must identify and drop.

5 Secure SYN Cookies in the Data Plane

SMARTCOOKIE switch agent is responsible for performantly
computing and verifying SYN cookies in the data plane, but
for any defense to be worthwhile, this must be done securely.

Choice of Hash Function. There are several potential
choices of data-plane hash functions. Recall that because
of the computational constraints of the switch, it is extremely
challenging to compute a cryptographically secure hash func-
tion in the data plane. Hence, several prior works [51, 72]
opted to use the CRC32 checksum as a “hash” function to
compute SYN cookies, resulting in significant vulnerabil-
ity [70]. This is because an adaptive adversary can always
send crafted SYN packets and observe the resulting cookies
(i.e., a chosen-plaintext attack), efficiently solve and extract
the key used in hashing, and then forge cookies for any 4-tuple,
bypassing the defense entirely (§2.4).

SMARTCOOKIE securely computes and verifies cookies
using HalfSipHash-2-4 [8], which is from the SipHash family
of hashes used by Linux for computing SYN cookies [2]. We
also choose HalfSipHash-2-4 for performance reasons, as it is
faster than SipHash-2-4, while still sharing the same construc-
tion. We believe HalfSipHash-2-4 with key rotation offers
acceptable security against even well-provisioned adversaries
(e.g., key brute-forcing adversaries), achieving good security
along with lightweight performance. The hash is cryptograph-
ically robust and designed for speed on short inputs, making
it ideal for computing cookies in the data plane, where the
input to the hash is just a few bytes from the packet header.

Securely Computing Cookies. HalfSipHash is seeded by
secret keys, used to initialize four internal variables v0-v3 (Fig-
ure 3). The hash input gets mixed with these internal variables
using arithmetic operations (Add, Shift, XOR) across several
computational rounds. HalfSipHash-c-d performs c rounds of
computation (compression rounds) for each w 32-bit word of
the hash input. Once all input bytes have been processed by
compression rounds, an additional d rounds of computation
are performed, called finalization rounds. Finally, the four
internal variables are XORed, giving the hash output.

Each round of computation requires 14 arithmetic oper-
ations, including six circular left shifts. Since most of the
arithmetic operations directly use the output of the previous
operation (Figure 3), they create a long dependency chain.
Since the P4 language [36] does not natively support the cir-
cular shift operation, naively implementing a circular left shift
of n bits requires three intermediate operations: a left shift
of n bits, a right shift of 32 - n bits, and then a bitwise OR
of these two intermediate results. Because of the dependency
chain between the bitwise OR and the intermediate shifts,
calculating a single circular shift will require two pipeline
stages, which quickly becomes unreasonably costly given the
limited number of available stages in the switch.

Instead of using a multi-operation, multi-stage approach
to circular bit shifts, we optimize the computation by using a

v3
w0

0xff

w1 w0

w1

v0v1v2

One HalfSipHash Round

Compression Round

Preprocessing(keys)

Finalization Round
Finalization Round

Finalization Round
Finalization Round

Compression Round
Compression Round

Compression Round

Output

Figure 3: HalfSipHash-2-4 requires 2 compression rounds on
each input word w and 4 finalization rounds at the end, with
each round costing 14 operations.

built-in slicing primitive on the switch to slice out the desired
upper and lower bits of the variable. We then use a supported
concatenation primitive to stitch the newly relocated bits to-
gether in a new variable, fitting the full circular shift into one
operation in a single pipeline stage. Additionally, we opti-
mize the number of stages needed for the computation by
helping the compiler explicitly recognize dependencies be-
tween operations. We do so by manually grouping arithmetic
operations in a round into 4 stages based on their dependen-
cies, to maximize how many operations can fit in a single
stage.

Recirculation. HalfSipHash operates on a 16-byte (w = 4
word) input, requiring 2w+4 compression and finalization
rounds of processing in total. Although we have optimized
HalfSipHash for modern switch hardware, we still require
several pipeline passes to perform all these computational
rounds. Hardware switches support a packet recirculation
feature that allows for computation across multiple pipeline
passes. We note that naively using just the ingress pipeline of
the switch for computing the hash would require r = (2w+
4)/2−1 = w+1 = 5 recirculations. However, we integrate
HalfSipHash with SMARTCOOKIE’s switch agent logic to
run in both the ingress and egress pipelines, reducing r to
(2w+4)/4−1 = w/2 = 2 recirculations per hash.

In practice, network switches have dedicated recirculation
ports, and additional ports can be reserved for recirculation.
Dedicating additional ports for recirculation would reduce
the bandwidth that could have been used for serving other
traffic, but this is an acceptable performance tradeoff for the
security gains of a robust hash. We show in §8 that even with
recirculations, our HalfSipHash-based switch agent returns
secure cookies 2.6x faster than the next fastest defense. Addi-
tionally, the recirculation limitations of our prototype result
from the lack of cryptographic building blocks in the network
hardware, which can be improved in the future.

Key Rotation. To defend against brute-force attacks, Half-
SipHash keys are rotated periodically (e.g., every 30 seconds).
This reflects our underestimation of the time needed to brute-

seq=x+1, ack=y+1
7a) ACK

seq=x, ack = 0

seq=c, ack = x+1
3) ACK seq=y, ack = x+1

5) SYN

6) SYN-ACK2) SYN-ACK

1) SYN
seq=x, ack = 0

seq=x+1, ack = c+1

Client

Ingress XDP

Client to Switch
Agent 3WHS

Switch Agent to
Server Agent 2WHS

Server Agent to
TCP Stack 3WHS

4) ACK’

seq=x, ack = c+1

7b) ACK’notify proxyto add to BF

Server

eBPF map: Δ = c - y

 Server Agent

BF
Switch
Agent

TCP
Stack

Egress TC

Figure 4: End-to-end setup for verified connections.

force a key [8]. To ensure handshakes from clients are not
accidentally blocked, cookies computed with an old key are
still accepted for one time epoch directly after a key rotation.

6 Split-Proxy Design

With our secure SYN cookie hash in the data plane, we can
now safely offload cookie checks to a high-speed switch. How-
ever, we must still tackle the challenge of limited switch mem-
ory for handling benign flows. SMARTCOOKIE accomplishes
this with a split-proxy design, where a switch agent and server
agent cooperate to performantly stop attack traffic and cor-
rectly handle benign traffic. Our design avoids packet buffer-
ing during setup and bypasses sequence number translations
at the switch agent, allowing it to approximately track verified
connections and scale beyond available switch memory.

6.1 Switch to Server Two-Way Handshake

Figure 4 shows SMARTCOOKIE’s complete setup procedure
for verified connections. In packets 1-3 SMARTCOOKIE
switch agent verifies clients by performing a secure SYN
cookie check as in the traditional defense. However, under the
SMARTCOOKIE protocol, the switch agent does not buffer the
final ACK of the TCP three-way handshake (3WHS) between
the client and switch agent. Instead, the switch agent directly
forwards this ACK packet to the SMARTCOOKIE server agent
with an additional setup tag, notifying the server agent to
bootstrap the connection setup (packet 4). The switch agent
also uses this packet to instruct the server agent how to handle
the difference in initial sequence numbers (ISNs) that were
chosen by the switch agent and the server’s network stack.

After receiving this tagged setup packet, the server agent
sets up its side of the connection, shown with packets 5-7a.
The server agent then sends a packet to the switch agent to
confirm the connection establishment, completing the custom
setup between switch agent and server agent as shown with
packet 7b. Note that the server agent has been instructed by
the switch agent how to handle sequence number deltas, so the
client and server see their expected sequence numbers in both
directions. This allows the switch agent to step into a passive
forwarding role and avoid the expense of sequence number

translations throughout the remainder of the connection.
SMARTCOOKIE converts the original 3WHS between

switch and server into a custom two-way handshake (2WHS)
between switch agent and server agent, notifying the server of
the client connection, because at this point the server is still
unaware of the client. We note that a 3WHS between switch
agent and server agent is undesirable, causing overhead at
the switch for buffering packets from the client while the sec-
ond 3WHS is being conducted. Additionally, even after the
end-to-end connection is established, per-packet processing
at the switch for sequence number translations is undesir-
able. Instead, by explicitly informing the server agent of the
connection and sending information for sequence number
translations, the switch agent can safely forward packets from
a verified connection without additional processing.

Handling Setup Latency and Packet Drops. SMART-
COOKIE reliably handles more complex scenarios introduced
by connection setup latency, reordered packets, or packet
drops. Consider the scenario where the 2WHS between the
switch agent and server agent is not yet complete, either be-
cause it is still in progress or because the setup packet sent
to the server agent has been lost. If the client sends addi-
tional data packets to the server during this state, the SMART-
COOKIE switch agent handles this gracefully by continuing
to verify and tag these packets before forwarding them to the
server agent (note that the switch agent never buffers client
packets). Since the client has yet to receive any packets from
the server, the server-side sequence numbers have not pro-
gressed and the client would still pass the cookie check at the
switch agent. As long as the client’s packets continue to pass
the cookie check, the switch agent will tag and forward them
to the server agent, and upon receipt of any tagged packet
from the switch agent, the server agent will immediately set
up the connection and send an explicit confirmation to the
switch agent. Upon receiving this confirmation, the switch
agent no longer tags any packets from the client and simply
forwards packets in both directions.

