
princeton university fall ’19 cos 521:Advanced Algorithms

Homework 4

Out: Nov 4 Due: Nov 18

Instructions:

• Upload your solutions (to the non-extra-credit) as a single PDF file (one PDF total)
to Mechanical TA. Please anonymize your submission (do not list your name in the
PDF title or in the document itself). If you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
PDF file to Mechanical TA. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please attach
a brief “collaboration statement” listing any collaborators at the end of your PDF (if
you forget, it’s OK). You should write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts).

§1 Consider a set of n objects (images, songs, etc.) and suppose somebody has designed a
distance function d(·) among them where d(i, j) is the distance between objects i and
j. We are trying to find a geometric realization of these distances. Of course, exact
realization may be impossible and we are willing to tolerate a factor 2 approximation.
We want n vectors u1, u2, . . . , un such that d(i, j) ≤ ‖ui − uj‖2 ≤ 2d(i, j) for all pairs
i, j. Describe a polynomial-time algorithm that determines whether such ui’s exist
(and outputs them in the event that they do).

§2 Given black-box access to a poly-time algorithm AP that optimizes linear functions
over the convex, compact region P , and poly-time AQ that optimizes linear functions
over the convex, compact region Q, design a poly-time algorithm that optimizes linear
functions over the convex, compact region P ∩Q.

§3 Describe separation oracles for the following convex sets. Your oracles should run in
linear time, assuming that the given oracles run in linear time (so you can make a
constant number of black-box calls to the given oracles).

(a) The `1 ball, {x : ‖x‖1 ≤ 1}. Recall that ‖x‖1 =
∑d

i=1 |xd|.
(b) Any convex set A that we have a projection oracle for. I.e. we have an oracle to

compute arg minx∈A ‖x− y‖2 for any y.

1

2

(c) The ε-neighborhood, E of any convex set A:

E = {x : ∃y ∈ A with ‖x− y‖2 ≤ ε},

given a projection oracle for A.

§4 Define a corner of a convex, compact region P to be any x ∈ P that cannot be written
as a convex combination of other points in P .1 Given black-box access to a poly-time
algorithm SP that is a separation oracle for convex region P ∈ Rn, design a poly-
time algorithm that takes as input a point x and writes x as a convex combination of
corners of P . That is, output a list {(c1, y1), . . . , (cn+1, yn+1)} such that each yi is a
corner of P , each ci ≥ 0, and

∑
i ci = 1.

§5 The maximum cut problem asks us to cluster the nodes of a graph G = (V,E) into
two disjoint sets X,Y so as to maximize the number of edges between these sets:

max
X,Y

∑
(i,j)∈E

1[(i ∈ X, j ∈ Y) ∨ (i ∈ Y, j ∈ X)]

Consider instead clustering the nodes into three disjoint sets X,Y, Z. Our goal is to
maximize the number of edges between different sets:

max
X,Y,Z

∑
(i,j)∈E

1[(i ∈ X, j ∈ Y ∪ Z) ∨ (i ∈ Y, j ∈ X ∪ Z) ∨ (i ∈ Z, j ∈ X ∪ Y)]

Design an algorithm based on SDP relaxation that solves this problem with approxi-
mation ration greater then .7.

Note: In the Goemans-Williamson algorithm for maximum cut, we claimed that
2θ

π(1−cos θ) ≥ 0.878, ∀θ ∈ [0, π]. This is much easier to verify analytically (e.g. with a

plot in MATLAB) than to prove formally. If similar quantities appear in your proof,
feel free to bound them analytically, without proof.

Obtain the highest object value you can – partial credit will be given to any non-trivial
solution, even if it obtains a weaker bound than .7.

Extra Credit:

§1 (Extra Credit, follows “The maximum cut problem,...”) Obtain an algorithm with
approximation factor > .8.

§2 (Extra Credit) Consider the following variant on the secretary problem: an adver-
sary puts the elements into any order they desire. Then, instead of being randomly
permuted, the elements are revealed either in order, or in reverse order, each with
probability 1/2 (everything else is the same: upon seeing an element, you must im-
mediately and irrevocably accept or reject). Prove that no algorithm can guarantee
acceptance of the heaviest element with probability > 1/n when there are n elements.

1So for example, if P is a triangle, P has three corners. If P is a circle, it has infinitely many.

3

§3 (Extra Credit) Consider the following variant on prophet inequalities: instead of each
Xi being independently drawn, there is a joint distribution over (X1, . . . , Xn) (every-
thing else is the same: you know the joint distribution, the random variables Xi are
revealed to you in order, and you must immediately accept/reject upon seeing). Prove
that no algorithm can guarantee better than E[maxiXi]/n.

