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Differential privacy is a formal mathematical definition of privacy in the context of privacy-
preserving data analysis. It enables a trusted data curator to release global statistical information
about a sensitive dataset, while provably protecting individual-level information.

The focus of this tutorial will be on privately answering “counting queries,” which are some of
the most basic statistics one might ask about a sensitive dataset. A counting query simply asks,
“what fraction of the dataset satisfies a given predicate q.” By now, there are a host of simple
techniques, sophisticated algorithms, and tight lower bounds known for the query release problem.
We’ll only scratch the surface here, but it will be enough to illustrate many of the core principles
of differentially private data analysis.

Most of the material here is covered in much greater depth and detail in the monograph of
Cynthia Dwork and Aaron Roth [?]. Another excellent resource is Salil Vadhan’s survey [?].

1 Datasets and counting queries

We model a sensitive dataset D as a tuple of n elements (x1, . . . , xn), where each xi ∈ X for some
“data universe” X. It will be without loss of generality to think of X = {0, 1}d, where d should be
thought of as the dimensionality of the data.

Definition 1. A counting query is a predicate q : X → {0, 1}. We abuse notation by extending a
counting query to an entire dataset by defining

q(D) =
1

n

n∑
i=1

q(xi).

That is, the value of a counting query on a dataset D is the fraction of the rows of D that satisfy
the predicate q.

We will of course not only be interested in answering a single counting query on a dataset D,
but will seek to answer many different queries simultaneously. We use the notation Q to denote
such a family of counting queries.

Example 2 (Histograms). For every y ∈ X, define a predicate qy by qy(x) = 1 if x = y and
qy(x) = 0 otherwise. That is, qy is the indicator (or point function) for the universe element y. The
vector (q(D))q∈Q represents the histogram of D.
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Example 3 (k-way Conjunctions). Given a subset S ⊆ [d] with |S| ≤ k, define qS(x) = ∧j∈Sxj .
The family Q of all such queries denotes the k-way conjunctions (marginals).

While extremely simple, counting queries capture a broad spectrum of statistical tasks. A slight
generalization lets one perform any analysis that is captured by the statistical query model.

Counting queries are also a natural object of study for privacy-preserving data analysis. After
all, a counting query captures a global statistical property, for which the impact of any given
individual is small (only 1/n). Based on this intuition, one might ask: What is wrong with simply
answering counting queries in the clear?

One reason is that, while the answer to a single counting query may not be disclosive, the answers
to many counting queries can interact in privacy compromising ways. For example, consider the
following pair of counting queries: 1) What fraction of the dataset are Justin Bieber fans?1 and 2)
What fraction of the dataset are Justin Bieber fans and are not named “Matt Weinberg”? While
each query individually seems innocuous, answering both exactly on the same dataset and taking
the difference allows one to conclude whether Matt is a Belieber. While artificial, one must take
care with definitions to prevent this kind of “differencing attack.” A more general and far-reaching
attack comes from the work of Dinur and Nissim [?], which showed that given (approximate)
answers to an almost linear collection of counting queries involving public attributes and a single
sensitive attribute, one is able to very accurately reconstruct the vector of sensitive attributes.

In light of these attacks, we appeal to ideas that are now very familiar in the design and analysis
of algorithms: We introduce randomization and approximation.

Definition 4. A randomized algorithm M : Xn → [0, 1]|Q| is α-accurate if for every dataset D,
with high probability M produces an answer vector (aq)q∈Q such that |aq − q(D)| ≤ α for every
q ∈ Q.

2 Definition and interpretation of differential privacy [?, §2]

The definition of differential privacy captures the following: A randomized algorithm protects
individual-level privacy if no individual has “too much” of an effect on the distribution of the
output of the algorithm. This idea is formalized by introducing the concept of “neighboring” or
“adjacent” datasets. We say that two datasets D,D′ are neighboring, written D ∼ D′, if they differ
in at most one row, corresponding to one individual’s data.

Definition 5. A randomized algorithmM : Xn → R provides ε-differential privacy if, for all pairs
of neighboring datasets D ∼ D′ and all (measurable) sets of outcomes S ⊆ R, we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S].

A few remarks are in order about the definition:

1. A moment’s reflection shows that the definition of ε-differential privacy amounts to requiring
a notion of similarity between the distributionsM(D) andM(D′). By swapping the roles of
D and D′ in the definition, it requires that the probability of landing in any set of outcomes
S increases by at most eε, or decreases by at most e−ε, when the input dataset is changed
from D to D′.

