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ABSTRACT
Cyclic Redundancy Check (CRC) is a computationally inexpensive
function readily available in many high-speed networking devices,
and thus it is used extensively as a hash function inmany data-plane
applications. However, CRC is not a true cryptographic hash func-
tion, and it leaves applications vulnerable to attack. While crypto-
graphically secure hash functions exist, there is no fast and efficient
implementation for such functions on high-speed programmable
switches. In this paper, we introduce an implementation of a se-
cure keyed hash function optimized for commodity programmable
switches and capable of running entirely within the data plane. We
implement HalfSipHash on the Barefoot Tofino switch by using
dependency management schemes to conserve pipeline stages and
slicing semantics for concise circular bit shift operations. We show
that our efficient implementation performs 67 million, 90 million,
150 million, and 304 million hashes per second for 32-byte, 24-byte,
16-byte, and 8-byte input strings, respectively.
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1 INTRODUCTION
The emergence of high-speed programmable switches has enabled
applications to run “within the network,” improving security, pri-
vacy, performance, and reliability for network users. These ap-
plications often use hash functions to perform indexing in hash
tables, generate short fingerprints for flow identifiers, and randomly
sample a consistent subset of traffic. Many of these data-plane appli-
cations use CRC32 [21] to meet their hashing needs. Unfortunately,
this introduces vulnerabilities to adversarial packets designed to
exploit the weak hashing properties of CRC32.
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1.1 Widespread Use of Insecure Hash Functions
CRC was designed to catch accidental bit flips and burst errors (i.e.,
a burst of consecutive 1s or 0s), which occur randomly in networks.
However, CRC was not intended to catch intentional changes to
the input message.

Thus, when it is used as a hash function in applications that
require integrity, security vulnerabilities arise due to weak hashing
properties.

CRC is linear, meaning that for any two messages𝐴 and 𝐵 of the
same length, we have

𝐶𝑅𝐶 (𝐴) ⊕ 𝐶𝑅𝐶 (𝐵) = 𝐶𝑅𝐶 (𝐴 ⊕ 𝐵) (1)

Because of this property, an attacker can easily craft inputs to
CRC in order to obtain their desired output values, i.e., construct
hash collisions with legitimate inputs.

For example, recent work has shown that these inherent insecuri-
ties of CRC32 lead toWiFi hacking vulnerabilities in the IEEE 802.11
protocol [15]. In Table 1, we briefly survey several recent research
works that use CRC32 in prototype data-plane applications, and
note the security vulnerabilities they experience. We notice that
hash functions are mainly used in three ways in these programs:

(1) Indexing: part of the CRC value of some header fields (such
as flow ID) is used as an array index to implement hash
tables. The adversary can cause collisions that force many
table updates/evictions to go to the same index.

(2) Fingerprint: the CRC values are stored in the register array
to represent longer flow IDs (or other keys). The adversary
can cause collisions that let different flow IDs share the same
fingerprint and inaccurately be grouped together.

(3) Sampling: CRC is used as a pseudo-random hash function,
calculated over some packet header fields and compared with
thresholds or ranges, to sample some subset of the input for
measurement analytics. The adversary can construct traf-
fic that is never sampled (bypassing monitoring) or always
sampled (overloading the system).

Thus, when CRC is used in the data plane as a hash function,
an attacker can induce many unintended behaviors, from causing
simple slowdowns to exploiting severe security loopholes. Clearly,
a safe and robust hash function is a critical building block for secure
network applications. Yet, secure hash functions are often consid-
ered to be prohibitively expensive to compute, especially within
the data plane of high-speed programmable switches. Without a
better alternative, programmers continue to compromise security
for lower computational cost and ease of implementation, by using
CRC32 as their go-to hashing function.