6.2 Redesigned Server Setup

SMARTCOOKIE uses eBPF to facilitate division of labor be-
tween switch and server agents. Our design does not modify

the network stack of end hosts, which is particularly beneficial
for datacenter deployments where network operators may not
control end host TCP behavior (e.g., tenant VMs).

eBPF Primer. eBPF (extended Berkeley Packet Filter) is
a powerful and lightweight technology that allows for safe,
fast, kernel-level execution of programs directly from user-
space, without requiring programmers to rewrite kernel source
code [10]. The Linux networking community has been tak-
ing advantage of eBPF for efficient packet filtering and safe
kernel-level execution in many different security applications,
including in the DDoS space [11, 57, 65].

Modified TCP Interface. With eBPF, we redesign the
TCP interface between the network and the Linux kernel’s
network stack. This allows us to offload connection setup and
sequence number translations to the server without modifying
the kernel TCP stack, enabling immediate deployability. Our
server agent deploys an eBPF ingress and egress program
attached to different kernel hooks (XDP and TC, respectively),
performing connection setup with the kernel network stack
and sequence number translations on incoming and outgoing
packets (see §B.2 for details). The eBPF programs act as
a lightweight translation layer that converts custom packets
received from the switch agent into proper TCP packets for
regular TCP/IP processing by an unmodified kernel.

eBPF Map for Tracking State. eBPF maps can be used
to communicate between user space and kernel space, and
they are the only way to store and share state between eBPF
programs. Maps are implemented as key-value stores, where
values are defined by data type and size. The server agent
uses an eBPF map to track the connection state of any given
flow and to coordinate the behavior of the ingress and egress
eBPF programs based on this state. The map key is the 4-tuple
connection information (source and destination IP addresses
and port numbers). The map value for each key stores the
connection state of the connection and the sequence number
delta to be applied for that connection. As shown in Figure
4, the sequence number delta for a given connection is deter-
mined to be ∆ = c− y, where c is the switch agent’s original
ISN (i.e., cookie value) and y is the ISN chosen by the kernel.
At first, the server agent’s ingress program extracts c from
packet 4 and stores it in the eBPF map temporarily. Later,
the server agent’s egress program extracts y from packet 6
and then calculates and stores the true ∆ in the eBPF map.

6.3 Compact Data Structure at Switch Agent

To determine which packets require cookie checks, the switch
agent (like any standard defense) must maintain a record of
verified connections. In prior designs, the proxy keeps a local
record of every verified connection that has passed the cookie
check, using this record to remember the sequence number
deltas that must be applied to all packets in the flow. This is
an unattractive solution because it requires per-flow state, and
memory is a limited commodity in high-speed switches.

Bloom Filters for Approximate State. Since SMART-
COOKIE offloads sequence number translations to the server
agent, the switch agent can avoid keeping exact state by using
a resource-efficient compact data structure called a Bloom fil-
ter. The Bloom filter can approximately keep track of clients
that have passed the cookie check and successfully estab-
lished a connection with the server. Bloom filters are efficient
and powerful approximate data structures, but they come at
the expense of a small number of false positives. There are
no false negatives in Bloom filters, which is an important
feature that ensures benign traffic is never blocked. We note
the purpose of the Bloom filter is not to stop an adversary’s
non-SYN packets from reaching the server, although this does
happen as a bonus. Instead, the goal of this design feature
is to not keep per-flow state at the switch agent for verified
flows, reducing strain on the memory-constrained switch.

Implementing Bloom Filters in the Switch Agent. To ap-
proximately track the set of benign TCP connections, we use
register memory arrays on the Tofino programmable switch to
implement a Bloom filter. Since the switch’s pipeline only al-
lows accessing one index per array when processing a packet,
we implement a Bloom filter variant called the Partitioned
Bloom Filter (PBF) [6]. PBF splits its m-bit memory into k
separate arrays M1[·] . . . ,Mk[·], each sized m

k , and uses k in-
dexing hash functions h1, . . . ,hk : F → [m

k] to map the input
key f ∈ F (in our case, flow 4-tuple) into locations in the
array. All arrays are initialized to zero. To insert a flow f , for
each array i, we calculate the index hi(f) and mark 1 in the
corresponding index, i.e., Mi[hi(f)]← 1. To query whether
flow f has been added, we check the same indices and report
positive if they are all 1, i.e., Mi[hi(f)] == 1, ∀i ∈ [k].

Automatically Cleaning the Bloom Filters. To prevent
over-saturation and maintain the accuracy of the filters as
time goes on, we can keep multiple Bloom filters at the
switch agent in a rotating fashion, where at any given time
window TW , some filters are being written to, read from, or
cleaned (i.e., emptied). A connection is considered active if
any one of the Bloom filters reports a positive. For ongoing
connections, we add to the most recent filter whenever we see
the server sending a packet to the client; note that even for
uni-directional upload traffic servers continuously send ACK
packets to clients. Thus, when a filter is cleaned, ongoing
connections automatically get carried over to the active filter.

We also note that TW should be chosen such that we main-
tain a reasonable timeout window that reflects the character-
istics of the majority of connections in the network [31]. A
TW value that is too small (e.g., a few seconds) will cause
idling connections to be closed too early, while TW values that
are too large will require us to save too many active connec-
tions in the Bloom filter, causing increased memory usage and
potentially higher false positive rates. Shorter TW windows
(also called "aggressive aging timeouts") are the security best
practice for preserving stability and performance while under
attack, and can be as short as 10 seconds [22, 68].

6.4 Handling False Positives at Server Agent

The server agent cooperates with the switch agent to perform
a last-line-of-defense cookie check on the small fraction of
packets that experience a false positive in the Bloom filter.

Identifying False Positives. The server agent knows to
perform this cookie check on any packets that are not already
part of an ongoing connection at the server and do not have a
setup tag from the switch agent. We note that SYN packets are
always stopped and handled at the switch agent, so the server
agent only handles benign traffic and non-SYN packets (either
adversarial or benign) that have triggered a false positive
in the Bloom filter. If the false positive was the result of
an adversary’s non-SYN packet (e.g., if the adversary was
attempting to perform an ACK flood), it would fail the cookie
check at the server agent and get dropped (§7.2). However, if
the false positive was triggered by a benign client (e.g., with
the final ACK packet of the 3WHS between client and switch
agent), then the packet would pass the cookie check at the
server agent and the server agent would set up the connection
with the kernel network stack.

Key Management. In existing SYN cookie defenses, only
one party computes and verifies cookies. However, since both
the switch and server agents verify cookies, they must share
the same SYN cookie computation scheme so that cookies
are consistent across the system. In other words, both switch
and server agents must share the same hash functions and
secret keys used to compute cookies; the network operator
acts as the central controller for managing these keys across
the system, installing the same initial key and performing
periodic key rotation for both the switch and server agents.
Furthermore, to ensure consistency when using timestamps
to generate and verify cookies, SMARTCOOKIE relies on the
network operator to synchronize clocks across the switch and
server agents. We also note that on the server side, secret keys
are only visible to the eBPF switch agent module and are not
visible to applications or tenant VMs running on the server.

7 Security Analysis

We discuss possible attacks from adaptive adversaries against
our system itself (above and beyond our initial SYN-flooding
attack vector), and explain how we address them.

7.1 Attacks on the Cookie Check

Replay Attacks. When a cookie is first computed at the
switch, it is computed with respect to the current epoch of
time. When cookies are recomputed and verified, they are only
accepted if they are from the current or immediately preced-
ing epoch. While the Linux kernel uses 1 minute epochs [1],
we choose 1 second epochs instead, to reflect round-trip times
(RTTs) commonly seen on the modern Internet. This ensures

that SMARTCOOKIE only accepts cookies returned within ac-
ceptable RTT delays, while defending against replay attacks
with older cookies. For consistency, the cloud provider de-
ploying SMARTCOOKIE should ensure that clocks are synced
(e.g., NTP) between the switch agent and the server agent.

Cookie Forging and Key Recovery. An adversary can
send probe packets to the switch agent and observe the re-
turned cookies in order to crack the hashing mechanism and
forge her own cookies; formally, this is performing a Cho-
sen Plaintext Attack (CPA) against our hash function. The
security of SMARTCOOKIE against cookie forging can be di-
rectly reduced to the security of the underlying HalfSipHash
family of hash functions. Based on the security properties of
HalfSipHash, the adversary cannot recover the key without
a brute-force search [8]. As we perform key rotation periodi-
cally (e.g., every 30 seconds), such a brute force attack is not
feasible against SMARTCOOKIE. Thus, with the pseudoran-
dom properties of HalfSipHash, the adversary’s best attack
strategy is reduced to simply guessing the cookie.

Lucky Cookies, and Saving TCP Options. The Linux
kernel’s default SYN cookie stores a quantized Maximum
Segment Size (MSS) and discards all other TCP options. Our
switch agent similarly encodes the MSS in cookies, for the
server agent to later decode. This approach leaves 24 bits of
entropy in the cookie, meaning that each adversary’s attack
packet has a negligible probability (1/224) of “luckily” guess-
ing the right cookie by chance. If desired, it is possible to use
3-4 more bits of the cookie to save a few more TCP options,
in exchange for slightly reduced entropy.

