
Visible Zone Maintenance for Real-Time Occlusion Culling

Olaf Hall-Holt
Szymon Rusinkiewicz

Figure 1: A frame from a flythrough of a forest scene accelerated using visible zone maintenance. The scene consists of 1,000,000
tree objects, each ranging from 2,948 to 38,744 polygons. For this frame, 817,059 of the 7,218,569,204 polygons were rendered.

Abstract

Interactive rendering of a large, dense environment can be acceler-
ated by keeping track of the visible objects. We introduce a frame-
work for maintaining the visible set that provides perfect occluder
fusion while taking advantage of temporal coherence in the ob-
server’s position. The method is based on maintaining a visible
zone, a spatial decomposition that supports fast visibility queries
and efficient updates. We discuss visible zone maintenance in 2
and 2.5 dimensions, and present extensions to maintain conserva-
tive visibility for complex geometry. We present results from an in-
teractive flythrough of a forest environment with one million trees
and seven billion polygons.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism – Visible line/surface
algorithms; I.3.6 [Computer Graphics]: Methodology and Tech-
niques – Graphics data structures and data types; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling – Geo-
metric algorithms, languages, and systems.

Keywords: Occlusion culling, visibility determination, spatial data
structures

1 Introduction

A major challenge in interactive rendering of large scenes is en-
suring that computational effort is concentrated on objects that are
visible. For many scenes, occlusion culling accelerates rendering
considerably by eliminating objects that are completely blocked by
other objects. Fast algorithms for occlusion culling often gain their
speed from frame-to-frame coherence and occluder fusion. Coher-
ence in observer motion permits the visible set to be maintained in-
crementally, with computational effort expended only when objects

come into or go out of view. Occluder fusion allows the algorithm
to consider the aggregate effect of multiple occluders, since in many
scenes it is unusual for a single object to block many others.

We present a method for maintaining the visible set of a mov-
ing observer that both takes advantage of temporal coherence and
performs perfect occluder fusion. Our method is based on main-
taining a visible zone [Anonymous 01], a quasi-spatial decomposi-
tion of the scene analogous to a topological line through the visi-
bility complex [Pocchiola 96]. This data structure has the property
that querying the visible set takes time proportional to the number
of visible objects, and updating the data structure as the observer
moves has cost proportional to the number of changes in the visible
set, under certain conditions on object placement the scene. In ad-
dition, the visible zone has fast precomputation, can accommodate
moving objects, and may be used for arbitrary scenes.

In this paper, we describe the algorithms and data structures used
to maintain the visible zone in the plane, and present ways of ex-
tending the framework to 2.5-D and 3-D. In addition, we present a
flexible approach to applying the visible zone framework to scenes
of finely detailed geometry. In this case, it is more efficient to com-
pute a conservative approximation to visibility, so that a superset
of the actual visible objects are sent to the graphics pipeline. In
many cases the occlusion characteristics of complex geometry may
be well approximated by a combination of approximate occluder
geometry, and simple functions expressing occlusion relationships
between small sets of occluders. We show that the notions of sep-
arate geometry for occlusion relationships and approximating the
extents of objects may be used to perform conservative occlusion
culling in real-time, making the method suitable for flythroughs of
large, complex environments.

We begin by surveying a number of approaches to determining
visibility. In Section 3, we review the structure of a visible zone,
and describe how it is updated as the observer moves. Next, we

1



(a) (b) (c) (d) (e)
A sample scene in 2-D. A ray loop contains two

families of rays (called
“forward” and “backward”

rays), plus two tangent rays.

In a ray loop, the rays may
freely vary in both orientation

and position on the object.

Two consistent ray loops. The
forward rays on one object
coincide with the backward

rays on the other.

A second set of consistent ray
loops, obtained from (d) by

turning a tangent ray.

Figure 2: Ray loops.

present extensions of the algorithm to partial occlusion, 2.5-D, and
separate geometry for blocking and visibility. We present results
from a flythrough of a forest scene with one million trees and seven
billion polygons. We conclude by describing other possible appli-
cations of the visible zone framework, including one method for
generalizing to the full 3-D case.