Thus, we present the implementation of a secure keyed hash
function for high-speed programmable switches running in the
data plane. Our implementation will provide speed, performance,
and security to fulfill the unmet secure hashing needs of network
applications.
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Application Input Size CRC usage VulnerabilityIndexing Fingerprint Sampling
SilkRoad [19] 13/37 bytes Yes Target a single

backend serverCheetah LB [3] 13 bytes Yes
Jaqen [17] 12 bytes Yes Mislead penalty

enforcement onto
innocent flows

Poseidon [31] 4/13 bytes Yes
ConQuest [8] 13 bytes Yes
AROMA [4] 13/21 bytes Yes Yes Bypass monitoring

&
Forge query output

BeauCoup [10] 2∼18 bytes Yes Yes Yes
Cheetah [26] 4/8 bytes Yes
PRECISION [5] 8/13 bytes Yes Yes Falsely trigger

reports by collisionP4RTT [9] 16 bytes Yes Yes
NetCache [14] 16 bytes Yes Reduce hit rate

Table 1: Prior works using CRC as hash functions in the data plane.

1.2 SipID: HalfSipHash in the Data Plane
We present SipID (Sip in the Data Plane), an implementation of Half-
SipHash [2] that runs entirely in the data plane. HalfSipHash is a se-
cure keyed hash function that is a good candidate for implementing
on the pipeline-style computation model of programmable switches.
However, there are several challenges inherent to implementing
programs in the data plane. First, to enable line-rate packet process-
ing, programmable switches using the PISA [6] pipeline architec-
ture have strict constraints, such as a limited number of hardware
pipeline stages. The switches also limit P4 programs to simple arith-
metic operations and do not support operations such as division.

In this paper, we detail these challenges and our optimizations to
overcome them and implement HalfSipHash on a Barefoot Tofino
switch without compromising the recommended security parame-
ters. We envision our effort to be the building block for many future
networking applications running on programmable switches.

In summary, we make the following contributions:
• SipID: An implementation of a secure keyed hash function
on the Barefoot Tofino programmable switch.

• An evaluation of optimized ingress-only versus ingress-plus-
egress implementation variants.

• Performance results that show 150 million hashes per second
for 16-byte input strings and over 300 million hashes per
second for 8-byte input strings.

• The open-source code of our implementation1 for commu-
nity use in developing secure P4 applications.

We first overview SipHash and its 32-bit variant HalfSipHash in
Section 2. Then, we describe challenges for implementing Half-
SipHash in the data plane and our optimizations to overcome these
challenges in Section 3. We present the results of our evaluation in
Section 4, along with a discussion of our results in Section 5. Finally,
we discuss related work in Section 6, and conclude the paper in
Section 7.

2 SIPHASH BACKGROUND
In this section, we introduce the SipHash family of pseudoran-
dom functions (PRFs) and the programmable-switch-friendly Half-
SipHash variant.
1https://github.com/Princeton-Cabernet/p4-projects/tree/master/SipHash-tofino

SipHash is a family of keyed hash functions (i.e., PRFs) which
performs a cryptographic hash of an input string using a secret key
and generates a number that is indistinguishable from random. It
was designed to achieve high speed and is optimized for short input
strings [2], such as packet header fields that represent flow ID tuples.
At a high level, the flow of SipHash is as follows: After taking an
input string and a 128-bit secret key, it first initializes four internal
64-bit state variables. SipHash-c-d then performs c compression
rounds followed by d finalization rounds on the input. These com-
pression and finalization rounds are called SipRounds (Table 3)
and are identical rounds, but with additional pre-processing and
post-processing steps on specific rounds.

SipHash-c-d is believed to be cryptographically secure for all
𝑐 ≥ 2 and 𝑑 ≥ 4 [2]. SipHash is used by OpenDNS and in the
standard libraries of Python, PHP, Rust, and Ruby, to more securely
randomize hash table indexes [20, 29, 30]. By doing so, SipHash
defends against hash collision attacks which force worst-case table
lookup times. These prolonged lookup times result when a weak
hash function maps an attacker’s crafted inputs to the same hash in-
dex, resulting in collisions and CPU exhaustion from long searches
at the collision index.