7.2 Attacks on the Bloom Filter

ACK Floods and TTL Expiry Attacks. The Bloom filter
used by our switch agent to track verified connections has a
small probability of reporting false positives; an adversary can
send many ACK packets with randomized source IP addresses
and port numbers, and a small fraction of these may trigger a
false positive and be forwarded to the server. We refer to this
as the ACK-flooding attack, and evaluate the performance
of SMARTCOOKIE against such attacks in §8. We note that
these false positive ACK packets will be silently dropped by
the server agent after failing its last-line-of-defense cookie
check (§6.4). We also filter TTLs of non-SYN packets that
arrive at the switch agent, hiding from an adaptive adversary
seeking to perform a TTL expiry attack whether her packets
were dropped at the switch agent or at the server agent [62].
This prevents the adversary from getting feedback on which
attack packets successfully triggered false positives. Thus,
she cannot tailor attack packets for the Bloom filter’s internal
structure to achieve a higher false positive rate.

Opening Many "Legitimate" TCP Connections. The
false positive rate of Bloom filters depends on the number of
connections inserted. In our threat model (§3.1), adversaries
have access to a moderate number of compromised devices to

launch asymmetric SYN-flooding attacks, but not enough to
mount successful symmetric attacks, such as TCP connection
floods. Connection-flooding adversaries would need to estab-
lish many "legitimate" TCP connections to raise the Bloom
filter’s false positive rate before launching a SYN-flooding
or ACK-flooding attack, requiring significant resources (e.g.,
machines, memory, packet processing). Nevertheless, we note
our filters are periodically cleaned and designed to achieve a
reasonably low false positive rate under realistic traffic condi-
tions (§6.3). Even with high rates of Bloom filter pollution,
SMARTCOOKIE still blocks 100% of SYN floods in the switch
and is highly resilient under ACK floods (§8.4).

8 Evaluation

We evaluate SMARTCOOKIE by running several experiments
on a hardware testbed. We 1) demonstrate the performance of
SMARTCOOKIE for securely computing SYN cookies with
HalfSipHash in the switch data plane, compared to other ap-
proaches, and 2) show the overall performance of SMART-
COOKIE in comparison to Jaqen [51], the state-of-the-art
switch-based SYN-flooding defense. We note that the authors
own all testbed infrastructure, and attack traffic was only di-
rected to dedicated testbed servers, raising no ethical issues.

8.1 Experiment Setup

Prototype Implementation. SMARTCOOKIE’s switch agent
is implemented in P4 targeted for an Intel Tofino Wedge100-
32BF programmable switch, with approximately 1000 lines
of code. The server agent is implemented with eBPF. For
more details, we refer readers to Figure §4, §B.1, and §B.2.
We have released our prototype source code on GitHub1. We
also run prototypes of Jaqen SYN Cookie Proxy Mode 1 and
Mode 2 [51], based on source code obtained from the authors.

Testbed. The testbed consists of four servers and an Intel
Tofino Wedge32X-BF programmable switch. Two machines
act as adversaries, each with a 20-core Intel Xeon Silver 4114
CPU and a Mellanox ConnectX-5 2x100Gbps NIC, gener-
ating attack traffic using DPDK 19.12.0 and pktgen-DPDK.
Two other machines act as server and client, each with 8-core
Intel Xeon D-1541 CPUs and Intel X552 2x10Gbps NICs. All
machines run Ubuntu 21.10 with kernel v5.13.0, and the eBPF
programs are built with BCC v0.24.0 and Clang v13.0.0-2.

Setup: Realistic Traffic Load. To simulate a real-world
setting with realistic benign traffic loads, we write customized
client and server Go scripts to replay CAIDA anonymized In-
ternet traffic trace 2018 [15]. Both server and client machines
are connected to the switch via Direct Attach Copper (DAC)
cables and have ping latency under 0.1ms. We did not modify
the Linux kernel’s default TCP retransmission behavior.

1https://github.com/Princeton-Cabernet/p4-projects/tree/
master/SmartCookie

Setup: Estimating the False Positive Rate. Our switch
agent implementation uses Partitioned Bloom Filters with k =
3 arrays of 220 bits each, with total memory size m = 3×220

bits. For our experiments, we choose a connection timeout
window TW of 15 seconds for Bloom filter cleaning (§6.3),
which reflects the default keepalive timeout of many applica-
tions [31]. We choose a 15-second trace window of benign
traffic to match TW , with n = 579,600 flows. Our trace repre-
sents heavier flow loads than the average from CAIDA trace
statistics (386,000 flows over the same time window) [16].
Thus, we generously estimate our false positive rate as:

Fp(n,m,k) =
(

1−
(

1− k
m

)n)k

≈ 7.66%. (1)

We replay each flow as an HTTP request in real time (ap-
proximately 38,500 requests per second), where the request
starting time corresponds to the timestamp offset of the flow’s
first packet. We also measure the number of attack packets
received at the server with this setup and verify that the mea-
sured false positive rate matches our expectations. Meanwhile,
since Jaqen’s prototype uses a smaller Bloom filter (216×4),
we replay fewer flows (48,800) in Jaqen’s experiments, such
that the defense exhibits the same false positive rate of 7.66%.
Since the number of connections in both experiments exceed
the number of available ports, we add 65,536 IP addresses to
both client and server; we use the connection 4-tuple as keys
for Bloom filter lookups for both SMARTCOOKIE and Jaqen.

More generally, under different traffic conditions, time win-
dows, and number of connections, we can use Equation §1 to
estimate corresponding false positive rates. We also note that
our current implementation did not exhaust the memory avail-
able on the Tofino 1 switch, and we can build larger Bloom
filters to support more connections, trading off more memory
for a reduction in the false positive rate. Other switch models
(e.g., Tofino 2) also provide more onboard memory to further
increase Bloom filter size and lower false positive rates.

Setup: DDoS Attacks. We run pktgen-DPDK on the ad-
versary machines to generate SYN floods with randomized
source IPs and ports. Due to false positives, Jaqen will allow
7.66% of SYN-flooding traffic to reach the server and trig-
ger a connection setup and kernel SYN cookie computation.
Meanwhile, since our switch agent handles 100% of SYN
packets without passing any to the server, we run a separate
experiment where we subject SMARTCOOKIE to ACK flood
traffic (§7.2), 7.66% of which will reach the server and trigger
only eBPF SYN cookie verification at the server agent.

8.2 Hashing Throughput

Under the experiment setup described above, we compare
SMARTCOOKIE’s performance against kernel-based SYN
cookies and XDP-based cookies. Since prior work proposed
running AES, a secure encryption algorithm, on Tofino

https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie
https://github.com/Princeton-Cabernet/p4-projects/tree/master/SmartCookie

K-SH XDP-HSH SC-AES SC-HSH
0

25

50

75

100

125

150
M

ax
 A

tt
ac

k
Ra

te
 (

M
pp

s) Kernel-SipHash
XDP-HalfSipHash
SmartCookie-AES
SmartCookie-HalfSipHash

Figure 5: Throughput. SMARTCOOKIE-HalfSipHash de-
fends against attacks without packet loss until a rate of
136.9Mpps, outperforming the next fastest defense by 2.6x.

switches [20], we also implement and benchmark a variant of
SMARTCOOKIE switch agent using AES to compute cookies.

Measuring Throughput. We measure the maximum attack
rate in Mpps each defense can handle before any packet loss.
Since our benchmark performs one hash calculation per SYN
packet, we effectively measure maximum hashing throughput.

Results. As shown in Figure 5, SMARTCOOKIE-
HalfSipHash significantly outperforms all other defenses,
achieving a throughput of 136.9Mpps on high-speed switch
hardware. This is two orders of magnitude greater than the
throughput achieved by the software-based kernel defense,
which uses SipHash and can only serve 1.3Mpps before the
server’s CPUs are exhausted. Using XDP to compute cook-
ies can bypass the overhead of the kernel network stack
and achieve 6x speedup (7.3Mpps), but this is still much
slower than SMARTCOOKIE-HalfSipHash. Meanwhile, al-
though SMARTCOOKIE-AES is faster than XDP, it requires
more recirculations and only achieves 52 Mpps; SMART-
COOKIE-HalfSipHash outperforms it by 2.6x.

We note that Tofino switches have dedicated recirculation
ports, which operate without affecting capacity on other ports.
Our prototype switch agent achieves 136.9Mpps using a sin-
gle Tofino 1 switch under its vanilla setup (pre-configured
ports with 200Gbps recirculation throughput). To achieve
even higher throughput, we can simply load balance between
multiple switches to multiplex their throughput, or configure
the switch to convert unused physical ports into extra recir-
culation bandwidth. For example, as a back-of-the-envelope
calculation, using 20 recirculation ports, we could achieve
2Tbps recirculation throughput and serve roughly 1.4 billion
requests per second. We also note that while repurposing ad-
ditional ports for recirculation would reduce overall switch
capacity, it will not affect latency. Finally, other switches ex-
ist (e.g., Tofino 2) with higher per-port throughput and more
pipeline stages. Such switches, along with future hardware
with native cryptographic support, can further reduce recircu-
lation needs, additionally boosting throughput.