2 Background: Visibility Algorithms

A variety of algorithms have been proposed for determining the
portions of a scene visible from one or more camera viewpoints
[Sutherland 74, Dorward 94]. These methods may be classified ac-
cording to several criteria, including image vs. object space, static
vs. moving scene, general vs. restricted scenes, and spatial vs. di-
rectional techniques.

Image space algorithms, such as z-buffering, determine visibility
on a pixel-by-pixel basis, after primitives have been scan-converted.
Because of its simplicity and the fact that it always resolves visi-
bility exactly, z-buffering is widely implemented in graphics hard-
ware. Object space algorithms, in contrast, operate before scan
conversion, and thus tend to be more efficient at culling larger sec-
tions of the scene. Algorithms such as hierarchical z-buffering
[Greene 93] are hybrids: they operate in both image and object
space. For highest efficiency, however, such systems would require
specialized hardware support. For the rest of this paper we will as-
sume that hardware z-buffering is used to resolve exact visibility,
with conservative object-space occlusion culling used to reduce the
amount of geometry sent to the graphics pipeline.

For static scenes and a single viewpoint, the problem of acceler-
ating visibility determination has been widely studied in the context
of ray tracing [Arvo 89]. For most interactive applications, how-
ever, it is necessary to allow the observer position to move, requir-
ing the visibility to be updated at each point in time. One way to
do this is to subdivide space into a number of regions, and precom-
pute the visible set from each [Cohen-Or 98]. If the preprocessing
step is undesirable, or if objects within the scene are allowed to
move, visibility determination must rely on keeping some spatial
data structure up to date. In order to make this practical, systems
that take advantage of temporal continuity in the observer motion
have been proposed [Bern 94, Coorg 96].

Specialized algorithms exist that perform fast occlusion culling
in the presence of several kinds of scene structure. Many archi-
tectural walkthrough systems, for example, take advantage of the
structure of indoor scenes by subdividing them into cells and por-
tals [Teller 91, Funkhouser 92]. Other systems are optimized for
scenes in which certain objects frequently block large portions of
the scene at once, and determine which objects are blocked by these

“large occluders” [Coorg 97]. The efficiency of this strategy may be
improved by occluder fusion [Schaufler 00, Durand 00].

Among object space visibility algorithms, a second classification
can be applied to distinguish between algorithms that operate pri-
marily by means of spatial subdivisions, and those whose focus is
the ray space. Spatial subdivision algorithms typically have com-
pact storage requirements, and are often easy to describe and visu-
alize. Ray space algorithms may have larger storage requirements
since they operate in the four dimensional space of lines, but they
can also be faster and more directly focused on desired outputs,
since a camera takes a sample of rays, rather than points.

The zone-based visibility algorithm used in this paper is unusual
in that the data structure is simultaneously a spatial subdivision, and
a subset of the ray space. As such, it inherits many of the benefits of
both types of approaches. The algorithm has compact storage, fast
updates to the data structure when the observer or objects move, and
returns the visible set in time proportional to the number of visible
objects.

3 Visible Zone Maintenance in 2-D

The visible zone structure arises out of the study of the visibility
complex, introduced in [Pocchiola 96]. The visibility complex en-
codes information about visibility in a scene of non-overlapping
objects, and has multiple applications [Durand 97]. Our approach
is to identify a particular linear substructure of the visibility com-
plex, and show how it can be maintained as the observer moves.
This section is devoted to the two dimensional case, which is the
basis for all the visibility algorithms discussed in this paper.

Our maintenance algorithm is based on the Kinetic Data Struc-
ture (KDS) framework [Basch 99], in which moving objects are as-
sumed to have known short-term flight plans. The data structure we
use has two main characteristics:

1. Deriving the set of objects currently visible from the observer
is easy; and

2. These updates are efficient because the structure is only up-
dated when the visibility changes.

In order for updates to be efficient, the data structure must include
more information than just the currently-visible set. This additional
information allows rapid identification of newly visible objects.

The visible zone has the following properties in two dimensions:
� size linear in the number of objects in the scene.
� directly gives the visible set of the observer.
� local updates are possible by making small changes to the

structure when the observer’s motion has invalidated a local
consistency check.