1Thanks to Kobbi Nissim for this compelling example.
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2. An equivalent way of formulating the definition is to require that for every pair of neighboring
datasets D ∼ D′, the associated privacy loss function LD,D′(r) defined by

LD,D′(r) = ln
Pr[M(D) = r]

Pr[M(D′) = r]

satisfies |LD,D′(r)| ≤ ε for all r ∈ R.

3. Establishing an acceptable choice for the parameter ε is a delicate and context-dependent
question. But it is reasonable to think of it as being a small constant (independent of the
universe X or the size of the dataset n), e.g. ε = 0.1, justifying the approximation eε ≈ (1+ε).

The literature on differential privacy makes a number of interpretive claims about what the
definition means. The great thing about having a formal mathematical definition is that one can
actually prove theorems to back these claims up. We explore just a few of these claims here.

A Bayesian interpretation To quote Dwork and McSherry (2006), differential privacy offers
the following promise to a person whose data is included in a differentially private data release:
“Regardless of external knowledge, an adversary with access to the sanitized database draws the
same conclusions whether or not my data was included.” We can justify such a statement by
considering how a Bayesian adversary’s inference is affected by an individual’s participation, or
non-participation, in a differentially private data release. For a much more in-depth discussion of
this approach, see [?].

For an index i ∈ [n] and a dataset D ∈ Xn, let D−i denote the dataset with individual i’s
information removed (or replaced by a junk symbol ⊥ to stay compatible with the definition). Let
P denote an adversary’s prior beliefs, and for concreteness, let’s say this is a distribution over
the space of datasets Xn. After seeing the outcome r of a differentially private computation, she
updates her prior to a posterior distribution P̄[· | r]. Let P̄−i[· | r] denote her posterior distribution
if, instead of observing r ←M(D) for some dataset D, she observes r ←M(D−i).

Proposition 6. Let M : Xn → R be ε-differentially private. Then for any prior distribution P,
any transcript r, and any dataset D,

P̄[D | r] ∈ e±2ε · P̄−i[D | r].

In other words, regardless of an adversary’s prior beliefs (modeling arbitrary side information
about the dataset D), her posterior distribution does not change too much depending on the
inclusion or non-inclusion of any individual’s data.

Proof. By Bayes’ Theorem,

P̄[D | r] =
Pr[M(D) = r]∑

D̂∈Xn Pr[M(D̂) = r] Pr[P = D̂]
· Pr[P = D]

∈ e±2ε · Pr[M(D−i) = r]∑
D̂∈Xn Pr[M(D̂−i) = r] Pr[P = D̂]

· Pr[P = D]

∈ e±2ε · P̄−i[D | r].
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An economic interpretation Differential privacy captures the idea that participating in a
differentially private data release does not result in too much additional harm to any individual.
This can be formalized in a utility-theoretic framework. Fix an individual i ∈ [n], and suppose
this individual has a utility function u : R → R≥0 defined over outcomes of a differentially private
analysis. Then

E
r←M(D)

[u(r)] =
∑
r∈R

u(r) · Pr[M(D) = r]

≥
∑
r∈R

u(r) · e−ε Pr[M(D−i) = r]

= e−ε E
r←M(D−i)

[u(r)] .

That is, the expected utility enjoyed by user i decreases by a factor of at most e−ε by partici-
pating in a private data release.

3 Basic techniques: Randomized response and noise addition [?,
§3.2, 3.3]

So how can we achieve the definition of differential privacy? Let’s focus right now on the task of
answering a single counting query q.

3.1 Randomized response

The technique of randomized response was introduced by Warner in 1965 (predating the definition
of differential privacy by over 40 years) in the context of conducting surveys where the results
should be kept hidden even from the surveyor. Let p > 1/2 be a parameter. Each individual i ∈ [n]
is surveyed independently as follows, producing a report ri. With probability p, she reports the
true value q(xi) on her data. With the remaining probability 1− p, she flips her answer, reporting
1− q(xi). To estimate the average value q(D), the surveyor computes

aq =
1

2p− 1

((
1

n

n∑
i=1

ri

)
− (1− p)

)
.

