
princeton university fall ’19 cos 521:Advanced Algorithms

Homework 2

Out: Sep 30 Due: Oct 14

Instructions:

• Upload your solutions (to the non-extra-credit) as a single PDF file (one PDF total)
to Mechanical TA. Please anonymize your submission (do not list your name in the
PDF title or in the document itself). If you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
PDF file to Mechanical TA. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please attach
a brief “collaboration statement” listing any collaborators at the end of your PDF (if
you forget, it’s OK). You should write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts).

§1 (Approximate LP Solving via Multiplicative Weights) This exercise develops an algo-
rithm to approximately solve Linear Programs.

Consider the problem of finding if a system of linear inequalities as below admits
a solution - i.e., whether the system is feasible. This is an example of a feasibility
linear program and while it appears restrictive, one can use it solve arbitrary linear
programs to obtain approximate solutions.

a>1 x ≥ b1
a>2 x ≥ b2

...

a>mx ≥ bm
xi ≥ 0 ∀ i ∈ [n]

n∑
i=1

xi = 1. (1)

(a) Design a simple algorithm to solve the following linear program, which has only
two non-trivial constraints. Below, the weights w1, w2, . . . , wm are fixed (along

1



2

with the vectors a>j and numbers bj), and x1, . . . , xn are the variables.

max
m∑
j=1

wj(a
>
j x− bj)

xi ≥ 0 ∀i ∈ [n]
n∑

i=1

xi = 1. (2)

(b) Prove that if there exist non-negative weights w1, w2, . . . , wm such that the value
of the program above is negative, then the system (1) is infeasible.

(c) The above setting of finding weights that certify infeasibility of (1) might remind
you of the setting of weighting the experts via multiplicative weights update rule
discussed in the class. Use these ideas to obtain an algorithm that a) either finds
a set of non-negative weights certifying infeasibility of LP in (1) or b) finds a
solution x that approximately satisfies all the constraints in (1), i.e., for each
1 ≤ j ≤ m, a>j x − bj ≥ −ε, and for each 1 ≤ i ≤ n, xi ≥ 0, and

∑n
i=1 xi = 1.

Prove that your algorithm terminates after solving O(ln(m)/ε2) LPs of form (2)
(you do not need to analyze the remaining runtime).

(Hint: Identify m “experts” - one for each inequality constraint in (1) and main-
tain a weighting of experts (starting with the uniform weighting of all 1s, say)
for times t = 0, 1, . . . , - these are your progressively improving guesses for the
weights. Solve (2) using the weights at time t. If the value of (2) is negative,
you are done, otherwise think of the “cost” of the jth expert as a>j x

(t)− bj where

x(t) is the solution to the LP (2) at time t and update the weights.)

§2 Recall the max-flow problem from undergraduate algorithms: for a directed graph
G(V,E) with non-negative capacities ce for every e ∈ E and two special vertices s
(source, with no incoming edges) and t (sink, with no outgoing edges), a flow in G
is an assignment f : E → R≥0 such that fe ≤ ce for every edge and for every vertex
v ∈ V ,

∑
(u,v)∈E f((u, v)) =

∑
(v,u)∈E f((v, u)). The task is to find a maximum flow f

i.e., a flow f such that
∑

(s,u)∈E f((s, u)) is maximized.

(a) Show that the following LP is a valid formulation for computing the maximum
flow in G. There is a variable f(u, v) for all (u, v) ∈ E. (Hint: below, the
inequality is not a typo. You should show that it is w.l.o.g. to replace the
equality with inequality, as this will make it easier to reason about later parts.)

max
∑
u

f(u, t)

∀e = (u, v) ∈ E, f(u, v) ≤ ce
∀v /∈ {s, t},

∑
u

f(u, v) ≥
∑
w

f(v, w)

∀e ∈ E, f(e) ≥ 0 (3)



3

(b) Write the dual for the LP (3). Show that this dual LP computes the minimum
fractional s-t cut in G (a cut that separates s and t in G and minimizes the sum
of the capacities ce of the edges going across it. You will know what a fractional
s-t cut is once you take the dual: every node isn’t entirely on the s side or the
t side, but rather partially on each). Use strong LP duality to conclude the
fractional max-flow min-cut theorem. That is, if the max-flow is C, there exists
a fractional s-t cut of value C, and no fractional s-t cut of value < C.