2



A

BD

C

E

F

tA,right

��������

X

pY Y

X

(a) (b) (c) (d) (e)
The initial visible zone of the

scene in Figure 2a, formed
using a radial decomposition.

As the observer moves, a
topological change to the
visibility zone becomes

necessary.

After the change to the zone,
object X is no longer visible.

An elementary step of type
“RR.” A mirror image of this

configuration results in an
“LL” elementary step.

An elementary step of type
“LR.” A mirror image of this

configuration results in an
“RL” elementary step.

Figure 3: Visible zones.

We now describe the visible zone, and present a discrete data
structure that captures its topological properties. We describe how
the data structure is generated initially, and how it is updated as the
observer moves.

3.1 Ray Loops and the Visible Zone

Consider a two-dimensional scene consisting of non-overlapping
convex objects, as in Figure 2a. Associated with each object, we
define a structure called a ray loop, as follows:

Let A be one of the convex objects of the scene, and let tA,left and
tA,right be two rays that are tangent to A and that lie locally to the left
and right of A, respectively. The points of tangency are ptA,left and
ptA,right . Consider a continuous path along the upper side of the
boundary of A, from ptA,left to ptA,right . The path may double back
on itself, but must not go completely around A. We associate an
outward-pointing ray with each point along this path, with the con-
dition that the orientations of the rays vary continuously. These are
called forward rays of A. The object reached at the other end of
a forward ray is called its forward object. Similarly, a continuous
family of inward-pointing rays whose endpoints are on the lower
side of A are backward rays of A, and the objects from which these
rays originate are called the back objects. We define a ray loop to
be the union of two tangent rays and the forward and backward rays
between them (Figure 2b).

Traversing a ray loop is like a description of a continuously se-
quence of rays, with one endpoint of the rays always on the edge of
the object. The rays are allowed to move around the object freely,
and their orientation may vary continuously (Figure 2c). The con-
ditions placed on the ray loop are that it must go around the object
exactly once, and become tangent to the object exactly twice.

The ray loops of two objects A and B can fit together and are
called consistent if any forward rays of A that land on B are also
backward rays of B, and vice versa (see Figure 2d). A consistent
union of the ray loops of all objects in the scene is called a visible
zone, and is the fundamental structure that underlies the visibility
algorithms considered in this paper. Actually, as we will see later,
in order to determine visibility it is only necessary to consider the
topological structure of the visible zone. For example, in Figure 2e
we show a second set of consistent ray loops obtained by turning
one of the tangent rays. We have also (implicitly) turned the nearby
rays in their ray loops, so that all the ray loops remained consis-
tent. Topologically, however, this structure is the same as that in
Figure 2d: the same objects are still connected by tangent rays, and
the order of tangent rays, forward rays, and backward rays on each
loop has not changed. Because of this, we will no longer draw the
interior rays in our visibility zone diagrams, and will draw only the
tangent rays. For the same reason, the data structure used to actu-
ally represent the visible zone (presented in the next section) only
needs to include the tangent rays.

3.2 Initializing the Visible Zone

In order to generate an initial consistent visible zone, we first add
two extra objects to the scene, representing the observer and the
outside bounding box. The initial visible zone consists of all rays
pointing directly away from the point observer, the tangent rays of
which form a radial spatial subdivision. The result of performing
this for the scene of Figure 2a is shown in Figure 3a. As stated
earlier, we only show the tangent rays of the zone. Generating this
initial zone is takes time O

�
n log n � in the number of objects in the

scene.
As mentioned above, in order to represent the topological struc-

ture of the visible zone, it is sufficient to keep track of the tangent
rays and their order along the boundary of an object. The data struc-
ture for each tangent ray t consists of the following:

1. the object to which t is tangent, as well as the forward and
back objects at which the ray ends;

2. the type of the tangent, whether locally left or right of their
tangent object;

3. the neighboring tangent rays along the ray loops of the for-
ward, tangent, and back objects of t.

The data structure for each object describes the geometry of the
object, and has pointers to the left and right tangent rays of the
object. The total size of the tangent and object data structures is
thus proportional to the number of objects in the scene.