It is a simple calculation to show that this estimator is unbiased (i.e. E [aq] = q(D)) and has
standard deviation

√
p(1− p)/(2p − 1)

√
n. Note that for constant p, this is comparable to the

sampling error when D is thought of as independent random samples from a larger population.

Proposition 7. Randomized response provides ln(p/(1− p))-differential privacy.

Proof. Let D ∼ D′ be neighboring datasets, differing in the data of individual i. We wish to
bound the privacy loss function LD,D′(r). Since each individual acts independently, the privacy
loss decomposes as a product where all terms except those corresponding to individual i are 1. By
symmetry, there is only one interesting case for the term corresponding to i, which is

ln
Pr[ri = 1|q(xi) = 1]

Pr[ri = 1|q(xi) = 0]
= ln

(
p

1− p

)
.
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Thus, in order to guarantee ε-differential privacy, one should set p = eε/(1 + eε) ≈ (1 + ε)/2.

3.2 The “Laplace mechanism”

We next describe what is perhaps a simpler algorithm that works very well in the case of answering a
single counting query. The strategy now will be to answer a query q(D) by simply adding random
noise to the true answer. The tradeoff is that this mechanism crucially uses the existence of a
trusted central curator.

Define the Laplace distribution via the density function Lap(λ) ∼ 1
2λ exp(−|y|/λ). The Laplace

mechanism answers a query q by reporting aq = q(D) + Lap(1/εn). Again, this is an unbiased
estimator, but now the Laplace distribution has standard deviation

√
2λ =

√
2/nε – quadratically

better than the sampling error.

Proposition 8. The Laplace mechanism provides ε-differential privacy.

Proof. Let D ∼ D′, and note that for any counting query q, we have |q(D)− q(D′)| ≤ 1/n. Then
for any r ∈ R, we have

Pr[M(D) = r]

Pr[M(D′) = r]
=

exp(−εn|r − q(D)|)
exp(−εn|r − q(D′)|)

≤ exp(εn|q(D)− q(D′)|) ≤ eε.

4 Properties: Postprocessing, group privacy, composition [?, §3.5]

Differential privacy enjoys a number of properties that make it amenable to algorithm design and
analysis.

4.1 Postprocessing

The definition of differential privacy is robust to postprocessing. This means that performing
additional computations on the outcome of a differentially private algorithm does not weaken
its privacy guarantees. While a simple idea, this property is surprisingly useful for interpreting
and extracting useful statistical information, especially when coupled with the fact that one often
explicitly knows the noise distribution introduced by a differentially private algorithm.

Proposition 9. Let M : Xn → R be ε-differentially private, and let A : R → S be a randomized
algorithm. Then A ◦M defined by (A ◦M)(D) = A(M(D)) is also ε-differentially private.

Proof. By convexity, it is enough to show this for deterministic algorithms A. In this case, we have
for any D ∼ D′ and any S ⊆ S that

Pr[(A ◦M)(D) ∈ S] = Pr[M(D) ∈ A−1(S)] ≤ eε Pr[M(D′) ∈ A−1(S)] = eε Pr[(A ◦M)(D) ∈ S].
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4.2 Group privacy

Differential privacy automatically extends to guarantee privacy for small groups of individuals.

Proposition 10. Let D and D′ be datasets which differ in at most k entries. Then ifM : Xn → R
is ε-differentially private, we have for every S ⊆ R

Pr[M(D) ∈ S] ≤ ekε Pr[M(D′) ∈ S].

To prove this, just iterate the definition of differential privacy k times.

4.3 Composition

Perhaps the hallmark property of differential privacy is that it degrades gracefully and predictably
under composition, i.e. when multiple differentially private algorithms are performed on the same
(or overlapping) datasets. It is an important property for several reasons. The first is that privacy-
preserving analyses do not occur in isolation; one does not simply answer a single counting query
on a dataset and then throw it away. Instead, many different analyses are performed on each
dataset, and moreover, an individual may choose to participate in many different sensitive datasets.
Composition is key to thwarting differencing attacks when many such analyses are conducted
independently.

The second reason is that composition enables differentially private programming. Algorithms
are almost always designed and analyzed in a modular way, by putting together smaller building
blocks and reasoning about the computational resources (e.g. time, space, randomness) required by
the algorithm as whole in terms of those required by the individual building blocks. Composition
theorems allow one to reason about privacy as yet another computational resource in exactly the
same way.