0 5 10 15 20 25 30 35
Attack Rate (Mpps)

0

5

10

15

20

Av
er

ag
e

En
d-

to
-E

nd
 L

at
en

cy
 (

m
s)

Kernel, SYN Flood
Jaqen Mode 1, SYN Flood
Jaqen Mode 2, SYN Flood
SmartCookie, ACK Flood
SmartCookie, SYN Flood
Baseline (No Attack)

Figure 6: Latency. SMARTCOOKIE reduces latency by 48-
84% compared to Jaqen, protecting client performance.

8.3 Latency

In this experiment, we launch both benign and attack traffic
against a server as described in §8.1, and measure the end-to-
end latency of benign application traffic while the server is
under attacks of different magnitudes. We compare SMART-
COOKIE against the vanilla kernel-based SYN cookie defense
and Jaqen’s two SYN proxy modes. SMARTCOOKIE’s design
is transparent to clients and does not cause connection reset,
leading to 48%-84% lower latency than Jaqen.

Measuring Latency. We measure the end-to-end applica-
tion latency by initiating HTTP requests from the client to the
server, with response size of 14.5KB (corresponding to the
average flow size in the CAIDA 2018 trace). For each attack
rate, we send 30 requests and calculate the average latency.
Since Jaqen’s Proxy Mode 2 triggers an application-layer re-
set, most applications (curl, wget, etc.) will wait for at least
one second before retrying the connection. This timeout is an
unreasonably large penalty for benign clients, and so we write
a customized Go client script that immediately retries after a
reset, waiting for only 1ms between connection attempts. This
showcases the best possible performance of Jaqen, as it avoids
the long default reset timeout, but we note that reconfiguring
client applications is not always possible.

Results. As shown in Figure 6, SMARTCOOKIE has consis-
tently low end-to-end latency (1.71ms), a 48%-84% reduction
compared to Jaqen, even with the reconfigured fast retry client
that bypasses Jaqen’s default 1-second timeout. Jaqen Mode
1 incurs a reset and one additional round trip, with a mini-
mum latency of 11.12ms. Jaqen Mode 2 incurs two additional
round trips and an application-layer retry, requiring at least
3.31ms for end-to-end setup with our fast 1ms retry client
and over one second for default TCP applications that have
not been reconfigured. Meanwhile, SMARTCOOKIE’s latency,
which is only 1.71ms, is close to the baseline latency of the
vanilla kernel without any attack (1.08ms).

0 5 10 15 20 25 30 35
Attack Rate (Mpps)

0

200

400

600

800

1000

1200

CP
U

 U
sa

ge
 (

M
ill

io
n

In
st

r/
s)

Kernel, SYN Flood
Jaqen Mode 1, SYN Flood
Jaqen Mode 2, SYN Flood

SmartCookie, ACK Flood
SmartCookie, SYN Flood

Figure 7: CPU Usage. SMARTCOOKIE has no server CPU
overhead against SYN floods and reduces overhead against
ACK floods by 33%-36% compared to Jaqen.

8.4 Server CPU Usage

Using the same setup from §8.1, we replay trace-based benign
traffic while launching attack traffic at increasing rates. We
measure the server’s CPU overhead across various defenses.
SMARTCOOKIE has no overhead for SYN floods and reduces
overhead for ACK floods by 33-36% compared to Jaqen.

Measuring CPU. To measure CPU overhead, we use the
perf stat command to read CPU performance counters and
collect the number of instructions executed per second for
each CPU core, taking the average across cores. We also
repeat each measurement ten times and take this average. For
more stable results, we turned off frequency scaling (Turbo
Boost) and fixed all cores’ frequency at 2.1GHz.

Results. Both modes of Jaqen exhibit similar server CPU
overhead, as they both allow the same rate of false positive
SYN packets to reach the server, where the defense degrades
to SYN cookie computation on server software (Figure 7).
We note that SMARTCOOKIE switch agent processes 100% of
SYN packets directly on network hardware, completely pro-
tecting server CPUs from resource exhaustion for SYN cookie
computation. With SMARTCOOKIE, servers experience no
CPU overhead during SYN floods. Thus, in order to see the
effect of false positives on CPU usage with SMARTCOOKIE,
we also measure the overhead of the server agent handling
map lookup and cookie verification for false positive ACK
packets (§6.4): SMARTCOOKIE under an ACK flood exhibits
approximately 33%-36% lower CPU overhead for the same
attack rate and same false positive rate as Jaqen under a SYN
flood. This is because Jaqen is a purely switch-based defense
that degrades to the vanilla kernel’s defense on false positives,
which begins to suffer from attack rates as low as 1.3 Mpps.
Meanwhile, SMARTCOOKIE is designed as a split-proxy sys-
tem that cooperates with an XDP-based server agent for false
positives (§B.2). XDP operates on raw packets early in the
kernel stack before any socket buffer is allocated, lowering
the overhead significantly compared to the kernel defense.

SRAM TCAM HashUnit Instr.
Jaqen Mode 1 (CRC) 4.6% 0.0% 19.4% 4.9%
Jaqen Mode 2 (CRC) 4.6% 0.0% 19.4% 6.3%
SMARTCOOKIE-AES 13.8% 0.1% 30.6% 9.4%
SMARTCOOKIE-HSH 6.8% 1.4% 56.9% 9.9%

Table 2: Resource usage on programmable switch.

SRAM TCAM HashUnit Instr.
tna_simple_switch.p4 6.3% 9.0% 0.0% 9.6%

+SMARTCOOKIE 12.6% 11.5% 54.2% 18.0%
switch.p4 33.6% 31.6% 19.4% 13.5%

+SMARTCOOKIE 40.1% 37.5% 73.6% 20.3%

Table 3: Adding SMARTCOOKIE to complex P4 programs.

8.5 Switch Resource Usage & Compatibility

In Table 2 we report SMARTCOOKIE’s utilization of switch
hardware resources with two variants of hashes (Half-
SipHash and AES), as reported by Intel’s P4i tool. SMART-
COOKIE has a trivial footprint for important shared resources
(TCAM:1.4%, SRAM:6.8%). Notably, the HashUnit usage is
highest (57%), but HashUnits are used less by other network
functions. We also report resource utilization of Jaqen SYN
Proxy (Modes 1 and 2), which use CRC as its cookie hash.

Furthermore, we successfully integrated SMARTCOOKIE-
HalfSipHash into two feature-rich, complex P4 programs:
tna_simple_switch.p4 and switch.p4, demonstrating
SMARTCOOKIE can co-exist with other sophisticated net-
work functions. Table 3 presents resource utilization metrics
for each base program and the variant with SMARTCOOKIE
added, highlighting SMARTCOOKIE’s efficient footprint and
compatibility with other switch functions.

9 Discussion

Routing Considerations. We envision our defense deployed
in a provider network with multiple edge switches, motivating
the need to be robust to both asymmetric routing and poten-
tial routing changes. SMARTCOOKIE handles asymmetric
routing by default with several clever design decisions, and it
can handle routing changes using two high-level approaches,
each with their own tradeoffs. Cooperating switch agents can
maintain synchronized Bloom filters with state for all verified
connections. Alternatively, Bloom filters across individual
switch agents can dynamically adapt to routing changes using
a packet sampling approach. Please see §C for more details.

Serving Tenants Transparently. SMARTCOOKIE does
not modify the server’s network stack, and can serve un-
modified tenant VMs running on servers. From the tenant’s
point of view, the TCP protocol is unchanged. Today’s high-
performance VM hypervisors and container hosts often run
specialized software switches (e.g., eBPF-based Cilium [4])

to handle tenant traffic, and SMARTCOOKIE ’s server agent
can be integrated into these software switches.

Handling Other DDoS Attacks. Although SMART-
COOKIE was explicitly designed for large-scale SYN-flooding
attacks, by default it also handles other TCP-based volumetric
attacks (e.g., ACK floods, SYN-ACK floods, RST/FIN floods),
quickly dropping attack traffic on behalf of the server. We
believe our design can also be generalized to UDP-based vol-
umetric attacks, with mechanisms like those proposed in [69].

Transport Protocols. We note that SMARTCOOKIE makes
assumptions about TCP and must be upgraded when clients
use new features, like MPTCP. To avoid protocol ossification,
SMARTCOOKIE should not be applied by default on all traffic.
Instead, it should be an opt-in feature for tenants enabled only
during attacks, like the Linux kernel’s SYN cookie defense.
Future servers and tenants using newer transport protocols
would require updated designs; split-design defenses support-
ing newer protocols (e.g., MPTCP) and connection-oriented
UDP traffic (e.g., QUIC) are interesting future works.

Further Improvements. Our eBPF server agent is indepen-
dent of the kernel network stack, enabling direct deployability
without kernel updates. In the future, the switch agent can
synchronize ISNs with the kernel to entirely avoid sequence
number translations and further boost performance (§D).

10 Related Work

SYN Cookie Defenses. State-of-the-art SYN cookie defenses,
including standard practices such as DDoS scrubbing cen-
ters, struggle to capitalize on the unique capabilities of pro-
grammable switches. They either have the data plane do
too much (e.g., performing the complete TCP handshake or
keeping per-flow state) [51, 72] or too little (e.g., simply for-
warding attack traffic to a server for software-based packet-
processing) [27, 28]. These works miss opportunities to refac-
tor the server, under-optimize switch resource usage, incur
performance penalties on benign clients, and most importantly
create vulnerabilities in the defense with insecure hashes.