We may now use this data structure to obtain the set of objects
visible to the observer. This consists of simply sweeping through
the observer’s ray loop. For example, suppose we begin with the
ray tA,right and sweep counterclockwise. The ray tA,right has a pointer to
the object A, so we may add A to the visible set. The data structure
for tA,right also contains a pointer to the neighboring tangent along A,
which is tC,right . Thus, we know that C is visible, because the back
object of tC,right is the observer object. Similarly, we can continue
the sweep to obtain all objects visible from the observer. The cost
of this sweep is proportional to the number of visible objects. In
particular, in this example objects B and D are not touched during
the sweep.

We have defined a visible zone as a set of ray loops in ray space,
and represented these rays with a data structure that looks similar
to a spatial subdivision. The set of tangent rays, considered as seg-
ments in the plane, is a quasi-spatial decomposition, where the seg-
ments are allowed to cross to a limited extent (provided that they
end on the same object). There exists another data structure that
can be used to capture the topology of a set of ray loops, called
a pseudo-triangulation. This latter representation is truly a spatial
subdivision, but its connection to the space of rays, and the asso-
ciated update algorithms, is not as intuitive, and so for clarity we
focus on tangent rays in this paper. Either representation for a set

3



D B

A

C

D B

A

C

D B

A

C

D B

A

C

(a) (b) (c) (d)
As the observer moves, the tangent ray
tC,right becomes tangent to A. In order
to perform an elementary step, the ray

t
A,left

must be rotated.

In order to rotate tA,left , we perform an
“LL” elementary step on tA,left and

tB,left .

We continue rotating tA,left , and
perform an “RL” elementary step on

tA,left and tD,right .

We are finally able to complete the
“LR” elementary step on tC,right and
tA,left . The observer’s ray loop now

includes the object D.

Figure 4: A recursive cascade of elementary steps.

of consistent ray loops provides a web of visibility information con-
necting all the objects of the scene together.

3.3 Maintaining the Visible Set

Since we can always determine the visible set of the observer given
a visible zone, the goal of maintaining visibility requires keeping
the zone consistent as the observer moves. We could, of course,
recompute the zone every time by performing a radial sweep. Al-
ternatively, we could update the zone when the observer moves so
that it always has the form of a radial decomposition. These op-
tions, however, would require computation time O

�
n log n � or O

�
n � ,

respectively, whenever the observer moved. Instead, we adopt the
strategy of changing the visible zone only when necessary, and of
making the minimum required changes that still leave the zone con-
sistent. Let us examine what happens as the observer begins to
move.

First, we require that the tangent rays connected to the observer
move with the observer. Abstractly, each of these tangent rays may
be thought of as sliding along the boundary of its tangent object,
thus remaining at all times tangent. Computationally, of course,
we do not actually keep track of this sliding; we only maintain the
identity of the object along which it slides. The topology of the
ray loops is not forced to change until one of these tangent rays be-
comes tangent to a second object. See Figures 3b and 3c, where
the right tangent ray tX,right becomes tangent to object Y at a point
p along the boundary of Y , at the same time as tY ,right becomes tan-
gent to X. Immediately after coming together, the two tangent rays
separate again, as shown in Figure 3c. This operation to change the
topology of the ray loops is called an elementary step. There are
four types of elementary steps: the two shown in Figures 3d and 3e
and their mirror images.

The algorithm to maintain the visible set of a moving observer
in the plane proceeds as follows. First, we initialize all the tangent
rays in a radial decomposition, as described above. For each tangent
ray connected to the moving observer, we compute the time when
the tangent ray will first become tangent to another object. These
event times are stored in an event queue, so as to process these
events in order as they occur.

When an event involving some ray t1 occurs, we first identify the
object A to which it has become tangent. In order for t1 to continue
sliding, it must undergo an elementary step with the appropriate
(left or right) tangent ray of A. Let t2 be this tangent ray of A. If
t2 can slide around A without changing the objects to which it con-
nects, and reach t1 , then an elementary step for t1 and t2 is applied
directly. However, as illustrated in Figure 4, it may occur that t2

becomes tangent to a third object B as it slides around A, before it
reaches t1 . The same procedure is then recursively invoked, where
the appropriate tangent ray of B is turned toward t2 , until t2 is in-
volved in an elementary step, and continues on its way. Figure 4
illustrates such a cascade of elementary steps, where t1 = tA,right and

t2 = tA,left . In the course of this series of elementary steps, most
ray loops outside the immediate neighborhood are not touched, and
thus remain consistent with each other. Figure 5a shows an example
of a visible zone for a larger scene.