The “basic” composition theorem states that running k differentially private algorithms on the
same datasets guarantees (kε)-differential privacy.

Proposition 11. LetM1, . . . ,Mk be ε-differentially private. ThenM(D) = (M1(D), . . . ,Mk(D))
(where each mechanism uses independent coin tosses) is (kε)-differentially private.

Proof. Let D ∼ D′ be neighboring datasets. Fix a transcript ~r = (r1, . . . , rk). Then we can write
the privacy loss of the combined mechanism M as

LD,D′(~r) = ln

(
Pr[M(D) = ~r]

Pr[M(D′) = ~r]

)
=

k∑
i=1

ln

(
Pr[Mi(D) = ~r]

Pr[Mi(D′) = ~r]

)

≤
k∑
i=1

ε = kε.

It turns out that the basic composition theorem is too pessimistic in its prediction about cumu-
lative privacy loss. Although each individual mechanism might incur privacy loss ε with reasonable
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probability, it turns out to be exceedingly unlikely that all of the mechanisms M1, . . . ,Mk will
conspire against you to attain the worst-case cumulative bound of kε. Most of the time, the cu-
mulative bound looks more like

√
kε. To formalize an improvement, we need to introduce a slight

relaxation of the definition of differential privacy.

Definition 12. A randomized algorithmM : Xn → R provides (ε, δ)-differential privacy if, for all
pairs of neighboring datasets D ∼ D′ and all (measurable) sets of outcomes S ⊆ R, we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

A more-or-less equivalent way of thinking about (ε, δ)-differential privacy is that it guarantees
that with probability all but δ (over the coin tosses of the mechanism), the privacy loss is bounded
by ε. While we usually think of ε as a small constant, δ should be significantly smaller (e.g. n−ω(1)

in theory and 2−30 in practice).

Proposition 13. LetM1, . . . ,Mk be ε-differentially private. Then for every δ > 0, the composition
M(D) = (M1(D), . . . ,Mk(D)) is (kε2/2 +

√
2k ln(1/δ) · ε, δ)-differentially private.

The main idea behind the proof is to reason about the privacy loss random variable Yi =
LiD,D′(Mi(D)) associated to each mechanism Mi and the datasets D,D′. While ε-differential
privacy guarantees that each Yi is bounded in [−ε, ε], a (miraculous) calculation shows that the
expected privacy loss E [Yi] is much smaller, only at most 1

2ε
2. Applying, say, Hoeffding’s inequality

shows that the total privacy loss Y =
∑k

i=1 Yi concentrates around its expectation 1
2kε

2, exceeding

this expectation by more than O(
√

ln(1/δ)) standard deviations with probability less than δ.
The composition theorems allow us to extend the strategies from Section ?? to handle multiple

queries. For instance, by adding Laplace noise at the scale of roughly
√
k/εn, we can answer k

arbitrary counting queries subject to differential privacy.

Proposition 14. Answering each of k counting queries with independent noise Laplace noise of
scale O(

√
k log(1/δ)/εn) yields (ε, δ)-differential privacy and α-accuracy for

α &

√
k log(1/δ) log k

εn
.

Proof. Privacy follows from the advanced composition theorem taking ε0 ≈ ε/
√
k log(1/δ). The

Laplace distribution has exponentially decaying tails, i.e. the probability that |Lap(λ)| exceeds
tλ falls as exp(−t). Therefore, by a union bound, w.h.p. all k noise variables are bounded by
O(λ log k).

5 Private multiplicative weights [?, §4.2]

I mentioned an amazing result of Hardt and Rothblum [?] for answering many counting queries
with differential privacy. This algorithm gives a nice taste of how one actually does more complex
algorithm design using the composition theorem and basic differentially private primitives. (Plus,
it’s gives another application of the versatile multiplicative weights framework.) It is also the state-
of-the-art algorithm for releasing answers to an arbitrary family of counting queries Q, and is now
known to be matched by lower bounds [?]. (However, for some specific families of queries Q, better
algorithms are known.)
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The private multiplicative weights algorithm requires a fairly dramatic way of rethinking how
one answers queries. We’ll cast the query release problem as an online learning problem as follows.
Given a stream of queries q1, . . . , qk and a (hidden) sensitive dataset D, we will try to learn a
predictor D̂ for the values q1(D), . . . , qk(D) using only differentially private access to the real
dataset D. That is, we will try to learn D̂ such that qt(D̂) ≈ qt(D) for every t = 1, . . . , k.