The most closely related such work is Jaqen [51]. Unlike
Jaqen, SMARTCOOKIE uses a cryptographically robust hash
that provides strong security guarantees and does not sacri-
fice performance for scalability. [60] also proposed a SYN
cookie proxy, but their proxy must similarly keep per-flow
state and is implemented in software [9]. SMARTCOOKIE
overcomes strict resource constraints to efficiently run SYN
cookies directly on switch hardware.

Split Functionality. Poseidon [72] presents a two-part
DDoS defense: a switch component on hardware and a server
component running in software. However, Poseidon requires
the majority of the defense to reside in software, which is
orders of magnitude slower at packet-processing than switch
hardware. More importantly, Poseidon’s SYN cookie proxy
uses an insecure hash, and it must also keep per-flow state.
SMARTCOOKIE overcomes these limitations and presents a

novel split proxy that preserves switch resources, optimizes
performance, and computes cookies with a secure hash.

XDP. GateBot [11] is a DDoS defense system developed
by Cloudflare that drops traffic based on iptable rules im-
plemented with XDP. Recently, Google also used XDP to
implement SYN cookies, taking advantage of XDP’s early
execution hook to bypass the kernel TCP stack [57]. SMART-
COOKIE provides an order of magnitude higher performance
than XDP-based SYN cookies, stopping all SYN flood traffic
in switches at the network edge and only relying on XDP-
based cookies to handle a small number of false positives.

Cryptography in the Data Plane. Prior works have ex-
plored cryptographic functionality in the data plane, although
some targeted software models instead of hardware environ-
ments. Scholz et al. [61] implemented prototypes of crypto-
graphic hash functions, including SipHash, targeted for CPU
backends, NICs, and FPGAs. [20] and [71] first implemented
the AES cipher and HalfSipHash for Tofino switches. Our
work leverages such cryptographic building blocks to design
and implement a complete split defense system with end-
to-end evaluation results. NeoBFT [66] further optimized
HalfSipHash on switches by computing multiple message sig-
natures in one batch. PINOT [69] implemented a lightweight
2-round Even-Mansour (2EM) cipher for switches for privacy-
protecting IP address encryption; however, their implementa-
tion uses fixed permutations that cannot be quickly rotated,
which introduces a potential risk for brute-force attacks.

General In-Network Defenses. Previous works used
software-defined networking (SDN) to implement SYN-
flooding defenses, outside of SYN cookies [28, 30, 52, 53,
59, 64]. Approaches include rate-limiting based on an upper-
bound threshold of SYN packets [52], enforcing whitelists or
blacklists based on completion of the TCP handshake [30,53],
and using switches to identify and steer suspicious traffic to
software platforms for further handling [28]. More generally,
other recent works proposed switch-based defenses against
link-flooding attacks [73] and pulse-wave DDoS attacks [35].
Surveys of switch-based DDoS mitigations and other switch-
based network security applications are presented in [18, 19].

11 Conclusion

SMARTCOOKIE is the first SYN-flooding defense to pro-
vide cryptographically secure SYN cookies on high-speed
switches. With its novel split-proxy design leveraging pro-
grammable data planes, SMARTCOOKIE is robust against
adaptive adversaries and scalably serves large loads of traffic
while under attack, without disrupting benign flows or degrad-
ing performance. We show that, contrary to common belief,
a hardware-software codesign performs better than a purely
hardware design. With networks that are now end-to-end pro-
grammable, we believe many security applications would
benefit from similar division-of-labor design principles.

Acknowledgments

This work was supported in part by DARPA Grant HR0011-
20-C-0160. Sophia Yoo was supported by NSF GRFP Grant
DGE-2039656. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation. We sincerely thank Alan Zaox-
ing Liu for his assistance in our evaluation. We also thank
Oliver Michel, John Sonchack, Henry Birge-Lee, Hyojoon
Kim, Maria Apostolaki, and USENIX Security’s reviewers
and shepherd for their helpful comments and feedback.

References

[1] Linux SYN cookie epoch time. https://elixir.bootlin.com/
linux/v6.0/source/include/net/tcp.h#L497, 2005.

[2] tcp(7) - Linux man page. https://linux.die.net/man/7/tcp,
2005.

[3] FreeBSD Manual Pages. https://www.freebsd.org/cgi/man.
cgi?syncookies, 2008.

[4] Cilium: ebpf-based networking, observability, security. https://
cilium.io/, 2017.

[5] AARNet. The rise of DDoS attacks in 2023: what you need to know
. https://www.aarnet.edu.au/the-rise-of-ddos-attacks-
in-2023-what-you-need-to-know#, 2023.

[6] Paulo Sérgio Almeida. A case for partitioned bloom filters. IEEE
Transactions on Computers, 2022.

[7] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma,
Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt
Thomas, and Yi Zhou. Understanding the Mirai botnet. In USENIX
Security Symposium, 2017.

[8] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast
Short-Input PRF. Lecture Notes in Computer Science, 7668, 2012.

[9] Bmv2 authors. Behavioral model (bmv2). https://github.com/
p4lang/behavioral-model, 2019.

[10] Suricata authors. Suricata - eBPF and XDP. https://suricata.
readthedocs.io/en/latest/capture-hardware/ebpf-
xdp.html, 2018.

[11] Gilberto Bertin. XDP in practice: Integrating XDP into our DDoS
mitigation pipeline. In Netdev: The Technical Conference on Linux
Networking, 2017.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. In ACM SIGCOMM Computer Communication
Review, 2014.

[13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for SDN. In ACM SIGCOMM, 2013.

[14] Broadcom. BCM56870 Series. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/
bcm56870-series.

[15] CAIDA. The CAIDA UCSD Anonymized Internet Traces 2018 - July
19th, equinix-nyc.dirA.20180719-130000, 2018.

[16] CAIDA. Trace Statistics for CAIDA Passive OC48 and OC192 Traces,
2018.

[17] Ang Chen, Wenchao Zhou, Akshay Sriraman, Tavish Vaidya, Yuankai
Zhang, Andreas Haeberlen, Boon Loo, Linh Phan, Micah Sherr, and
Clay Shields. Dispersing Asymmetric DDoS Attacks with SplitStack.
In ACM Workshop on Hot Topics in Networks (HotNets), 2016.

[18] Xiang Chen, Hongyan Liu, Dong Zhang, Qun Huang, Haifeng Zhou,
Chunming Wu, and Qiang Yang. Empowering ddos attack mitigation
with programmable switches. IEEE Network, 2022.

[19] Xiang Chen, Chunming Wu, Xuan Liu, Qun Huang, Dong Zhang,
Haifeng Zhou, Qiang Yang, and Muhammad Khurram Khan. Empow-
ering network security with programmable switches: A comprehensive
survey. IEEE Communications Surveys & Tutorials, 2023.

[20] Xiaoqi Chen. Implementing AES Encryption on Programmable
Switches via Scrambled Lookup Tables. In ACM SIGCOMM Workshop
on Secure Programmable Network Infrastructure (SPIN), 2020.

[21] Catalin Cimpanu. AWS said it mitigated a 2.3 Tbps DDoS attack,
the largest ever. https://www.zdnet.com/article/aws-said-
it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/,
2020.

[22] Cisco. Security Configuration Guide: Zone-Based Policy Firewall,
Cisco IOS XE Fuji 16.7.x. https://www.cisco.com/c/en/us/td/
docs/ios-xml/ios/sec_data_zbf/configuration/xe-16-7/
sec-data-zbf-xe-16-7-book/sec-ddos-attack-prevn.html,
2017.

[23] James Coker. Finland Government Sites Forced Offline by
DDOS Attacks. https://www.infosecurity-magazine.com/
news/finland-government-sites-offline/, 2022.

[24] Kevin Collier, Shanshan Dong, and Ali Arouzi. Hacktivists,
new and veteran, target Russia with one of cyber’s oldest tools.
https://www.nbcnews.com/tech/security/hacktivists-
new-veteran-target-russia-one-cybers-oldest-tools-
rcna20652, 2022.

[25] Information Technology Intelligence Consulting. Hourly Downtime
Costs Rise. https://itic-corp.com/blog/2019/05/, 2019.

[26] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu,
Boon Thau Loo, and Linh Thi Xuan Phan. Detecting asymmetric
application-layer Denial-of-Service attacks In-Flight with FineLame.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, 2019.

[27] Marinos Dimolianis, Adam Pavlidis, and Vasilis Maglaris. Syn flood
attack detection and mitigation using machine learning traffic classifi-
cation and programmable data plane filtering, 2021.

[28] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey.
Bohatei: Flexible and Elastic DDoS Defense. In USENIX Security
Symposium, 2015.

[29] Lauren Feiner. Cyberattack hits Ukrainian banks and government web-
sites. https://www.cnbc.com/2022/02/23/cyberattack-hits-
ukrainian-banks-and-government-websites.html, 2022.

[30] Silvia Fichera, Laura Galluccio, Salvatore C. Grancagnolo, Giacomo
Morabito, and Sergio Palazzo. OPERETTA: An OPEnflow-based
REmedy to mitigate TCP SYNFLOOD Attacks against Web Servers.
In The International Journal of Computer and Telecommunications
Networking, 2015.