HalfSipHash is the 32-bit variant of SipHash and has the same
core functionality as Chaskey[16], which is an efficient, permutation-
based message authentication code (MAC) algorithm explicitly de-
signed for speed on 32-bit microcontrollers. HalfSipHash uses the
same SipRound operations as SipHash, but uses different shifting
constants, takes a 64-bit key, and operates on 32-bit words. Four
internal 32-bit words 𝑣0, 𝑣1, 𝑣2, and 𝑣3 are first initialized by XOR-
ing the upper and lower 32-bits of a 64-bit key with four 32-bit
constants, as detailed in Table 2.

𝑣0 = 𝑘0 ⊕ 0x70736575
𝑣1 = 𝑘1 ⊕ 0x6e646f6d
𝑣2 = 𝑘0 ⊕ 0x6e657261
𝑣3 = 𝑘1 ⊕ 0x79746573

Table 2: HalfSipHash Initialization

https://github.com/Princeton-Cabernet/p4-projects/tree/master/SipHash-tofino
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1) 𝑣0 + = 𝑣1 8) 𝑣2 <<= 16
2) 𝑣1 <<= 5 9) 𝑣2 + = 𝑣3
3) 𝑣1 ⊕ = 𝑣0 10) 𝑣3 <<= 8
4) 𝑣0 <<= 16 11) 𝑣3 ⊕ = 𝑣2
5) 𝑣2 + = 𝑣1 12) 𝑣0 + = 𝑣3
6) 𝑣1 <<= 13 13) 𝑣3 <<= 7
7) 𝑣1 ⊕ = 𝑣2 14) 𝑣3 ⊕ = 𝑣0

Table 3: One HalfSipHash SipRound

After this, the first 32-bit word of the input message𝑚𝑖 is XORed
with 𝑣3, the result is stored in 𝑣3, and then c compression SipRounds
are executed. Each SipRound takes the four internal states 𝑣0 - 𝑣3
and iteratively updates these states using additions, XORs, and cir-
cular left shifts, as per Table 3. At the end of a SipRound, the internal
states are passed to the next round for additional processing.

In HalfSipHash-2-4, each 32-bit word of the input string is pro-
cessed by 𝑐 = 2 SipRounds, and at the end of these rounds, the
message word𝑚𝑖 is XORed with 𝑣0 and stored in 𝑣0. This process
is repeated for each𝑚𝑖 in the input string. After the entire input
has been processed, 𝑣2 is updated with a self XOR to the constant
0𝑥 𝑓 𝑓 , 𝑑 = 4 finalization SipRounds are then executed, and finally
the 32-bit output [𝑣0 ⊕ 𝑣1 ⊕ 𝑣2 ⊕ 𝑣3] is returned.

For example, a 16-byte input will be split into four words, re-
sulting in a total of 12 SipRounds: four groups of two compression
SipRounds followed by four finalization SipRounds (2+2+2+2+4).

HalfSipHash-c-d is expected to provide maximum security for
any keyed hash function with the same key size and output size,
given compression and finalization rounds with 𝑐 ≥ 2 and 𝑑 ≥ 4,
respectively [1]. By design, HalfSipHash performs most optimally
for short input messages. We note that many programmable switch
applications are interested in hashing packet header fields (not
full packet payloads), and thus would benefit greatly from Half-
SipHash’s excellent security and speed on short inputs. Additionally,
HalfSipHash in the data plane would be good for applications that
might only need to hash a small fraction of packets, such as when
a connection is first established. We also note that first-generation
P4 programmable switches store variables in 32-bit containers na-
tively. Since HalfSipHash operates on 32-bit words, this makes it an
attractive choice for data-plane applications that require security
and high performance.

3 SIPID IMPLEMENTATION
We now present our implementation of HalfSipHash on P4 pro-
grammable switches. We focus on HalfSipHash-2-4 due to its good
security-versus-speed tradeoff, but our design can easily be used to
support other HalfSipHash-c-d variations.

