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ing the cited reference for details, but these notes are available to recall what
was covered in lecture.

In the next two classes, we’ll continue taking a game-theoretic look at algorithmic prob-
lems. Specifically, we’ll want to consider optimization problems where the input itself has
a stake in the output selected. Consider the following problem, referred to as combinatorial
auctions. There are n bidders and m items. Each bidder has a valuation function for the
m items vi(·). That is, player i receives value vi(S) for receiving the set S of items. Your
optimization problem is to find an allocation, that is a partition of [m] into S1, . . . , Sn so
as to maximize the social welfare,

∑
i vi(Si).

This is already an interesting algorithmic problem, and we’ll see more of it this lecture.
But we’ll also want to focus on the following: what if you don’t know each player’s valuation
function, but you rely on them to provide you information. Then every algorithm you design
imposes a game (like we saw last class): depending on the behavior (information provided
by the other players), and your own behavior (information you choose to provide), you get
some payoff (your value for the output of the algorithm). This adds a new angle to the
problem that we must consider. In general, we might need to use payments to address thsi
problem.

Example 1 (Single-Item Auction) Consider the case where m = 1. This is an easy
algorithmic problem: everyone just has a value vi for getting the item, and you need to
find arg maxi{vi} and give them the item. However, if this is your algorithm, it induces a
game among the bidders where the only equilibrium is to report the highest allowable value
(reporting a higher value makes you more likely to get the item and doesn’t cost anything).
So even though you can easily find the maximum value amongst the provided input, the
provided input is garbage and doesn’t tell you anything about the actual maximum.

One alternative is to use instead the first-price auction. Now, you still give the item to
the highest reported bid, but the winner must pay their bid. Now the equilibrium of the
induced game isn’t quite so bad, but still really hard to reason about (lots of work goes into
characterizing equilibria of first-price auctions, and it’s basically a complete mess - there’s
not enough information here on a model to see why, but check AGT book for more details).
At minimum at least we can conclude that no one will ever bid above their value (instead
they would rather bid exactly their value, no matter the other bids), but anything beyond
this is hard to come by.

A third alternative is to use the second-price auction. Now, you again give the item to the
highest reported bid, but the winner pays the second-highest price. For this auction, there’s
an equilibrium that’s actually quite easy to reason about. Observe that if the highest bid
(aside from bidder i) is p−i, then bidder i will win the item and pay p−i if the bid bi ≥ p−i,
and lose the item and pay 0 otherwise. So they want to win if and only if their value exceeds

1



2

p−i, and this can be achieved always by submitting a bid of vi. So it is a Nash equilibrium
for everyone to tell the truth in a second-price auction, and the maximum reported bid is
selected (so the maximum actual value is also selected in equilibrium). Actually, telling the
truth is a dominant strategy, discussed below.

So using the single-item auction as an example, we see that algorithms without payments
might be really chaotic, but that algorithms with “the right” payments can induce simple
equilibria and lead to good algorithms (even when we rely on the bidders themselves to tell
their values). The specific notion we saw in the second-price auction is a dominant strategy.

Definition 1 Strategy s is a dominant strategy for player i in a game if for all s′ 6= s that
i could use, and all strategies ~t that the other bidders might use, Pi(s,~t) ≥ Pi(s

′,~t), and
there exists a ~t∗ such that Pi(s,~t

∗) > Pi(s
′,~t∗). Here, Pi(s,~t) denotes the payoff enjoyed by

player i when they use strategy s and the other players use strategies ~t.

It should be clear that if every bidder has a dominant strategy, then it is a Nash equilib-
rium for every bidder to play that strategy (in fact, this is a much stronger property: due
to discussions last class, you might reasonably not expect bidders to find an arbitrary Nash
equilibrium of a game, but you should reasonably expect them to play dominant strategies
if they have one).

1 The Vickrey-Clarke-Groves Auction

The first result we’ll discuss is seminal work of Vickrey, Clarke, and Groves (that contributed
to a Nobel prize for Vickrey). It’s actually a combination of three separate single-author
works, and was phrased very differently than the theorem statement below (they are all
economists). To state the result, we’ll need to be clear about how bidders interact with
payments.