[31] Gabriel. What is Apache Keepalive Timeout? How to optimize this
critical setting. https://ioflood.com/blog/2020/02/21/what-
is-apache-keepalive-timeout-how-to-optimize-this-
critical-setting/, 2020.

[32] Nick Galov. 39 Jaw-Dropping DDoS Statistics to Keep in Mind for
2022. https://hostingtribunal.com/blog/ddos-statistics/
#gref, 2022.

https://elixir.bootlin.com/linux/v6.0/source/include/net/tcp.h#L497
https://elixir.bootlin.com/linux/v6.0/source/include/net/tcp.h#L497
https://linux.die.net/man/7/tcp
https://www.freebsd.org/cgi/man.cgi?syncookies
https://www.freebsd.org/cgi/man.cgi?syncookies
https://cilium.io/
https://cilium.io/
https://www.aarnet.edu.au/the-rise-of-ddos-attacks-in-2023-what-you-need-to-know#
https://www.aarnet.edu.au/the-rise-of-ddos-attacks-in-2023-what-you-need-to-know#
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_zbf/configuration/xe-16-7/sec-data-zbf-xe-16-7-book/sec-ddos-attack-prevn.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_zbf/configuration/xe-16-7/sec-data-zbf-xe-16-7-book/sec-ddos-attack-prevn.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_zbf/configuration/xe-16-7/sec-data-zbf-xe-16-7-book/sec-ddos-attack-prevn.html
https://www.infosecurity-magazine.com/news/finland-government-sites-offline/
https://www.infosecurity-magazine.com/news/finland-government-sites-offline/
https://www.nbcnews.com/tech/security/hacktivists-new-veteran-target-russia-one-cybers-oldest-tools-rcna20652
https://www.nbcnews.com/tech/security/hacktivists-new-veteran-target-russia-one-cybers-oldest-tools-rcna20652
https://www.nbcnews.com/tech/security/hacktivists-new-veteran-target-russia-one-cybers-oldest-tools-rcna20652
https://itic-corp.com/blog/2019/05/
https://www.cnbc.com/2022/02/23/cyberattack-hits-ukrainian-banks-and-government-websites.html
https://www.cnbc.com/2022/02/23/cyberattack-hits-ukrainian-banks-and-government-websites.html
https://ioflood.com/blog/2020/02/21/what-is-apache-keepalive-timeout-how-to-optimize-this-critical-setting/
https://ioflood.com/blog/2020/02/21/what-is-apache-keepalive-timeout-how-to-optimize-this-critical-setting/
https://ioflood.com/blog/2020/02/21/what-is-apache-keepalive-timeout-how-to-optimize-this-critical-setting/
https://hostingtribunal.com/blog/ddos-statistics/#gref
https://hostingtribunal.com/blog/ddos-statistics/#gref

[33] Patrik Goldschmidt and Jan Kučera. Defense Against SYN Flood DoS
Attacks Using Network-based Mitigation Techniques. In International
Symposium on Integrated Network Management. IEEE, 2021.

[34] Miguel Gomez. Dark Web Price Index 2020. https://www.
privacyaffairs.com/dark-web-price-index-2020/, 2022.

[35] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. Aggregate-based congestion control for pulse-wave ddos
defense. In ACM SIGCOMM. ACM, 08 2022.

[36] P4.org Architecture Working Group. P416 Portable Switch Architec-
ture (PSA). https://p4.org/p4-spec/docs/PSA.html.

[37] Alexander Gutnikov, Oleg Kupreev, and Yaroslav Shmelev. DDoS
Attacks in Q1 2022, Kapersky Lab Technical report. https://
securelist.com/ddos-attacks-in-q1-2022, 2022.

[38] Alexander Gutnikov, Oleg Kupreev, and Yaroslav Shmelev. DDoS
Attacks in Q4 2021, Kapersky Lab Technical report. https://
securelist.com/ddos-attacks-in-q4-2021, 2022.

[39] Jessica Haworth. Israeli government websites temporarily knocked of-
fline by ‘massive’ cyber-attack. https://portswigger.net/daily-
swig/israeli-government-websites-temporarily-knocked-
offline-by-massive-cyber-attack, 2022.

[40] Richard Hummel, Carol Hildebrand, Hardik Modi, Gary Sockrider,
Roland Dobbins, Steinthor Bjarnason, Jill Sopko, Suweera DeSouza,
Ivan Bondar, and Oliver Daff. NETSCOUT Threat Intelligence re-
port for 2H 2019. https://www.netscout.com/sites/default/
files/2020-02/SECR_001_EN-2001_Web.pdf, 2019.

[41] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The eX-
press Data Path: Fast Programmable Packet Processing in the Operating
System Kernel. In Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2018.

[42] Intel. Barefoot Tofino. https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-
switch.html.

[43] Andreas Iselt, Andreas Kirstädter, Antoine Pardigon, and Thomas
Schwabe. Resilient Routing Using MPLS and ECMP. In IEEE Xplore,
2004.

[44] Nivedita James. 45 Global DDOS Attack Statistics 2023.
https://www.getastra.com/blog/security-audit/ddos-
attack-statistics/, 2023.

[45] Juniper. Juniper Networks’ MX480 Universal Routing Plat-
form. https://www.juniper.net/us/en/products/routers/mx-
series/mx480-universal-routing-platform.html, 2022.

[46] Patrick Kennedy. Intel Tofino2 Next-Gen Programmable Switch De-
tailed. https://www.servethehome.com/intel-tofino2-next-
gen-programmable-switch-detailed/, 2020.

[47] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar, and Srini-
vasan Seshan. RedPlane: Enabling Fault-Tolerant Stateful In-Switch
Applications. In ACM SIGCOMM, 2021.

[48] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srini-
vasan Seshan Liu. Generic External Memory for Switch Data Planes.
In ACM Workshop on Hot Topics in Networks (HotNets), 2018.

[49] Oleg Kupreev, Ekaterina Badovskaya, and Alexander Gutnikov. DDoS
Attacks in Q2 2020, Kapersky Lab Technical report. https://
securelist.com/ddos-attacks-in-q2-2020, 2020.

[50] Oleg Kupreev, Alexander Gutnikov, and Yaroslav Shmelev. DDoS
Attacks in Q3 2022, Kapersky Lab Technical report. https://
securelist.com/ddos-report-q3-2022/107860/, 2022.

[51] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. Jaqen: A High-Performance Switch-Native Approach for De-
tecting and Mitigating Volumetric DDoS Attacks with Programmable
Switches. In USENIX Security Symposium, 2021.

[52] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap
Using Switching ASICs. In ACM SIGCOMM, 2017.

[53] Reza Mohammadi, Reza Javidan, and Conti Mauro. SLICOTS: An
SDN-Based Lightweight Countermeasure for TCP SYN Flooding At-
tacks. In IEEE Transactions on Network and Service Management,
volume 14. IEEE, June 2017.

[54] Netronome. BPF, eBPF, XDP and Bpfilter. . . What are
These Things and What do They Mean for the Enterprise?
https://www.netronome.com/blog/bpf-ebpf-xdp-and-
bpfilter-what-are-these-things-and-what-do-they-mean-
enterprise/, 2018.

[55] Nvidia. Nvidia BlueField-3 DPU Programmable Data Center Infras-
tructure On-a-Chip. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf, 2022.

[56] Vern Paxson. End-to-End Routing Behavior in the Internet. In
IEEE/ACM Transactions on Networking, volume 5, 1997.

[57] Petar Penkov, Eric Dumazet, and Stanislav Fomichev. Issuing SYN
Cookies in XDP. In Netdev, The Technical Conference on Linux Net-
working, 2020.

[58] Mário Pinho. AWS Shield threat landscape review: 2020 year-
in-review. https://aws.amazon.com/blogs/security/aws-
shield-threat-landscape-review-2020-year-in-review/,
2021.

[59] Mohamed Rahouti, Kaiqi Xiong, Nasir Ghani, and Farooq Shaikh.
SYNGuard: Dynamic threshold-based SYN flood attack detection and
mitigation in software-defined networks. In The Institution of Engi-
neering and Technology Networks, 2020.

[60] Dominik Scholz, Sebastian Gallenmuller, Henning Stubbe, Bassam
Jaber, Minoo Rouhi, and Georg Carle. Me Love (SYN-)Cookies: SYN
Flood Mitigation in Programmable Data Planes. In P4 Workshop in
Europe (EUROP4). Open Networking Foundation, 2020.

[61] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gal-
lenmuller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and
Georg Carle. Cryptographic Hashing in P4 Data Planes. In ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, 2019.

[62] Cisco Security. TTL Expiry Attack Identification and Mitiga-
tion . https://sec.cloudapps.cisco.com/security/center/
resources/ttl_expiry_attack.html#2, 2023.

[63] Amazon Web Services. AWS Best Practices for DDoS Resiliency. In
AWS Whitepaper, 2022.

[64] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
AVANT-GUARD: Scalable and Vigilant Switch Flow Management in
Software-Defined Networks. In ACM SIGSAC Conference on Com-
puter & Communications Security, 2013.

[65] Nikita Shirokov and Ranjeeth Dasineni. Open-sourcing Katran,
a scalable network load balancer. https://engineering.fb.
com/2018/05/22/open-source/open-sourcing-katran-a-
scalable-network-load-balancer/, 2018.