As part of this algorithm, it is often necessary to compute the
next object T that a tangent ray t will run into as it moves. A con-
sistent set of ray loops always embeds this information locally, as
follows. Let B and C be the forward and back objects of t, respec-
tively. Let Sfwd be the set of objects to which the forward rays of C
connect, and let Sback be the set of objects to which the back rays
of B connect. It can be shown that T is always an element of Sfwd

or Sback . Intuitively, as t approaches the boundary of T , some of
the rays in the ray loop of T will begin to intersect t. Due to the
restriction on intersection of rays in ray loops, these rays must then
connect to the same forward or back object as t. Note that it is not
necessarily the case that a tangent ray of T reaches B or C; it is only
the rays in between two tangent rays that are guaranteed to make
the connection. This computation thus involves traversing the ray
loops of the forward or back objects, and testing the related objects
for possible tangency.

In summary, the algorithm for maintaining consistent ray loops
involves recursively turning tangent rays through elementary steps,
until the global consistency of the ray loops is restored. Thus the
visible zone is similar to a Delaunay triangulation, in that local con-
sistency checks are sufficient to restore a global property. The re-
cursive character of this update algorithm means that some updates
may take considerably longer than others, and there is a question as
to whether these updates can ever loop around and thus prevent the
recursion from terminating. The proof of correctness in the gen-
eral case is outside the scope of this paper (see [Anonymous 01] for
a high level description), but intuitively is based on showing that
these updates always move the tangent rays closer to their “rest po-
sitions” in a radial decomposition. In particular, it can be shown that
the above algorithm for turning a tangent ray around the boundary
of an object will always succeed in producing a consistent set of ray
loops, provided that the tangent is turned toward the place where it
would be in the radial decomposition corresponding to the current
location of the observer.

The theoretical complexity of this update algorithm depends on
the occlusion characteristics of the scene. If the scene is densely
occluded, objects do not line up in long, gently curving rows, and
the observer moves along a pseudo-algebraic curve of constant de-
gree, then the amortized complexity of these updates can be shown
to be optimal, proportional to the number of changes in the visible
set. This algorithm may not be so efficient when the objects are
separated by large spaces, or when they are lined up, but the com-
plexity is never worse in the amortized sense than maintaining a
radial spatial decomposition. For details, see [Anonymous 01].

4



(a)
The visible zone is only updated as needed, in the vicinity of the observer. Note that the rays far away from the observer point towards the

center of the scene (i.e., the point around which the initial radial sweep was performed), rather than towards the observer’s current position.

(b) (c)
Visibility determination with partial occlusion. The rectangular objects are

completely opaque, and the square objects are partially transparent, such that the
observer can see through one but not two of them in a row. The yellow polygon

represents the directly-visible portion of the scene, and the orange polygon
represents the extent of the visibility when partial occlusion is taken into account.

For conservative visibility determination, each object is given both an (outer)
bounding box and an (inner) occluding box. The visibility polygon is computed
based on the inner boxes, and all objects whose outer bounding boxes intersect it
are assumed to be visible. This figure also shows that we may perform frustum

culling by sweeping the observer’s ray loop through a limited angle.

Figure 5: Visible zone maintenance 2-D and some extensions.

5



4 Extensions to the Visible Zone Algorithm

The visibility zone in 2-D is a flexible structure, and may be used
for a variety of tasks beyond simply determining visibility in 2-D.
In fact, the structure can answer queries about visibility along any
ray or set of rays, as long as the ray loops are turned to point along
the direction of the query. Here we describe two such extensions,
allowing for objects that occlude only partially and 2.5-D scenes.
We also describe how to reduce the cost of using the visible zone
for objects with high geometric complexity by maintaining conser-
vative, rather than exact, visibility.

