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Lecture 4: Hashing with real numbers and their big-data
applications

Lecturer: Matt Weinberg Scribe:

Using only memory equivalent to 5 lines of printed text, you can estimate with a
typical accuracy of 5 per cent and in a single pass the total vocabulary of Shake-
speare. This wonderfully simple algorithm has applications in data mining, esti-
mating characteristics of huge data flows in routers, etc. It can be implemented
by a novice, can be fully parallelized with optimal speed-up and only need minimal
hardware requirements. Theres even a bit of math in the middle!

Opening lines of a paper by Durand and Flajolet, 2003.

As we saw in Lecture 1, hashing can be thought of as a way to rename an address space.
For instance, a router at the internet backbone may wish to have a searchable database of
destination IP addresses of packets that are whizzing by. An IP address is 128 bits, so the
number of possible IP addresses is 2128, which is too large to let us have a table indexed
by IP addresses. Hashing allows us to rename each IP address by fewer bits. In Lecture 1
this hash was a number in a finite field (integers modulo a prime p). In recent years large
data algorithms have used hashing in interesting ways where the hash is viewed as a real
number. For instance, we may hash IP addresses to real numbers in the unit interval [0, 1].

Example 1 (Dartthrowing method of estimating areas) Suppose someone gives you
a piece of paper of irregular shape and you wish to determine its area. You can do so by
pinning it on a piece of graph paper. Say, it lies completely inside the unit square. Then
throw a dart n times on the unit square and observe the fraction of times it falls on the
irregularly shaped paper. This fraction is an estimator for the area of the paper (assuming
that each dart lands uniformly in the square).

Of course, the digital analog of throwing a dart n times on the unit square is to take a
random hash function from {1, . . . , n} to [0, 1]× [0, 1].

Strictly speaking, one cannot hash to a real number since computers lack infinite preci-
sion. Instead, one hashes to rational numbers in [0, 1]. For instance, hash IP addresses to
the set [p] as before, and then think of number “i mod p”as the rational number i/p. This
works OK so long as our method doesn’t use too many bits of precision in the real-valued
hash. This lecture we won’t stress about the error between a uniform random number in
[0, 1] and the closest rational number of the form i/p - this is very small as long as p is large.

Thumb Rules About Concentration of Random Variables

1. As pointed out in Lecture 3 using the random variable ”Number of ears,” the expec-
tation of a random variable may never be attained at any point in the probability
space.
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2. Chebyshev’s Inequality and Mean Estimation If X is a random variable with
mean µ and variance σ2, then, by Chebyshev’s inequality, the probability that X lies
in the interval [µ−kσ, µ+kσ] is ≥ 1− 1/k2. For example, if you choose k = 10, then,
this means that you can get an estimate of the mean within an additive error of at
most 10σ with probability 99 percent from a single sample. If your goal is to get a
(1± ε) accurate estimate of the mean, this is meaningful only if σ � µ.

3. Variance Reduction by Averaging Independent Copies We can use the simple
trick of averaging independent copies to fix this issue of high variance giving us bad
estimates. Given X as above, we can get a random variable with same mean but
much smaller variance by averaging independent copies of X. More precisely, if X̄ =
1/k

∑k
i=1Xi where X1, X2, . . . , Xk are independent copies of X, then, by a direct

computation EX̄ = µ and E(X̄ − µ)2 = σ2/k. The proof is a direct computation:

E(X̄ − µ)2 = E[

(
1

k

k∑
i=1

(Xi − µ)

)2

]

=
1

k2

∑
1≤i,j≤k

E[(Xi − µ)(Xj − µ)]

=
1

k2

∑
1≤i≤k

E[(Xi − µ)2]

= σ2/k

Here, in the third line, we use the fact that since Xi and Xj are independent, E(Xi−
µ)(Xj − µ) = E(Xi − µ)E(Xj − µ) = 0.

Observe that this ”Variance reduction” fact does not require Xis to be independent,
just pairwise independence is enough!

0.1 Estimating the cardinality of a set that’s too large to
store

Continuing with the router example, suppose the router wishes to maintain a count of the
number of distinct IP addresses seen in the past hour. Formally, we see a stream of bitstrings
x1, . . . , xn, among which there are N distinct strings. We wish to estimate N using as little
memory as possible.

Option one: we could just hash every string as it arrives, and store everything we see.
Using some of the clever hashing ideas from lecture one, we could use Θ(N) memory. Once
the entire stream has passed, we just output the number of filled entries in the hash table.

Option two: we could subsample the stream, taking every string independently with
probability p, then using the previous idea to estimate the number of distinct elements
from the subsampled stream. That is, when xi passes, we flip an independent coin which is
heads with probability p. If the coin lands heads, we store xi in our hash table. If tails, we
don’t. Unfortunately, if n >> N , successfully distinguishing between streams that look like
a1, . . . , a1, a2, . . . , aN (where a1 is repeated n−N times) and a1, . . . , a1 (repeated n times)
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would require p > 1/N (because there are only N − 1 different elements, and we better
put at least one of them in the hash table). Therefore, any such idea either runs the risk
of storing n/N (which is still very large) different elemnts (if p is big), or runs the risk of
doing a horrible job estimating N (if p is small).

