
princeton university fall ’19 cos 521:Advanced Algorithms

Homework 3

Out: Oct 14 Due: Oct 28

Instructions:

• Upload your solutions (to the non-extra-credit) as a single PDF file (one PDF total)
to Mechanical TA. Please anonymize your submission (do not list your name in the
PDF title or in the document itself). If you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
PDF file to Mechanical TA. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please attach
a brief “collaboration statement” listing any collaborators at the end of your PDF (if
you forget, it’s OK). You should write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts).

§1 The `1 distance between vectors x, y ∈ Rd is defined as ‖x − y‖1 =
∑d

i=1 |xi − yi|.
Consider the Johnson-Lindenstrauss dimensionality reduction method described in
lecture: x→ Πx where each entry in Π ∈ Rm×d equals

Πij = c · gij ,

for some fixed scaling factor c and gij ∼ N (0, 1). Describe an example (i.e., a set of
points in Rd) which shows that, for any choice of c, this method does not preserve `1
distances, even within a factor of 2. You may pick a single d for your example.

Hint: A simple example exists with just three vectors. You may want to use the fact
that this choice of Π preserves `2 distances. You may also want to use some of the JL
analysis given in lecture as a black box.

§2 A k-sparse vector is any vector with at most k nonzero entries. Let Sk be the set of
all k-sparse vectors in Rd. Show that, if Π is chosen to be a Johnson-Lindenstrauss
embedding matrix (e.g. a scaled random Gaussian matrix) with s = O(k log d

ε2
) rows

then, with high probability,

(1− ε)‖Πx‖2 ≤ ‖x‖2 ≤ (1 + ε)‖Πx‖2

for all x ∈ Sk, simultaneously.

Hint: You will want to use some result from the JL lecture as a black-box.
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§3 A matroid on [n] elements is a collection of sets that generalized the concept of linear
independence for vectors. Specifically, a matroid I satisfies:

• Non-trivial: ∅ ∈ I.

• Downwards-closed: If S ∈ I, then T ∈ I for all T ⊆ S.

• Augmentation: If S, T ∈ I, and |S| > |T |, then there exists an i ∈ S \ T such
that T ∪ {i} ∈ I.1

Prove that the following collections are matroids:

(a) Sets of size at most k (that is, the elements are [n], and I = {X ⊆ [n]| |X| ≤ k}).
(b) Acyclic subgraphs of any undirected graph G = (V,E) (that is, the elements are

E and I = {X ⊆ E|X contains no cycles}).
(c) Let G = (L,R,E) be a bipartite graph. The elements are L, and I = {X ⊆

L| |N(S)| ≥ |S| ∀S ⊆ X} (N(S) are the neighbors of S: {x ∈ R| ∃y ∈ S, (x, y) ∈
E}). That is, X ∈ I if and only if all nodes in X can be simultaneously matched
to R.

§4 Given weights wi ≥ 0, i ∈ [n], and some collection of feasible sets I, your goal is to
find the max-weight feasible set: arg maxS∈I{

∑
i∈S wi}. Consider a greedy algorithm

that first sorts the elements in decreasing order of wi (i.e. picks a permutation σ such
that wσ(i) ≥ wσ(i+1) for all i), then iteratively does the following (initializing A = ∅,
i = 1, go until i > n): Check if A∪{σ(i)} ∈ I. If so, add σ(i) to A. Update i := i+1.
Prove that this greedy algorithm finds the max-weight feasible set no matter what
non-negative weights are input if and only if I is a matroid (that is, prove that the
algorithm succeeds whenever I is a matroid. Also, if I is not a matroid, provide an
instance of weights for which the algorithm fails).

§5 Given a data matrix X ∈ Rn×d with n rows (data points) x1, . . . , xn ∈ Rd, the k-
means clustering problem asks us to find a partition of our points into k disjoint sets
(clusters) C1, . . . Ck ⊆ {1, . . . , n} with

⋃k
j=1 Cj = {1, . . . , n}.

Let cj = 1
|Cj |

∑
i∈Cj xi be the centroid of cluster j. We want to choose our clusters to

minimize the sum of squared distances from every point to its cluster centroid. I.e.
we want to choose C1, . . . Ck to minimize:

fX(C1, . . . Ck) =

k∑
j=1

∑
i∈Cj

‖cj − xi‖22.

There are a number of algorithms for solving the k-means clustering problem. They
typically run more slowly for higher dimensional data points, i.e. when d is larger.
In this problem we consider what sort of approximation we can achieve if we instead
solve the problem using dimensionality reduced vectors in place of x1, . . . , xn.

1Think of this as a generalization of linear independence: if I give you a set S of k linearly independent
vectors, and T of < k linearly independent vectors, then there is some vector in S not spanned by T .
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Let OPTX = minC1,...Ck fX(C1, . . . Ck).
Suppose that Π is a Johnson-Lindenstrauss map into s = O(log n/ε2) dimensions and
that we select the optimal set of clusters for Πx1, . . . ,Πxn. Call these clusters them
C̃1, . . . C̃k. Show that they obtain objective value fX(C̃1, . . . C̃k) ≤ (1 + ε)OPTX , with
high probability.

(Hint: reformulate the objective function to only involve `2 distances between data
points.)

Extra Credit:

§1 (Extra credit, follows “Given a data matrix...”) Instead, suppose we reduce our points
to k dimensions using the SVD. I.e. let Vk ∈ Rd×k have the first k right singular
vectors of X. Show that, if C̃1, . . . C̃k are the optimal clusters for V T

k x1, . . . , V
T
k xn,

then fX(C̃1, . . . C̃k) ≤ 2OPTX .

(Hint: show that for every set of clusters, there is an orthonormal matrix C ∈ Rn×k
such that fX(C1, . . . Ck) = ‖X − CCTX‖2F . I.e. reformulate k-means as a k-rank
approximation problem. )

§2 (Extra credit) Calculate the eigenvectors and eigenvalues of the (adjacency matrix of
the) n-dimensional boolean hypercube, which is the graph with vertex set {−1, 1}n
and x, y are connected by an edge iff they differ in exactly one of the n locations.
(Hint: Use symmetry extensively.)