4.1 Partial Occlusion

In many cases, objects in the scene must be treated as occluding
other objects only partially. One obvious cause for this is objects
that are partially transparent (i.e., have non-unit alpha), but in some
cases even fully opaque objects might be modeled as not occluding
completely. For example, tracking the exact occlusion character-
istics of a model of a tree with dense foliage would require the
visibility algorithm to keep track of a large amount of geometry.
Instead, it would more efficient for the visible zone to use only a
rough approximation to the full model, with the understanding that
the model does not block the observer’s view completely.

In order to handle the open areas in such a model, several objects
can be aggregated at a high level. For example, although three trees
in a row may individually have many interior open areas, it may
be the case that a ray passing though open areas in two of them
will not pass through any of the open areas in the third. Such high
level occlusion relationships could be precomputed (perhaps using
techniques from [Durand 00]) to be used at run time. In general,
a function can be defined that expresses whether or where a given
sequence of occluders in a row block visibility. We approximate
such a function by associating a “partial occlusion” value with each
object, depending on the object model and the distance from the
viewer. Partial occlusion values are combined along lines of sight to
estimate whether a given sequence of occluders is likely to occlude
the geometry behind them.

In order to generate an “extended visibility polygon” (including
the effects of partial occlusion) for a single viewer position, we start
with a single ray from the observer’s ray loop. We extend the ray
outwards, until the desired stopping condition is met. In order to
find the objects the ray hits, we query the visible zone; this may
require rotating certain tangent rays until they are aligned with the
observer, which in turn may require elementary steps and/or recur-
sive updates to the structure. Once we have found the visibility
along one ray, we sweep the ray around the observer, keeping the
information about what is visible up to date by querying and updat-
ing the zone. Once we have swept completely around the observer,
we have visited all the objects that are visible (Figure 5b), and have
“straightened out” the zone in a larger region than just the simple
visibility polygon.

Once we have generated the extended visibility polygon for a
single observer position, we may keep it up to date as the observer
moves using the standard KDS approach of computing event times
and placing events in the queue. Alternatively, we can maintain
only the simple visibility, and recompute the extended visibility
polygon once per frame. Depending on the opacities in the scene
and the speed of observer motion, either of these approaches may
be more efficient; we implement the latter.

4.2 Visibility in 2.5-D

Maintaining visibility in 2.5-D is, in a sense, very similar to the
partial occlusion case. We find the closest visible objects using
the standard algorithm, then extend rays past the directly-visible
objects to see whether anything is visible behind them. In order
to make this efficient, we assume that the height of the scene is

bounded (i.e., the scene has a “ceiling” and “floor”). We then extend
rays from the observer that are tangent to the upper and lower edges
of the initial occluder. If these rays hit any other objects, we mark
those objects as visible and update the ray along which we search to
be tangent to the upper or lower edge of the object we hit. Once the
upper ray hits the ceiling and the lower ray hits the floor, we stop
the search. The process is illustrated in Figure 6.

z

x

Not CheckedChecked −
Not Visible

VisibleChecked −
Not Visible

Visible

Floor

Ceiling

Figure 6: Visibility determination in 2.5-D.

4.3 Conservative Occlusion Culling

Having the capability to represent non-opaque objects, as described
above, will often reduce the complexity of the geometry that must
be maintained in the visible zone. In order to further reduce this
complexity, we may take advantage of the fact that we will use a
hardware z-buffer to resolve exact visibility and compute a conser-
vative approximation to the visible set. As long as a superset of the
correct visible set is marked “visible,” we are sure that any object
that should be displayed will, in fact, be displayed.

The algorithm to perform conservative approximation of visibil-
ity is based on assigning inner and outer bounds to each object. Any
simplification that lies completely inside the object may be used for
occlusion: any ray that intersects this box is assumed to be stopped.
Thus, this simplified geometry occludes everything behind it. Sim-
ilarly, any simplification that completely encloses the original ob-
ject may be used for determining visibility: the object is assumed
visible if and only if any part of the outer bounding geometry is
unoccluded. This strategy may incorrectly indicate that an object is
visible when it is not, but it will never fail to find an object that be-
longs to the visible set. In our implementation, we use the simplest
possible objects for the inner and outer bounds: axis-aligned boxes
(Figure 5c).