Definition 2 A bidder is quasi-linear if their utility for receiving value v and paying p is
v − p. Bidders always want to maximize their utility.

Theorem 1
Let A be an algorithm that takes as input v1(·), . . . , vn(·) and outputs S1, . . . , Sn maximizing∑

i vi(Si) over all partitions of [m]. Then a dominant-strategy truthful mechanism exists
that requires only n + 1 black-box calls to A, and selects the partition A(v1, . . . , vn).

Let’s parse this. First, we need to define dominant-strategy truthful. This simply means
that telling the truth is a dominant strategy. That is, every bidder prefers to report their
true vi(·) than any other valuation function, no matter what valuation functions the other
bidders report. This, together with the final guarantee, that the allocation is A(v1, . . . , vn)
means that the actual welfare-maximizing allocation is chosen: because the mechanism is
dominant strategy truthful, the reported valuations will be the actual valuations. Because
the allocation maximizes welfare on the reported valuations, this means that the actual
welfare-maximizing outcome is chosen. The fact that the mechanism only requires n + 1
calls to A defines its runtime. If A is poly-time, then the mechanism is poly-time too.
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Proof: Consider the payment rule where each bidder is charged their externality on the
other bidders. That is, we will charge every bidder the “harm” they cause the others by
existing. More specifically, we look at the total happiness of all other bidders with you
in the picture versus the total happiness of all other bidders without you and charge the
difference. That is, we do the following payments: below, v = 〈v1, . . . , vn〉, and v∗−i =
〈v1, . . . , vi−1, 0, vi+1, . . . , vn〉. We’ll also let Ai(v) denote the set awarded to bidder i on
input v.

Pi(v) =
∑
j 6=i

vj(Aj(v
∗
−i))−

∑
j 6=i

vj(Aj(v)).

Again, this is exactly the difference between everyone else’s utility without you in the
picture versus with you in the picture. Let’s now compute bidder i’s utility for submitting
any bid v′i (we’ll use v′ to denote 〈v1, . . . , vi−1, v′i, vi+1, . . . , vn〉).

Ui(v
′
i, v−i) = vi(Ai(v

′))− Pi(v
′)

= vi(Ai(v
′))−

∑
j 6=i

vj(Aj(v
∗
−i)) +

∑
j 6=i

vj(Aj(v
′)

=
∑
j

vj(Aj(v
′))−

∑
j 6=i

vj(Aj(v
∗
i−1)).

Now let’s look at these two terms. The first term is exactly the total welfare generated
by the algorithm A on bids v′ but evaluated according to the real values v. The second term
is completely out of bidder i’s control: it only depends on bids submitted by other bidders.
So bidder i wants to maximize the first term to maximize their utility. The first term is
clearly maximized when A selects the true welfare-maximizing allocation, which happens
when bidder i submits vi. 2

At first this seems great! No matter the valuations, as long as we have an algorithm
maximizing welfare, we can turn it into a truthful mechanism maximizing welfare. The
drawback is that for basically any interesting class of valuations, maximizing welfare is NP-
hard. Also unfortunately, the VCG reduction is incompatible with approximation: if unless
A exactly maximizes welfare on every input, the output mechanism isn’t truthful. There’s
an exception for certain kinds of approximation algorithms, but we’ll explore this more on
the homework.

2 Truthful Approximation Algorithms

In this section, we’ll consider a (very) special case of valuations and derive a truthful
approximation algorithm. Here, each bidder’s value will be single-minded. That is, for
each i, there exists a special set Si, and vi(S) = Vi if S ⊇ Si, and 0 otherwise. Note that
maximizing welfare is NP-hard by a reduction from independent set, even in this super
special case.

Consider any graph G = (V,E). We’ll make a player for each node in V , and an item
for each edge in E. Player i’s interest set Si will be exactly the edges adjacent to them, and
Vi = 1 for all i. Now it should be clear that we can simultaneously give a set P of players



4

their interest sets if and only if they form an independent set in G. Therefore, maximizing
welfare is equivalent to finding a large independent set. Note also that independent set is
NP-hard to approximate within n1−ε for any ε > 0, so welfare maximization for single-
minded bidders is also NP-hard to approximate within n1−ε (or m1/2−ε) for any ε > 0.