[66] Guangda Sun, Mingliang Jiang, Xin Zhe Khooi, Yunfan Li, and Jialin
Li. Neobft: Accelerating byzantine fault tolerance using authenticated
in-network ordering. In ACM SIGCOMM, pages 239–254, 2023.

[67] Microsoft TechNet. Syn attack protection on Windows Vista, Win-
dows 2008, Windows 7, Windows 2008 R2, Windows 8/8.1, Windows
2012 and Windows 2012 R2. https://docs.microsoft.com/en-
us/answers/questions/144446/synattackprotect.html, 2014.

[68] Check Point Software Technologies. Understanding Aggressive
Aging. https://sc1.checkpoint.com/documents/R80.20/
SmartConsole_OLH/EN/html_frameset.htm?topic=documents/
R80.20/SmartConsole_OLH/EN/Wh_4163Q-r2uASm5pwt7Iw2,
2021.

https://www.privacyaffairs.com/dark-web-price-index-2020/
https://www.privacyaffairs.com/dark-web-price-index-2020/
https://p4.org/p4-spec/docs/PSA.html
https://securelist.com/ddos-attacks-in-q1-2022
https://securelist.com/ddos-attacks-in-q1-2022
https://securelist.com/ddos-attacks-in-q4-2021
https://securelist.com/ddos-attacks-in-q4-2021
https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://portswigger.net/daily-swig/israeli-government-websites-temporarily-knocked-offline-by-massive-cyber-attack
https://www.netscout.com/sites/default/files/2020-02/SECR_001_EN-2001_Web.pdf
https://www.netscout.com/sites/default/files/2020-02/SECR_001_EN-2001_Web.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.getastra.com/blog/security-audit/ddos-attack-statistics/
https://www.getastra.com/blog/security-audit/ddos-attack-statistics/
https://www.juniper.net/us/en/products/routers/mx-series/mx480-universal-routing-platform.html
https://www.juniper.net/us/en/products/routers/mx-series/mx480-universal-routing-platform.html
https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://securelist.com/ddos-attacks-in-q2-2020
https://securelist.com/ddos-attacks-in-q2-2020
https://securelist.com/ddos-report-q3-2022/107860/
https://securelist.com/ddos-report-q3-2022/107860/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://aws.amazon.com/blogs/security/aws-shield-threat-landscape-review-2020-year-in-review/
https://aws.amazon.com/blogs/security/aws-shield-threat-landscape-review-2020-year-in-review/
https://sec.cloudapps.cisco.com/security/center/resources/ttl_expiry_attack.html#2
https://sec.cloudapps.cisco.com/security/center/resources/ttl_expiry_attack.html#2
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://docs.microsoft.com/en-us/answers/questions/144446/synattackprotect.html
https://docs.microsoft.com/en-us/answers/questions/144446/synattackprotect.html
https://sc1.checkpoint.com/documents/R80.20/SmartConsole_OLH/EN/html_frameset.htm?topic=documents/R80.20/SmartConsole_OLH/EN/Wh_4163Q-r2uASm5pwt7Iw2
https://sc1.checkpoint.com/documents/R80.20/SmartConsole_OLH/EN/html_frameset.htm?topic=documents/R80.20/SmartConsole_OLH/EN/Wh_4163Q-r2uASm5pwt7Iw2
https://sc1.checkpoint.com/documents/R80.20/SmartConsole_OLH/EN/html_frameset.htm?topic=documents/R80.20/SmartConsole_OLH/EN/Wh_4163Q-r2uASm5pwt7Iw2

[69] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford. Pro-
grammable in-network obfuscation of DNS traffic. In NDSS: DNS
Privacy Workshop, 2021.

[70] Liang Wang, Prateek Mittal, and Jennifer Rexford. Data-plane security
applications in adversarial settings. In ACM SIGCOMM Computer
Communication Review, 2022.

[71] Sophia Yoo and Xiaoqi Chen. Secure Keyed Hashing on Programmable
Switches. In ACM SIGCOMM Workshop on Secure Programmable
network Infrastructure (SPIN’21). ACM, 2021.

[72] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen,
Hongxin Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu.
Poseidon: Mitigating volumetric DDoS attacks with programmable
switches. In Network and Distributed System Security Symposium,
2020.

[73] Huancheng Zhou, Sungmin Hong, Yangyang Liu, Xiapu Luo, Weichao
Li, and Guofei Gu. Mew: Enabling large-scale and dynamic link-
flooding defenses on programmable switches. In 2023 IEEE Sympo-
sium on Security and Privacy (SP), 2023.

Appendix

A Breaking CRC-Based Cookies

Given the connection 4-tuple m and the secret nonce n, the
CRC-based cookie is typically generated using CRC(m∥n).
We note CRC is linear and affine: for any A, B, and C we have

CRC(A)⊕CRC(B)⊕CRC(C) = CRC(A⊕B⊕C). (2)

The adversary can send a SYN packet with known input
m0 and observe the output CRC(m0∥n). Subsequently, the
adversary can compute CRC(m0∥0) herself, and derive

CRC(0∥n) = CRC(m0∥0)⊕CRC(m0∥n)⊕CRC(0). (3)

Now that the adversary knows CRC(0∥n), she can compute
new cookie value for any arbitrary 4-tuple mx, as follows:

CRC(mx∥n) = CRC(mx∥0)⊕CRC(0∥n)⊕CRC(0). (4)

B Additional Implementation Details

B.1 Switch Agent: Processing Details
The switch agent processes two classes of packets from the
client and two classes of packets from the server agent:

• SYN packets from the client: the switch agent computes
a SYN cookie and returns this to the client in the ISN of
the SYN-ACK response packet.

• Non-SYN packets from the client: the switch agent checks
its Bloom filter to determine validity. If the Bloom filter
reports a positive, the packet is forwarded to the server.
Otherwise, the switch agent performs a cookie check,
forwarding the packet to the server agent with a setup tag
if it passes the check and dropping the packet otherwise.

Y
BF

SYN
SYN-ACK

Non-SYN

HalfSip
Hash

Y

N Match?

N
ACK’

ACK’Add to BF

Non-SYN

Regular
Packet

Regular
Packet

Client Server AgentSwitch Agent

Figure 8: Switch agent logic flow.

• Tagged confirmation packets from the server agent: the
switch agent adds the connection information to its
Bloom filter. Note that instead of doing this directly after
the cookie check, the switch agent waits for explicit con-
firmation from the second packet of the 2WHS, avoiding
connection loss in scenarios where setup packets are lost
between the switch agent and server agent (§6.1).

• Regular packets from the server agent: the switch agent
passively forwards the packet to the client.

B.2 Server Agent: Linux eBPF Modules
The server agent is composed of eBPF modules that execute
on the ingress and egress path of the kernel stack. Figure 9
demonstrates the tightly-knit functionality of the two mod-
ules, which can be understood as a progression of eBPF map
connection_states. Entrance into these states is triggered
by packets interpreted as events, and the associated actions
for each state determine how packets are processed.

XDP Ingress Processing. eBPF programs can attach and
execute at different kernel hooks, many of them occurring
early on the path to the kernel network stack. eXpress Data
Path (XDP) is a hook in the network driver that allows for
execution of eBPF programs immediately after a packet is
received off a network interface, before it even reaches the
kernel TCP stack [41]. XDP operates on raw packet data
before any socket buffer allocation. It offers the fastest in-
kernel packet-processing without offloading to hardware [54].

The server agent’s ingress program is attached at the XDP
hook. As shown in in Figure 9, the ingress program initiates
the 3WHS with the kernel network stack (A1) upon receipt
of packets that are not already part of an ongoing connection
and have a setup tag included (E1). The ingress program
properly converts these setup packets into SYN packets and
forwards them up the kernel stack. The sequence number
delta for the connection is temporarily initialized and added
to the map, and the connection_state stored in the map
is set to SYN_SENT (S1). The ingress program also handles
sequence number translations and checksum updates on all
other incoming packets, before forwarding them up the net-
work stack (A4). The module only processes TCP packets
and simply passes non-TCP packets up the network stack.

S1:

SYN SENT

S2:

ACK SENT

S3:

NOTIFY
SWITCH

S4:

ONGOING

E1: ingress
receives setup pkt

A1 (ingress): convert
setup pkt to SYN, send
to NS, create map entry,

store tmp seq delta

E2: egress receives
SYN-ACK from NS

A2 (egress): convert SYN-ACK
to ACK, redirect back to NS,

 update seq delta, clone pkt

and send to switch agent

E4: ingress receives
untagged, existing flow pkt

E3: egress receives non-
SYN-ACK pkt from NS

A3 (egress): LSR
to switch agent

A4 (ingress+egress):
forward pkts regularly,
handle seq deltas and

checksums

S5:

FIN

E5: ingress receives

FIN or RST pkt

A5 (egress): remove
entry from map

Figure 9: The server agent’s eBPF map coordinates packet-processing between XDP ingress and TC egress modules.

TC Egress Processing. XDP is not yet supported on the
kernel’s egress traffic path, which is why we choose to imple-
ment egress processing at the traffic control (TC) hook, the
next earliest hook in the stack. The TC hook offers access to
the packet’s socket buffer, providing greater processing flexi-
bility at the cost of slightly lower processing speeds. If support
for XDP on the egress path is added, SMARTCOOKIE’s egress
functionality can easily be ported from TC to XDP to further
boost egress packet-processing performance.