It will be useful to take a different view of a dataset D as a histogram over the data universe X.
With this view, we write D[x] to denote the probability mass that D assigns to universe element
x. The value of a counting query can now be written as q(D) = Ex←D [q(x)].

We begin by presenting a non-differentially private algorithm that uses the multiplicative
weights update rule to learn a good predictor.

Algorithm 1 A non-private MW query release algorithm

• Initialize D̂0 = Unif(X)

• For t = 1, 2, . . . , k:

– If |qt(D̂t−1)− qt(D)| ≤ α : Output at = qt(D̂t−1), update Dt = Dt−1

– Else:

∗ Output at = qt(D)

∗ For each x ∈ X, let

mt(x) =

{
qt(x) if qt(D̂t−1) > qt(D) + α,

1− qt(x) if qt(D̂t−1) < qt(D)− α

∗ Update each weight D̂t[x] = D̂t−1[x] · (1− αmt(x))

∗ Renormalize D̂t

The key idea for turning this into a good differentially private algorithm is that the number of
“update” rounds is small. The point will be that only the update rounds require a costly access to
the sensitive dataset, so the cumulative privacy loss incurred by running the algorithm looks more
like what is incurred by answering queries in only the update rounds, rather than what would be
incurred by answering each query independently.

Claim 15. For any dataset D and any sequence of queries q1, . . . , qk, the number of update rounds
in the MW query release algorithm is at most O(log |X|/α2) = O(d/α2).

Proof Sketch. Consider the potential function Ψt = KL(D‖Dt). Then Ψ0 ≤ log |X| and Ψt ≥ 0 for
every t. If t is an update round, then a calculation shows that

Ψt−1 −Ψt ≥
α

2
|qt(Dt−1)− qt(D)| − α2

4
≥ α2

4
.

With this in mind, we can state a differentially private version of the MW query release algo-
rithm, which ensures that its accesses to the original dataset D are privacy-preserving.
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Algorithm 2 Private MW query release algorithm

• Initialize D̂0 = Unif(X)

• Initialize noisy threshold T = α+ Lap(λ)

• For t = 1, 2, . . . , k:

– If qt(D̂t−1) − qt(D) ≤ T + Lap(λ) and qt(D) − qt(D̂t−1) ≤ T + Lap(λ) : Output at =
qt(D̂t−1), update Dt = Dt−1

– Else:

∗ Output at = qt(D) + Lap(λ)

∗ For each x ∈ X, let

mt(x) =

{
qt(x) if qt(D̂t−1)� qt(D),

1− qt(x) if qt(D̂t−1)� qt(D)

∗ Update each weight D̂t[x] = D̂t−1[x] · (1− αmt(x))

∗ Renormalize D̂t

Proposition 16. The private multiplicative weights algorithm is (ε, δ)-differentially private, and
provides O(α)-accurate answers for

α =

√
log k(d log(1/δ))1/4√

εn

Proof Sketch. Set λ = O(
√
d log(1/δ)/αεn). Intuitively, one only needs to “pay” for privacy in

each of the update rounds, of which there are at most O(d/α2). So by advanced composition, this
setting of the noise parameter yields (ε, δ)-differential privacy. (The formal analysis is more subtle,
since it must deal with the noisy comparisons made in non-update rounds. The general paradigm
for doing this is referred to as the “sparse vector” technique in [?].)

By a union bound over the k rounds of the algorithm, all of the Laplace noise variables have
magnitude at most α as long as α & λ log k = O(log k

√
d log(1/δ)/αεn). Rearranging gives the

desired bound on α.

6 Differential Privacy and False Discovery

An important interpretation of the definition of differential privacy is that it is a strong stability
guarantee. Namely, differentially private algorithms have outputs which are “stable” with respect
to changes in their inputs that are localized to a few rows. This makes differential privacy quite a
useful concept in other areas of algorithm design, even when privacy is not a concern itself.

The first applications of differential privacy outside the realm of privacy were in economic
mechanism design. Since then, a few more connections have been discovered in learning theory
and cryptography. Today, we will focus on one miraculous application of differential privacy to the
problem of false discovery control in interactive data analysis [?, ?].
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Let P be a distribution over a data domain X. The definition of a counting query naturally
extends to such a distribution by taking

q(P) = E
x∼P

[q(x)] .