5 Implementation in a Flythrough Application

We have implemented a flythrough system that uses visible zone
maintenance to perform occlusion culling. The system incorpo-
rates the 2.5-D version of zone maintenance, can use both bounding
(outer) and occluder (inner) boxes, and allows for partial occlusion
with user-specified per-object opacity.

We present results from an interactive flythrough of a large for-
est scene (see Figure 1 and the accompanying video). Each tree
model contained, on average, approximately 7,000 texture-mapped
polygons, but for the purposes of visibility determination was rep-
resented as just an outer bounding box and an inner occluder box
with some opacity. Instancing was used to control the total stor-
age requirements of the scene – only five distinct tree models were
used, and rotated and scaled copies were instantiated to make up the
scene. Some statistics from the flythrough are presented in Table 1.

6



(a) (b)
Grates corresponding to the near left edge of the blue object and the near right

edge of the purple object.
Grates for a collection of objects.

Figure 7: The structure for determining visibility in 3-D keeps track of “grates” which are the analogues of 2-D tangent rays. Similarly, a perspective column
(shown in red) replaces the perspective point (i.e., the observer). Although in these figures the grates are shown as discrete lines, in reality they are represented
continuously.

Table 1: Statistics about the forest scene flythrough.

Number of objects in scene 1,000,000
Total polygons in scene 7,218,569,204
Avg objects visible per frame 30
Avg visibility computation time 2.5 ms. per frame
Time to generate initial zone 44 sec.

All measurements were made on a PC with 1 GHz Intel
Pentium III Xeon processor and NVidia GeForce 2 graphics.

6 A Visible Zone in 3-D

In order to apply the visible zone to fully three-dimensional scenes,
we have implemented an approach based on maintaining the visible
zone in all horizontal planes parallel to the xy-plane simultaneously.
As an initial object representation, we use axis-aligned bounding
boxes, which have the advantage that their cross section in any hor-
izontal plane is always the same. The representation of the observer
is also changed from a point to a vertical line, in order to intersect
all the horizontal planes. We generalize the notion of a tangent ray
to a set of vertically aligned tangent rays, which are constrained to
lie in a plane orthogonal to the xy-plane. Thus instead of maintain-
ing a single left and right tangent ray for each object, we instead
maintain a continuous set of left tangent rays, and a continous set
of right tangent rays, each constrained to lie in a vertical plane. An
example of such a set of tangent rays is shown in Figure 7a. The up-
dates to this structure are directly analogous to the two-dimensional
case, where the sets of tangent rays slide around an object until they
are involved in elementary steps. A snapshot of a test scene for this
structure is shown in Figure 7b.

In order to recover visibility in directions not parallel to the xy-
axis, the same approach to extending the two dimensional visible
zone can be applied in this parallel structure. For example, given
a non-horizontal ray query from a point along the observer line,

imagine moving a bead along the ray, always keeping track of the
object between the bead and the observer line. The sets of ray tan-
gents can be brought into alignment with the observer line in the
neighborhood of the bead, so the effect is exactly like traversing a
radial decomposition of the scene centered at the observer line. To
compute the visible set for a given view frustum, a plane sweep can
be applied in the same manner, straightening sets of tangent rays
as necessary to provide a radial decomposition the neighborhood of
the visible region.

7 Conclusions and Future Work

We have presented a method for efficiently maintaining the visible
set of a 2-D scene, with extensions to 2.5-D. The visibility zone data
structure requires little precomputation, takes space proportional to
the number of objects in the scene, and requires updates only when
visibility changes. We have shown how to extend the structure to
accommodate partially-occluding objects and to maintain (conser-
vative) approximate visibility for geometrically-complex objects.

One feature that could be added to our application is the ability to
handle the scene hierarchically, permitting multiple levels of detail
for each model. This would improve the effectiveness of the con-
servative visibility determination, since the simple inner and outer
boxes could be used for distant objects, and more accurate inner
and outer simplifications for nearby objects.