So both of these options are conceptually simple, but use tons of memory. Here’s a better
idea: pick a hash function h that maps to [0, 1] (assume that h(x) is uniformly sampled in
[0, 1], and independent for all x for the following analysis. Obviously this isn’t exactly true
for any h(·), but it’s a good approximation if we do a good job building our hash function).

Now, keep a string x initialized to ⊥, and use the following update rule: when xi streams
past, compute h(xi). If h(xi) < h(x), update x := xi. Otherwise, let xi pass and do nothing.
What is this accomplishing? Well, each h(xi) is independent and uniformly random in [0, 1].
At the end of the stream, Y = h(x) is the minimum of N uniformly random draws from
[0, 1] (Y is a random variable because our hash function is random, even though the stream
is fixed). So as N goes up, we should expect Y to go down - and looking at Y gives us
some idea of what N might have been. We now proceed to analyze this scheme, assuming
that h(·) is a fully independent hash function which outputs a uniformly random element
of [0, 1].

Lemma 1
E[Y ] = 1

N+1 and σ2(Y ) ≤ 1/(N + 1)2.

Proof: Let’s first do the expectation calculation. The probability that Y > x is the
probability that N uniformly random draws from [0, 1] are all > x. So Pr[Y > x] = (1−x)N .
Therefore, we can write:

E[Y ] =

∫ 1

x=0
Pr[Y > x]dx =

∫ 1

x=0
(1− x)N = −(1− x)N+1/(N + 1)|1x=0 = 1/(N + 1).

Here’s a slick alternative proof of the 1/(N + 1) calculation. Imagine picking N + 1
random numbers in [0, 1] and consider the chance that the N + 1th element is the smallest.
By symmetry this chance is 1/(N + 1). Now, consider evaluating this probability in the
following alternate way: given the first N numbers, the N + 1th random number is the
smallest only if it is smaller than the minimum of the first N random numbers. This
happens with probability equal the the minimum of the first N random numbers. Thus,
the probability that the (N + 1)th number is the smallest is precisely the expected value of
the minimum of the first N random numbers.1

The variance calculation is similar. Observe that the probability that Y 2 > x is just the
probability that Y >

√
x, which happens with probability 1−

√
x. So again Pr[Y 2 > x] =

(1−
√
x)N . We get:

E[Y 2] =

∫ 1

x=0
Pr[Y 2 > x]dx =

∫ 1

x=0
(1−
√
x)N = −2(1−

√
x)N+1((N + 1)

√
x+ 1)

(N + 1)(N + 2)
|1x=0 =

2

(N + 1)(N + 2)
.

1The “repeatable” aspect of this proof is that some probabilities are trivial to calculate (e.g., the proba-
bility that one of N +1 i.i.d. random variables is the smallest). Sometimes, you can show that a non-trivial
probability/expectation/etc. that you’re interested in is equivalent to such a probability with a clever idea.
Such arguments take a lot of creativity, but minimize calculations.
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So σ2(Y ) = 2
(N+1)(N+2) −

1
(N+1)2

= N
(N+1)2(N+2)

< 1/(N + 1)2. 2

Now, we could potentially hope to estimate the number of distinct elements by looking
at Y . Indeed, if Y behaved exactly as its expectation suggests, then, N̂ = 1

Y − 1 would give
a good estimate of the number of distinct elements. Quantitatively, if Y ∈ (1 ± ε/2)E[Y ],
then, |N̂ −N | ≤ εN + 1. This, however, requires that σ2(Y )� 1

N+1 which is not quite the
case right now.

We can now use the third thumb rule though - we can get a random variable that has
the same expectation but much smaller variance by just averaging independent copies! The
analysis just amounts to repeating the experiment k times independently (simultaneously,
storing k numbers instead of just one), and taking the average. The average clearly has the
same expectation, although now the variance goes down by a factor of k (and therefore the
standard deviation by a factor of

√
k). Therefore, by Chebyshev’s inequality we get:

Pr[|Ȳ − 1/(N + 1)| > ε
√
k · 1√

k(N + 1)
] <

1

ε2k
.

So if we set k = t/ε2, we get a multiplicative (1 ± ε)-approximation for N + 1 with
probability 1/t2. Note that this only requires storing k << N numbers, so the savings
compared to the simple initial proposals is huge.

0.1.1 Pairwise Independent Hash Functions

All this assumed that the hash functions are random functions from 128-bit numbers to
[0, 1]. Let’s now show that it suffices to pick hash functions from a pairwise independent
family, albeit now yielding an estimate that is only correct up to some constant factor.
Specifically, we’ll take the median (instead of the mean) of the k trials, and show that this
estimate lies inside the window [ 1

5N ,
5
N ] with high probability.