(c) Devise a rounding scheme that takes as input a fractional min-cut of value C
and outputs a true (deterministic) min-cut of value C. (Hint: there is a simple
rounding scheme that works, but it is not a rounding scheme we have already
seen in class.)

§3 In class we designed a 3/4-approximation for MAX-2SAT using LP rounding. The
MAX-SAT problem is similar except for the fact that the clauses can contain any
number of literals. Formally, the input consists of n boolean variables x1, x2, . . . , xn
(each may be either 0 (false) or 1 (true)), m clauses C1, C2, . . . , Cm (each of which
consists of disjunction (an or) of some number variables or their negations) and a
non-negative weight wi for each clause. The objective is to find an assignment of 1 or
0 to xis that maximize the total weight of satisfied clauses. As we saw in the class, a
clause is satisfied if one of its non-negated variable is set to 1, or one of the negated
variable is set to 0. You can assume that no literal is repeated in a clause and at most
one of xi or ¬xi appears in any clause.

(a) Generalize the LP relaxation for MAX-2SAT seen in the class to obtain a LP
relaxation of the MAX-SAT problem.

(b) Use the standard randomized rounding algorithm (the same one we used in class
for MAX-2SAT) on the LP-relaxation you designed in part (1) to give a (1−1/e)
approximation algorithm for MAX-SAT. Recall that clauses can be of any length.
(Hint: there is a clean way to resolve “the math” without excessive calculations).

(c) A naive algorithm for MAX-SAT problem is to set each variable to true with
probability 1/2 (without writing any LP). It is easy to see that this unbiased
randomized algorithm of MAX-SAT achieves 1/2-approximation in expectation.
Show the algorithm that returns the best of two solutions given by the ran-
domized rounding of the LP and the simple unbiased randomized algorithm is
a 3/4-approximation algorithm of MAX-SAT. (Hint: it may help to realize that
in fact randomly selecting one of these two algorithms to run also gives a 3/4-
approximation in expectation).

(d) Using the previous part (and in particular, the hint) for intuition, design a direct
rounding scheme of your LP relaxation to get a 3/4-approximation. (Hint: here,
it may get messy to fully resolve the calculations. You will get full credit if you
state the correct rounding scheme and clearly state the necessary inequalities for
the proof. You should also attempt to show that the inequalities hold for your
own benefit, but not for full credit).

§4 (Firehouse location) Suppose we model a city as an m-point finite metric space with



4

d(x, y) denoting the distance between points x, y. These
(
m
2

)
distances (which satisfy

triangle inequality) are given as part of the input. The city has n houses located at
points v1, v2, . . . , vn in this metric space. The city wishes to build k firehouses and asks
you to help find the best locations c1, c2, . . . , ck for them, which can be located at any
of the m points in the city. The happiness of a town resident with the final locations
depends upon his distance from the closest firehouse. So you decide to minimize the
cost function

∑n
i=1 d(vi, ui) where ui ∈ {c1, c2, . . . , ck} is the firehouse closest to vi.

Describe an LP-rounding-based algorithm that runs in poly(m) time and solves this
problem approximately. If OPT is the optimum cost of a solution with k firehouses,
your solution is allowed to use O(k log n) firehouses and have cost at most OPT.1

§5 (extra credit) Design an algorithm that uses k firehouses but has cost O(OPT). (Needs
a complicated dependent rounding; you can also try other ideas.) Partial credit avail-
able for partial progress.

§6 (extra credit) In a combinatorial auction there are n bidders and m items. Bidder i
has a monotone valuation function vi(·) where vi(S) denotes their value for set S of
items (and vi(S∪T ) ≥ vi(S) for all S, T ). A Walrasian Equilibrium is a price for each
item ~p such that:

• Each buyer i selects to purchase a set Bi ∈ arg maxS{vi(S)−
∑

j∈S pj}.
• The sets Bi are disjoint, and ∪iBi = [m].

Prove that a Walrasian equilibrium exists for v1, . . . , vn if and only if the optimum of
the LP relaxation below (called the configuration LP) is achieved at an integral point
(i.e. where each xi,S ∈ {0, 1}). Hint: use strong duality!

max
∑
i

∑
S

vi(S) · xi,S

∀i,
∑
S

xi,S = 1

∀j,
∑
S3j

∑
i

xi,S ≤ 1

(4)

Also, come up with an example of two valuation functions v1, v2 over two items where
a Walrasian equilibrium doesn’t exist.

1The term for an approximation guarantee like this is resource augmentation — the solution is as good
as the optimum, but it requires additional firehouses.