3.1 Limited Number of Pipeline Stages
Programmable switches have a limited number of pipeline stages
available. Within each pipeline stage, the program can perform sev-
eral arithmetic operations (such as add, xor, shift, etc.) concurrently
on different variables. However, the output results are not available
for use until the next pipeline stage, so other operations depending
on these results must wait to be processed in this next stage.

XOR miSetup XOR mi Teardown
4 stages per 

SipRound
4 stages per 

SipRound

Figure 1: We run two SipRounds per switch pipeline pass,
with each SipRound costing four stages.

HalfSipHash iteratively updates four internal state variables in
repeated SipRounds, which creates a long, interwoven dependency
chain. Naively implementing SipRound per the algorithm in Table
3 would thus cost too many stages or even consume the entire
pipeline. To fit a SipRound within the switch processing pipeline,
we help the compiler recognize dependencies by making these
dependencies explicit with variable renaming and by grouping
operations based on their dependencies. We also use packet recir-
culation and combined ingress + egress pipeline stages to further
optimize HalfSipHash for the data plane.

Variable Renaming. We use a separate set of variables 𝑎0 - 𝑎3
and 𝑏0 - 𝑏3 in addition to the internal state variables 𝑣0 - 𝑣3 so that
all operations will have distinct input and output variable names.
This makes the dependency relationships between the different
operations more clear, and also makes it easier for us to arrange
the operations into separate actions for the P4 compiler.

Dependency Grouping.We choose to group the operations in
one SipRound into four separate stages, such that each of the four
internal state variables are written to once in each stage and never
accessed in the same stage again after being written. We present
dependency groupings for a full SipRound below.

Stage 1 Stage 2 Stage 3 Stage 4
𝑎0 = 𝑣0 + 𝑣1 𝑏1 = 𝑎1 ⊕ 𝑎0 𝑎2 = 𝑏2 + 𝑏1 𝑣1 = 𝑎1 ⊕ 𝑎2
𝑎2 = 𝑣2 + 𝑣3 𝑏3 = 𝑎3 ⊕ 𝑎2 𝑎0 = 𝑏0 + 𝑏3 𝑣3 = 𝑎3 ⊕ 𝑎0
𝑎1 = 𝑣1 << 5 𝑏0 = 𝑎0 << 16 𝑎1 = 𝑏1 << 13 𝑣2 = 𝑎2 << 16
𝑎3 = 𝑣3 << 8 𝑏2 = 𝑎2 𝑎3 = 𝑏3 << 7 𝑣0 = 𝑎0

Table 4: SipRound Operations Grouped by Dependencies
into Four Pipeline Stages

Using these dependency groupings, we can implement𝑘 SipRounds
in 𝑘×4 stages, with an additional 𝑠 stages for setup and teardown. If
the total pipeline length is 𝑆 stages, we can perform 𝑘 = ⌊(𝑆 −𝑠)/4⌋
SipRounds per pipeline pass. Then, with a given input string size
of𝑀 bytes, we require the number of passes given by 𝑝:

𝑝 =

(
𝑀

4
× 𝑐 + 𝑑

)
/𝑘 (2)

Our implementation performs 𝑘 = 2 SipRounds per pipeline pass,
as illustrated in Figure 1. With 𝑀 = 16 bytes for an input string
and the recommended security parameters 𝑐 = 2, 𝑑 = 4, we need
a total of 𝑝 = ( 164 ∗ 2 + 4)/(2) = 6 pipeline passes to complete all
(2 + 2 + 2 + 2) + 4 = 12 compression and finalization SipRounds.