For a particular h, we’ll bound the probability that we hash N different inputs and the
smallest hash is not in [ 1

5N ,
5
N ]. We’ll do this by separately bounding the probability of

falling below 1/5N and above 5/N .
First, for any particular h, and any x, the probability that h(x) < 1/5N is exactly

1/5N . Therefore, by a union bound, the probability that h(x) < 1/5N for any x is at most
1/5.

Now we want to bound the probability that h(x) > 5/N for all x. To do this is a
little more involved. Define Zi to be the random variable which is 1 if h(xi) < 5/N and
0 otherwise, and Z =

∑
i Zi. Then h(x) > 5/N for all x if and only if Z = 0. So we

want to upper bound the probability that Z = 0. Observe first that each Zi is 1 with
probability exactly 5/N , so E[Z] = 5. Also, because each of our hash functions are pairwise
independent, we get that σ2(Z) =

∑
i σ

2(Zi) ≤ 5. Therefore, σ(Z) <
√

5, and we can
conclude by Chebyshev’s inequality that Pr[Z = 0] ≤ 1/5.

Taking a union bound over both events, we see that the probability that for a given
h(·), mini h(xi) lies in [1/5N, 5/N ] with probability at least 3/5. Finally, observe that as
long as > k/2 of the trials have mini h(xi) ∈ [1/5N, 5/N ], then the median will definitely
lie in [1/5N, 5/N ] as well. As each trial succeeds independently with probability 3/5 > 1/2,
we can apply a Chernoff bound to see that if we take k = Ω(1/ ln(δ)) trials, at least half
succeed with probability 1− δ (and therefore the median is within a factor of 5).
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0.2 Estimating document similarity

One of the aspects of the data deluge on the web is that often one finds duplicate copies of
the same thing. Sometimes the copies may not be exactly identical: for example mirrored
copies of the same page but some are out of date. The same news article or blog post may
be reposted many times, sometimes with editorial comments. By detecting duplicates and
near-duplicates internet companies can often save on storage by an order of magnitude.

Note that detecting exact duplicates would be easy: just hash every document and mark
two documents with the same hash as duplicates. Also, detecting near-duplicates among n
documents in time n2 would also be easy: just compare all pairs of documents. We want
to get a near-linear runtime but still be able to detect near duplicates.

We present a technique called locality-sensitive hashing that allows this approximately.
It is a hashing method such that the hash preserves some “sketch” of the document. Two
documents’ similarity can be estimated by comparing their hashes. This is an example of a
burgeoning research area of hashing while preserving some semantic information. In general
finding similar items in databases is a big part of data mining (find customers with similar
purchasing habits, similar tastes, etc.). Today’s simple hash is merely a way to dip our toes
in these waters.

The formal definition of a locality-sensitive hash is the following: for a given similarity
measure sim(A,B), defined on the set of documents, a locality-sensitive hash family H is a
hash family satisfying Prh←U(H)[h(A) = h(B)] = sim(A,B). That is, documents that are
more similar are more likely to have the same hash.

With respect to documents, one common measure of similarity between two documents
is to use the “bag of words” approach. That is, every document is viewed as nothing
more than an unordered set of words, and two documents are similar if they contain many
similar words. Formally, the Jaccard similarity of two documents/sets A,B is defined to be
|A ∩B| / |A ∪B|. This is 1 iff A = B and 0 iff the sets are disjoint.

Basic idea: Pick a random hash function mapping the underlying universe of elements
to [0, 1]. Define the hash of a set A to be the minimum of h(x) over all x ∈ A. Then
by symmetry, Pr[hash(A) = hash(B)] is exactly the Jaccard similarity. (Note that if two
elements x, y are different then Pr[h(x) = h(y)] is 0 when the hash is real-valued. Thus the
only possibility of a collision arises from elements in the intersection of A,B.) Thus one
could pick k random hash functions and take the fraction of instances of hash(A) = hash(B)
as an estimate of the Jaccard similarity. This has the right expectation but we need to repeat
with k different hash functions to get a better estimate.

The analysis goes as follows. Suppose we are interested in flagging pairs of documents
whose Jaccard-similarity is at least 0.9. Then we compute k hashes and flag the pair if at
least 0.9− ε fraction of the hashes collide. Chernoff bounds imply that if k = Ω(1/ε2) this
flags all document pairs that have similarity at least 0.9 and does not flag any pairs with
similarity less than 0.9− 3ε.

To make this method more realistic we need to replace the idealized random hash func-
tion with a real one and analyse it. That is beyond the scope of this lecture. Indyk showed
that it suffices to use a k-wise independent hash function for k = Ω(log(1/ε) to let us es-
timate Jaccard-similarity up to error ε. Thorup recently showed how to do the estimation
with pairwise independent functions. This analysis seems rather sophisticated; let me know
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if you happen to figure it out.
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