SMARTCOOKIE’s server agent uses a TC egress program to
perform server-side setup and sequence number translations
on outgoing packets. When the module receives an outgo-
ing TCP packet from the network stack, it checks the stored
connection_state and handles the packet accordingly (Fig-
ure 9). Generally, the server agent processes three types of
packets from the switch agent:

• Packets that are already part of an established connec-
tion: the server agent performs sequence number and
checksum updates and then passes the packet along to
the kernel network stack for normal processing.

• Packets with a setup tag that are not already part of
an established connection: the server agent knows the
packet has successfully passed the SYN cookie check at
the switch agent and bootstraps the connection establish-
ment with the kernel network stack, saves the sequence
number delta required for future packets, and sends the
switch agent an explicit confirmation upon completion.

• Packets that are not part of an established connection
and also have no setup tag (false positives): the server
agent performs a last-line-of-defense SYN cookie check
on the packet, setting up the connection if it passes the
check and dropping the packet otherwise.

C Routing Considerations

All traffic between clients and servers traverses a network
switch (i.e., the edge switches are a ‘cut’ of the network be-
tween clients and servers). In a distributed defense with an
upstream switch it is not guaranteed that all traffic will pass

through the same switch in both directions (asymmetric rout-
ing) and traffic flowing in a single direction may also traverse
different switches (routing changes). Asymmetric routing is
very common due to hot-potato routing, a phenomenon where
networks seek to pass traffic as quickly as possible out of their
borders, resulting in traffic for one connection not taking the
same path in both directions [56]. Routing changes, while
less common at the connection level, can still occur and in
particular affect longer-lived connections [56]. With an up-
stream defense, traffic from an ongoing flow could traverse
a switch that did not perform the initial cookie check. This
must be handled gracefully so the client can avoid additional
verification or connection disruption.

C.1 Handling Asymmetric Routing

The SMARTCOOKIE protocol has removed the need for the
switch agent to remain actively involved (i.e., with sequence
number translations) in a connection once it has been estab-
lished. This ensures that the switch agent need only forward
return packets, especially since this traffic is coming from the
servers and can be trusted without undergoing verification.
Thus, once the setup phase has been completed, any switch
in the provider backbone can safely forward the rest of the
return traffic, supporting asymmetric routing and direct server
return (DSR), regardless of the extent of asymmetry.

During connection setup, however, the switch agent must
see the return traffic from the server to properly add the con-
nection to its local record of verified connections. To accom-
plish this, the SMARTCOOKIE server agent ensures response
traffic is routed through a single switch agent during setup by
using loose source routing (LSR) to explicitly route response
traffic from the server to the client through the same switch
agent, until the switch agent has created a local record. In
practice, when the switch agent sends a tagged packet to the
server agent, it includes a switch agent identification (i.e., the
IP address of the switch) that the server agent can use for
routing relevant return packets. The server agent knows when
the switch agent has updated its local record since the switch
agent will stop tagging packets once the update is complete.

C.2 Handling Routing Changes

Routing changes are less common at the TCP connec-
tion level, especially when flow-aware load balancing (e.g.,
ECMP) is used instead of packet spraying [43]. Still, our
switch agent must gracefully handle routing changes caused
by configuration updates, equipment failures, or other un-
expected reasons. We consider a scenario where a client
has passed the cookie check at a given switch agent,
SwitchAgent_1, and has been added as a verified connection
to its local Bloom filter (BF), but has some packets routed to
the server through a different switch agent, SwitchAgent_2,
which does not have records of the connection. In this case,
SMARTCOOKIE should ensure that a verified client would
not get penalized by experiencing connection disruption (e.g.,
packet drops or connection reset) at the new switch agent.

BF Synchronization. For provider backbones that expect
routing changes more regularly (e.g., with packet spraying),
one solution could be to replicate BF state across the different
switch agents, maintaining a copy of the set of all verified con-
nections at each switch agent in a fault-tolerant manner [47].
However, if routing changes are expected infrequently (e.g.,
all connections are short-lived), synchronizing BF state could
be avoided, as this would fill up the BFs unnecessarily and
degrade the membership-reporting accuracy of the filters.

Packet Sampling. To avoid synchronizing state across BFs,
the SMARTCOOKIE protocol could allow individual BFs to
dynamically adapt to routing changes. To accomplish this, the
switch agent could probabilistically allow a small sampling
of non-SYN packets through to the server agent even if the
packets are not in the BF and have not passed the SYN cookie
check. By performing stateless rate limiting with probabilis-
tic sampling, SMARTCOOKIE would trade off the risk of a
routing change causing benign traffic to be dropped and the
risk of allowing attack traffic through to the server agent.

More concretely, we consider a case where an adversary
sends attack traffic with the same connection 4-tuple (spoofed
from multiple vantage points) in order to cause traffic to enter
the provider backbone through more than one switch agent. If
the attack traffic consisted of SYN packets, each of the switch
agents would initiate the SYN cookie check and the attack
would be stopped at the network edge. For non-SYN packets,
the switch agent would probabilistically let through a small
number of unverified packets, placing a special tag on these
packets before forwarding them to the server agent.

Upon receiving a packet with this special tag, the server
agent would check to see if the packet was part of an active
connection. If it was, the server agent would use LSR to
respond to the specific proxy that sent the packet, signifying
all is well and the switch agent can add the connection to its
BF. However, if the packet was not part of an active connection
at the server, the server agent would simply drop the packet
and no further action would be taken. We note that this design
requires minimal effort from the server agent, as it would

simply perform connection lookups and would not perform
any cookie checks for these special packets.

D Miscellaneous and Future Work

Header Field Compatibility and MTU. Setup tags added
to packet headers are only visible within the cloud provider’s
internal network, between switch agent and server agent. Any
such modifications are removed before unmodified packets
are passed to the server’s unmodified TCP stack. SMART-
COOKIE mostly tags handshake packets during connection
setup, when packets are only 40 - 60 bytes. However, in spe-
cial cases (setup packets dropped or routing changes) SMART-
COOKIE might tag a client’s data packets, so the internal
network’s MTU should be roughly 10-20 bytes larger.

Integration with the Network Stack. The server agent
interfaces with an unmodified TCP stack, which is useful in
scenarios such as serving tenant VMs with customized ker-
nels, or even VMs running a different guest operating system.
However, the server agent needs to pay a small overhead for
translating sequence numbers on every TCP packet. Without
changing the trust model or requiring tenant VMs to have
access to secret keys, a tighter integration with the Linux ker-
nel of trusted physical servers can eliminate this performance
penalty. Specifically, the server agent can explicitly instruct
the kernel to choose the desired initial sequence number (ISN)
and synchronize numbers between the switch and server.

Synchronize Initial Sequence Number. An unmodified
Linux kernel chooses its ISN at random. By integrating the
server agent 2WHS with the kernel’s TCP connection setup,
we could explicitly instruct the kernel to adopt the ISN chosen
by the switch agent. This minor change in the kernel network
stack would remove the need to perform sequence number
translations in the server agent altogether, further improving
its performance and automatically allowing the switch agent
to avoid keeping per-flow state.

Avoid Duplicate Per-Flow State at Server Agent. We
also note that currently the eBPF-based server agent main-
tains per-flow state for all TCP connections in an eBPF map,
duplicating the kernel-maintained list of all TCP sockets. This
leads to a small but non-negligible memory overhead. Future
implementations of the server agent could query the connec-
tion state from the kernel’s list of active TCP connections
directly. This would allow the server agent to become state-
less after connection setup, acting as an extremely lightweight
module that only handles the 3WHS with the TCP stack and
does not keep per-flow state.

Offloading the Server Agent. We can push the server
agent to run directly on a NIC that supports eBPF hardware
offloading, removing the overhead of running on the server’s
CPU. We can also run the server agent on a SmartNIC (e.g.
NetFPGA), or even on a top-of-rack (ToR) switch in front of
the server. These techniques would allow the server’s CPU to
be dedicated to only running application logic.

	Introduction
	Limitations of Existing Defenses
	Limitations of Server-based Defenses
	Limitations of SYN Cookie Proxies
	Opportunities of Programmable Switches
	Security Limitations of Switch Defenses
	Performance Limitations of Switch Defenses

	SmartCookie Problem Setting
	Threat Model
	Challenges

	SmartCookie Architecture
	Secure SYN Cookies in the Data Plane
	Split-Proxy Design
	Switch to Server Two-Way Handshake
	Redesigned Server Setup
	Compact Data Structure at Switch Agent
	Handling False Positives at Server Agent

	Security Analysis
	Attacks on the Cookie Check
	Attacks on the Bloom Filter

	Evaluation
	Experiment Setup
	Hashing Throughput
	Latency
	Server CPU Usage
	Switch Resource Usage & Compatibility

	Discussion
	Related Work
	Conclusion
	Breaking CRC-Based Cookies
	Additional Implementation Details
	Switch Agent: Processing Details
	Server Agent: Linux eBPF Modules

	Routing Considerations
	Handling Asymmetric Routing
	Handling Routing Changes

	Miscellaneous and Future Work