PacketRecirculation. Sincewe cannot complete all the SipRounds
required by HalfSipHash within one pipeline pass (for a 16-byte
input, 6 pipeline passes are needed), we utilize the programmable
switch’s packet recirculation feature, which sends the packet to
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special recirculation ports that simply bounce the packet back to
the start of the ingress pipeline. Before a packet is recirculated, we
add a special metadata header to the packet to store internal states
and the current round number. We also save the original output
port in this metadata header, so the packet can be routed to the
output port at the end of the HalfSipHash computation. We use
match-action tables with exact match rules to define high-level
logic per recirculation pass and perform the correct number of
compression and finalization SipRounds.

Ingress+Egress Pipeline. To further optimize SipID, we design
a variation of our implementation that uses both the ingress and the
egress processing pipelines, reducing the number of recirculations
by a factor of two. More specifically, given 𝑤 = 𝑀/4 words of an
𝑀-byte input string, HalfSipHash-2-4 needs to run 2𝑤 compression
rounds and 4 finalization rounds. Therefore, for our ingress-only
variant, we need to run 2𝑤 + 4 rounds in total and require 𝑟 =

(2𝑤 + 4)/2 − 1 = 𝑤 + 1 recirculations. When we run calculations
in both the ingress and egress pipelines, we reduce the number of
recirculations needed to 𝑟 = (2𝑤 + 4)/4 − 1 = 𝑤/2.

For example, with a 16-byte input processed by our ingress-only
variant,𝑤 = 16/4 = 4 and we require 𝑟 = 𝑤 + 1 = 5 recirculations.
Given the same input string size, by using our ingress+egress vari-
ant, we reduce 𝑟 to be 𝑟 = 𝑤/2 = 2 recirculations per HalfSipHash
calculation.

3.2 Limited Arithmetic Operations
In addition to being constrained to a limited number of pipeline
stages, programmable switches are also restricted to specific types
of arithmetic operations. In practice, because of these arithmetic
limitations, the SipRound groupings proposed in Table 4 cannot be
trivially implemented in the switch within strictly four stages.

Specifically, circular bit shifts are the arithmetic operation that
consume too many stages. Our programmable switch does not na-
tively support circular shifts using its Arithmetic Logic Units (ALU)
and requires separate intermediate operations. A naive implemen-
tation of a circular left shift of 𝑛 bits would need to first calculate
the left and right half of the output using two separate shifts (left
shift 𝑛 bits and right shift 32 − 𝑛 bits), and then combine the two
intermediate results via bitwise OR:

𝑏 = (𝑎 << 𝑛) | | (𝑎 >> (32 − 𝑛)) (3)

Because the arithmetic results are not available within the same
pipeline stage for immediate use, the bitwise OR would need to hap-
pen in the next pipeline stage, thus consuming two stages for a sin-
gle circular bit shift. Each SipRound requires six circular left shifts,
and using this approach, the number of pipeline stages required
quickly spikes so that a full SipRound can no longer reasonably fit
into a single pipeline pass.

Slicing for Circular Bit Shifts. Instead of using this two-stage
approach, we notice that the P4 language supports slicing semantics
to extract a subset of bits from a variable. We can thus calculate
the same circular left shift by slicing and concatenating bits of the
variable as follows, where 𝑛 is the number of bits to be shifted and
++ is concatenation:

𝑏 = 𝑎[(31 − 𝑛) : 0] ++ 𝑎[31 : (32 − 𝑛)] (4)

With this implementation, a circular shift can be calculated
within a single pipeline stage, without the need to use extra in-
termediate variables. Thus, we were able to reduce the number
of stages required for a circular left shift, and ensure that all six
circular left shifts as well as the other addition and XOR operations
in a SipRound can complete within four hardware pipeline stages
as proposed in our design previously.

4 EVALUATION
In this section, we present performance evaluations for our Half-
SipHash implementation in the data plane. We first checked the
correctness of our implementation against the reference imple-
mentation written in C [1]. We tested both the ingress-only and
ingress+egress variations of our implementation using different
input lengths.