The visible zone framework could be used for a variety of
other applications involving visibility and related queries. For ex-
ample, the data structure could be used to answer queries about
the potentially-visible set in a walkthrough application, allowing
for prefetching of data from secondary storage [Funkhouser 92],
working set management [Funkhouser 96], and scheduling of
computationally-expensive precomputation (e.g., precomputation
of soft shadows). Another potential application of the visible zone
would be to accelerate ray tracing. Although the structure would

7



be of greatest benefit for accelerating primary rays, it might also
be possible to accelerate the tracing of secondary rays if they were
traced in coherent bundles [Pharr 97].

References

[Anonymous 01] Anonymous. “Kinetic Visible Set Maintenance in the
Plane,” Submitted for publication.

[Arvo 89] Arvo, J. and Kirk, D. “A Survey of Ray Tracing Acceleration
Techniques,” An Introduction to Ray Tracing, Glassner, A. S. ed., Aca-
demic Press, 1989.

[Basch 99] Basch, J., Guibas, L., and Herschberger, J. “Data Structures for
Mobile Data,” Journal of Algorithms, Vol. 31, No. 1, 1999.

[Bern 94] Bern, M., Dobkin, D., Eppstein, D., and Grossman, R. “Visibil-
ity with a Moving Point of View,” Algorithmica, Vol. 11, No. 4, 1994.

[Cohen-Or 98] Cohen-Or, D., Fibich, D., Halperin, D., and Zadicario, E.
“Conservative Visibility and Strong Occlusion for Visibility Partitioning
of Densely Occluded Scenes,” Proc. Eurographics, 1998.

[Coorg 96] Coorg, S. and Teller, S. “Temporally Coherent Conservative
Visibility,” Proc. Symposium on Computational Geometry, 1996.

[Coorg 97] Coorg, S. and Teller, S. “Real-Time Occlusion Culling for
Models with Large Occluders,” Proc. Symposium on Interactive 3D
Graphics, 1997.

[Dorward 94] Dorward, S. “A Survey of Object-Space Hidden Surface Re-
moval,” International Journal of Computational Geometry and Applica-
tions, Vol. 4, No. 3, 1994.

[Durand 97] Durand, F., Drettakis, G., and Puech, C. “The Visibility
Skeleton: A Powerful and Efficient Multi-Purpose Global Visibility
Tool,” Proc. SIGGRAPH, 1997.

[Durand 00] Durand, F., Drettakis, G., Thollot, J., and Puech, C. “Conser-
vative Visibility Preprocessing Using Extended Projections,” Proc. SIG-
GRAPH, 2000.

[Funkhouser 92] Funkhouser, T., Séquin, C., and Teller, S. “Management
of Large Amounts of Data in Interactive Building Walkthroughs,” Proc.
Symposium on Interactive 3D Graphics, 1992.

[Funkhouser 96] Funkhouser, T. “Database Management for Interactive
Display of Large Architectural Models,” Graphics Interface, 1996.

[Greene 93] Greene, N., Kass, M., and Miller, G. “Hierarchical Z-buffer
Visibility,” Proc. SIGGRAPH, 1993.

[Pharr 97] Pharr, M., Kolb, C., Gershbein, R., and Hanrahan, P. “Render-
ing Complex Scenes with Memory-Coherent Ray Tracing,” Proc. SIG-
GRAPH, 1997.

[Pocchiola 96] Pocchiola, M. and Vegter, G. “Topologically Sweeping Vis-
ibility Complexes via Pseudotriangulations,” Discrete & Computational
Geometry, Vol. 16, No. 4, 1996.

[Schaufler 00] Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F.
“Conservative Volumetric Visibility with Occluder Fusion,” Proc. SIG-
GRAPH, 2000.

[Sutherland 74] Sutherland, I., Sproull, R., and Shumacker, R. “A Char-
acterization of Ten Hidden-Surface Algorithms,” ACM Computing Sur-
veys, Vol. 6, No. 1, 1974.

[Teller 91] Teller, S. and Séquin, C. “Visibility Preprocessing for Interac-
tive Walkthroughs,” Proc. SIGGRAPH, 1991.

8