A basic statistical task is to estimate the values of a sequence of counting queries q1, . . . , qk on a
distribution P given access to a finite sample D = (x1, . . . , xn) of i.i.d. draws from P. The natural
way to estimate each value qi(P) is via the empirical fractional count qi(D). A generalization
argument shows that as long as the sample size n is large enough, then these estimates will be
accurate. Specifically, a Chernoff bound plus a union bound can be used to show that for every
fixed collection q1, . . . , qk of counting queries, this strategy guarantees that w.h.p. every qi(P) can
be estimated to within ±α as long as the number of samples n ≥ O(log k/α2).

For this analysis to go through, it is important to make the assumption that the queries q1, . . . , qk
are fixed in advance, i.e., independently of the choice of the sample D. But it real life, statistical
analyses are often conducted adaptively, with each query qi+1 chosen after using D to estimate
qi(P). Not only does adaptivity cause the Chernoff bound + union bound analysis to break down,
but it can be shown that using the above strategy to answer some sequences of adaptively chosen
counting queries requires n ≥ Ω(k/α2)—an exponential gap! In other words, an adaptive analyst
can find a query that fails to generalize to the underlying population after asking about O(n)
queries.

This problem can be addressed by estimating each qi(P) not necessarily with qi(D) itself, but
with some perturbed estimate coming from a randomized algorithmM(D). It turns out that ifM
is differentially private, then it automatically protects the adaptive data analyst from making false
discoveries.

Theorem 17 (Informal, [?]). Let Q be a collection of counting queries, and let M be an (ε, δ)-
differentially private and α-accurate algorithm capable of answering k adaptively chosen queries
from Q. Then the answersM provides are (α+ε)-accurate with respect to an underlying population.

Combining the above theorem with the guarantees of Private Multiplicative Weights gives the
following result.

Theorem 18. Let Q be a collection of counting queries over data universe X. Then there is an
algorithm M which answers k adaptively chosen with answers that are α-accurate with respect to
the population as long as

n &
log k

√
log |X|
α3

.

7 Negative Results via Cryptography

Sophisticated approaches for answering counting queries, including private multiplicative weights,
show that in principle we can extract a lot of useful statistical information about sensitive data.
However, algorithms for answering exponentially many queries are quite slow, running in time
poly(n, |Q|, |X|), which is in particular exponential in the dimensionality d = log |X| of the data.

Ideally, given a large but concisely described family Q of queries, we would like to design an
algorithmM that runs in time poly(n, log |X|) and is capable of outputting a small data structure
that can be used to accurately answer all of the queries in Q. The most intuitively appealing such
data structure is a “synthetic dataset”, which is a small collection D̂ of “fake” records from the
data universe X with the property that q(D̂) ≈ q(D) for every q ∈ Q.
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7.1 Hardness of Generating Synthetic Data

Unfortunately, under standard cryptographic assumptions, it turns out to be computationally in-
feasible to privately generate useful synthetic data. This is true even for very simple classes Q,
such as the class of two-way conjunctions:

Theorem 19 (Informal, [?]). Assuming the existence of a secure digital signature scheme, for
every n = poly(d) there is no algorithm running in time poly(d) producing useful synthetic data
for 2-way conjunctions with differential privacy.

7.2 Hardness of Sanitization from Traitor-Tracing

While appealing, synthetic data is not the only type of data structure one might imagine using to
answer counting queries. Nevertheless, a connection between differential privacy and cryptographic
traitor-tracing schemes shows that it is infeasible to answer some collections of queries using any
data structure whatsoever.

Theorem 20 (Informal, [?]). Assuming the existence of a secure traitor-tracing scheme with “ci-
phertext length” c and “key length” d, then there is a collection Q of 2c counting queries over a
domain of size 2d that cannot be answered efficiently with differential privacy.

The above theorem can be instantiated using various traitor-tracing schemes which in turn
can be built from various cryptographic assumptions. While the resulting infeasibility results
hold for arbitrary query-answering data structures, the tradeoff is that the collections of queries
they apply to are no longer “natural.” (Roughly speaking, there is a counting query for every
possible ciphertext, which when evaluated on a secret key, asks whether that key would decrypt
the ciphertext to a 1.)
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