Setup. We compile and run each of the variants of our P4 Half-
SipHash implementation on a Barefoot Tofino Wedge32X-100BF
programmable switch, with 32 physical ports each operating at
100Gbps. The switch is connected to two servers, each with two
2.2GHz Intel Xeon 4114 10-core CPUs across two NUMA nodes and
96GB memory. Each server also has a Mellanox ConnextX-5 NIC
with two 100Gbps ports.

On the servers, we run DPDK 19.11 and Pktgen 19.12 to generate
and send minimum-sized packets (42 bytes header + hash input)
to the programmable switch, while also observing the transmit-
ted/received packets per second in real time. When the sending rate
exceeds the maximum processing speed of the P4 program, packet
drops occur and the receiving rate drops below the sending rate.

Each port on our programmable switch is limited to 100Gbps.
To test our P4 program at above 100Gbps line rate (maximum 148.8
million packets per second), we use multiple links from two servers
to simultaneously send packets to the switch. We also configure the
switch to distribute its final outgoing packets randomly between
two or four ports. This allows us to measure sending and receiving
rates as high as 400Gbps (595.2 million packets per second).

Ingress + Egress Pipeline.As discussed in Section 3, our initial
implementation of HalfSipHash with a 16-byte input uses only the
ingress pipeline, thus requiring 5 packet recirculations in total to
finish 12 SipRounds (6 pipeline passes). This severely limits the
performance of the implementation: by default, our Tofino switch
reserves 200Gbps of recirculation throughput, that must be shared
by all the recirculated packets. To achieve higher performance, we
need to either reserve more physical ports as recirculation ports or
reduce the number of recirculations per packet.

By also performing HalfSipHash rounds in the egress pipeline,
we can halve the number of pipeline passes needed, and use sig-
nificantly fewer recirculations per packet. We run a benchmark
experiment using 16-byte inputs to quantify the performance im-
provement. In Figure 2, we compare the packet processing rate of
two variants of our HalfSipHash implementation: a baseline variant
that uses only the ingress pipeline and an optimized variant using
both ingress and egress pipelines for processing. As we can see, the
optimized variant using both ingress and egress pipelines more than
doubles the hash rate and also increases the maximum hash rate by
3x. This is because we reduced five recirculations (six passes total)
down to two recirculations (three ingress+egress passes) per packet.
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Figure 2: By using both ingress and egress pipelines, we in-
creased our implementation’s maximum hash rate by 3x.

Effect of Input Length. Since the SipHash family of pseu-
dorandom functions processes bytes of an input string sequen-
tially, different input lengths require different numbers of hashing
rounds. In Figure 3, we compare the performance of our optimized
ingress+egress variant of HalfSipHash, given different input lengths
varying from 8 bytes to 32 bytes.

As we can see in Figure 3, the 8-byte input variant (which uses
only 1 recirculation) achieves a performance of 304.93 million
hashes per second. This is near the maximum theoretical result for
1-recirculation programs, given that dividing the 200Gbps (200×230
bits per second) reserved recirculation throughput on our switch
by the minimum Ethernet frame size (64 bytes frame plus 20 bytes
gap) equals 319.6 million packets per second.

We observe that the hash rate drops for longer messages. How-
ever, for many networking applications, hashing short input strings
is sufficient. For example, many typical applications hash the 13-
byte flow ID 5-tuple (source/destination IP pairs, source/destination
port pairs, and protocol), and this can easily be fed into HalfSipHash
as a 16-byte input with constant padding. Thus, our implementation
already meets the needs of many of the applications shown in Ta-
ble 1, allowing these applications to securely calculate hash values
at a rate of 150 million flow IDs per second. In addition, other appli-
cations such as key-value store caching might use shorter 12-byte
or 8-byte inputs, achieving even faster hash rates.

To put the experiment results into context, we also run a simple
benchmark: one modern CPU core (Intel Xeon 4114 @2.20GHz) can
run the reference C implementation of HalfSipHash-2-4 with 16-
byte inputs at 27 million hashes per second (and can run the 64-bit
variant SipHash at 33 Mh/s). Prior benchmarks have also shown
a performance of approximately 33 Mh/s for SipHash-2-4 with 16-
byte inputs on one CPU core [22], and comparable performance on
NetFPGA SUME (14Mh/s) [22] or Netronome NFP-4000 SmartNIC
(estimated 33-44Mh/s based on [22]).

Resource Utilization. Our HalfSipHash implementation uses
only minimal hardware resources on the switch, leaving plenty of

0 100 200 300

32-byte input

24-byte input

16-byte input

8-byte input

67.25

90.1

150.62

304.93

Hashes per second (Million)

Figure 3:Hash rate ofHalfSipHash on programmable switch
under different input length.

Ingress-Only Ingress+Egress
TCAM 0.0% 0.0%
SRAM 0.3% 0.6%

Instructions 8.3% 9.4%
Hash Units 33.3% 66.7%

PHV 14.2% 27.8%

Table 5: Hardware resource utilization of our HalfSipHash
implementation.

space for running other operations and advanced applications that
are complemented by a secure hashing functionality. We present
the hardware resource utilization of our implementation in Table 5.

Our most complex P4 program, the optimized variant using both
ingress and egress pipelines, only uses 27.8% of packet header vector
(PHV) for storing variables, 9.4% of available instruction words,
and negligible amounts of ternary content-addressable memory
(TCAM) and static RAM (SRAM). It uses 66.7% of available hash
units, purposed towards efficiently implementing cyclic bit shifts.

We expect that other programs co-existing on a switch with our
HalfSipHash implementation can benefit from secure hashing, and
thus be less dependent on using hash units for the more traditional
purpose of calculating CRC. However, there is more than one way to
implement cyclic bit shifts on the Tofino switch. If the HalfSipHash
calculation needs to coexist with other application logic that heavily
uses traditional CRC hash functions, we can free up hash units and
use the stateful ALU to implement the same cyclic bit shifts. We
have tested that the stateful ALU-based alternative implementation
still achieves the same hashing performance.

5 DISCUSSION
In the future, we plan to encapsulate SipID into more simple lan-
guage primitives in P4, making it easier for data-plane application
developers to integrate secure keyed hash functions into their P4
programs. We would also like to test our implementation on other
programmable switches on the market and ensure our implementa-
tion is target-independent.

An actual P4 application using SipID might require multiple
pipeline passes for its own application logic. The HalfSipHash cal-
culation may happen simultaneously with the application logic not
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requiring the hash value, reducing the total number of recircula-
tions needed. However, we also note that routing decisions can
only be made in the Ingress pipeline. If the application depends
on the hash values for routing decisions and the hash values are
only available at the end of the egress pipeline pass, the application
needs one extra recirculation before making routing decisions.

Although SipID allows calculating up to 300 million hashes per
second, it is still an order of magnitude slower than the Tofino
switch’s total packet processing capacity. Therefore, SipID is more
useful for applications that only calculate hash values for a subset
of packets, for example at the beginning of every flow connection.
Calculating HalfSipHash for every packet may be too costly, and
a potential workaround is to cache recent flow IDs and their hash
values in stateful memory registers and only perform full hash
calculations upon cache misses. We leave this as future work.

We believe future programmable switch hardware should na-
tively support widely-used cryptography primitives, similar to mod-
ern CPUs supporting the AES-NI instruction set, making it easy for
various data-plane application to use secure hashing and encryp-
tion. The switching pipeline could include fixed-function circuits
dedicated for computing a secure hash function (or a step of it),
completing the computation within one or a few stages. Until then,
SipID can act as a stop-gap solution. Based on our experience im-
plementing HalfSipHash and AES [7] on programmable switches,
implementing cryptographically secure algorithms requires many
pipeline stages, since these algorithms usually repeat a construc-
tion multiple times. Thus, an alternative to adding a fixed-function
cryptography circuit is to add very deep pipelines or optimize the
switching chip I/O for multiple pipeline passes (recirculations).
This option is more future-proof and will survive the evolution of
hashing and encryption standards.

6 RELATEDWORK
Hash Functions. Network and system applications use fast (but
insecure) hash functions such as FNV1, jhash, fasthash, xxhash, and
murmurhash etc. extensively. For some system applications such as
database sharding, fast and insecure hash functions are oftentimes
sufficient, as the input is not adversarial. However, for network ap-
plications processing potentially adversarial traffic, stronger hash-
ing guarantees are critical. This is because adversaries can remotely
send packets that force weak hash functions to lose randomness
and easily allow hashing collisions.

Cryptographic hash functions such as MD5, SHA-1, SHA-3, and
BLAKE etc. were designed to provide security guarantees. In 2005,
Wang and Yu [28] broke MD5 by providing a method to construct
collisions, and in recent years researchers have made these attacks
more efficient and practical [18, 23, 24]. Thus, applications should
avoid using MD5 and migrate to stronger hash functions like SHA-3.

Even with a perfectly secure random hash function, hash colli-
sions occur naturally [25]. Increasing the output length of a hash
function is one way to trivially boost security by increasing the
output search space and reducing the success probability of an
attacker. The authors of HalfSipHash proposed a method to double
the output of the function to 64 bits (from 32 bits) by running one
more finalization SipRound over the internal states at the end of

the function. The outputs of the last two finalization rounds are
combined into a 64-bit final output. We can implement this method
to boost hashing security for data-plane applications as well. How-
ever, we note long outputs are unnecessary for applications that
need only a few output bits, for example with hash table indexing.

Data Plane Cryptography. Scholz et al. [22] proposed to add
new cryptographic hash function primitives to the P4 language
(using the externs feature of P4 specifications). The authors intro-
duced prototype implementations of cryptographic hash functions
on CPU backends (the t4p4s compiler), an NFP-4000 SmartNIC, and
a NetFPGA Sume board. Among their hash function implementa-
tions, which include Poly1305-AES, BLAKE2b, HMAC-SHA512, and
HMAC-SHA256, they identify SipHash as the hash function with
the best performance and lowest latency on their target t4p4s CPU.
Our implementation on programmable switches with PISA-based
pipeline architecture complements this work.

Similarly, Hauser et al. [11, 12] proposed P4 extern semantics
to implement MACSec and IPSec (network traffic encryption pro-
tocols) on P4 programs running on CPU backends. The work did
not discuss how to implement the underlying encryption algorithm
(AES) on programmable switches.

Chen [7] implemented the AES block cipher algorithm on the
Barefoot Tofino programmable switch. We note that it is possible to
truncate the output of AES and use it as a hash function with fixed
input size. However, running AES is much slower than HalfSipHash.
Specifically, the Tofino switch can only run 85 million AES-128 cal-
culations per second for 16-byte inputs, compared with 150 million
hashes per second with HalfSipHash-2-4 under the same setting.

To protect privacy, PINOT [27] encrypts and decrypts packet
source and destination IP addresses on the Tofino switch. PINOT
uses a simplified two-round Even-Mansour cipher that completes
within a single pipeline pass and uses three independent keys. We
note that a standard Even-Mansour cipher construction requires
more rounds, which can similarly be implemented via packet re-
circulations. Even-Mansour cipher construction with two rounds
using only one key is subject to key-recovery attacks [13].

7 CONCLUSION
We observe that unsafe hash functions are widely used in many net-
work applications, leading to unintended security vulnerabilities.
Thus, we present SipID: an optimized HalfSipHash-2-4 implemen-
tation for programmable switches in the data plane. Our evaluation
on the Barefoot Tofino switch shows that SipID can calculate over
300 million hashes per second for 8-byte inputs. To the best of our
knowledge, this is the first such implementation of its kind, and
we envision SipID as the groundwork for secure hashing on many
future network applications.
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