Now, we’ll show a greedy mechanism that is truthful, and guarantees a m1/2-approximation.
The mechanism is the following:

• Ask each bidder to report Vi, Si.

• Sort the bidders so that V1/
√
|S1| ≥ V2/

√
|S2| . . .

• Initialize A = ∅ (the set of awarded items). Starting from i = 1, visit bidder i and
declare them a winner if and only if Si ∩A = ∅. If so, update A := A ∪ Si.

• Award each winner their declared interest set Si.

• Charge each winner the minimum Vi they could have reported and still been a winner.

For example, say that the bids are (1, {1}), (1, {1, 2, 3, 4}), (4, {1, 2}), (4, {3, 4}). Then
the bids will be sorted so that the two 4s go first, followed by the two 1s. Both the 4s will
win, the other two won’t. (4, {1, 2}) will pay

√
2, because they will win if and only if they

appear before (1, {1}) in the ordering. (4, {3, 4}) will pay 0, because they would win as long
as they bid at least 0.

Now there are two things we want to prove. First, that the mechanism is actually
truthful. Second, that it gets the desired approximation ratio. We’ll do the approximation
ratio first.

Theorem 2
The greedy algorithm above guarantees a

√
m approximation.

Proof: Let OPT denote the true optimal allocation. For each i that wins, let OPTi =
{j ∈ OPT, j ≥ i, Si ∩ Sj 6= ∅}. That is, OPTi is the players in OPT who are blocked by i
(including itself). Clearly, OPT = ∪iOPTi, as everyone not blocked by any i would have
been selected by Greedy. Now we’ll prove that for all winners,

∑
j∈OPTi

Vj ≤
√
m · Vi.

Note that every j ∈ OPTi appears in the greedy order after i, so we have Vj ≤
Vi

√
|Sj |/

√
|Si|. Summing over all j ∈ OPTi, we have:∑

j∈OPTi

Vj ≤ vi/
√
|Si| ·

∑
j∈OPTi

√
|Sj |.

Using the Cauchy-Schwarz inequality (x · y ≤ |x|2 · |y|2, for x = 〈1, . . . , 1〉 and y =
〈
√
|Sj |〉j∈OPTi), this is: ∑

j∈OPTi

√
|Sj | ≤

√
|OPTi| ·

√ ∑
j∈OPTi

|Sj |.

Finally, observe that every Sj ∈ OPTi intersects Si (by definition). Also, since OPT is an
allocation, we must have Sj ∩Sj′ = ∅ for all j, j′ ∈ OPT . Therefore, we have |OPTi| ≤ |Si|.
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Again since OPT is an allocation, we have
∑

j∈OPTi
|Sj | ≤ m. Therefore, the RHS above is

upper bounded by
√
m ·

√
|Si|. Plugging back into the first inequality yields that:∑

j∈OPTi

Vj ≤ Vi ·
√
m,

as desired. 2

Finally, we want to claim that the mechanism is dominant strategy truthful. First,
observe that, no matter what set you report, it is a dominant strategy to report your actual
value for that set (either 0 or Vi). This is because based on the other bidders, the Greedy
ordering induces a minimum bid you can submit (with that set) and still win it. You will
win if and only if you bid above that value. If you report your true value for that set, you
will always be on the correct side (just like second price).

Now, we want to argue that you should always report your true interest set. It’s obvious
you should never report an S that doesn’t contain Si, as this guarantees non-positve utility.
If you report an S that strictly contains Si, then this will only increase the bid you’d need
to make in order to win (because you conflict with more, and because your bid gets divided
by a bigger number). So you both want to bid your true value for the reported set, and
report your true interest set.

To see this last claim more formally, consider all bids aside from your own. If you weren’t
in the picture, then there is some allocation that Greedy would select. Now imagine that
you report the bid (V ′i , S

′
i). Then you will be allocated S′i if and only if your bid winds

up ahead of the first bidder who intersects with S′i. Call this bidder j. Then you will be
allocated if and only if V ′i /

√
|S′i| ≥ Vj/

√
|Sj | ⇔ V ′i ≥ Vj

√
|S′i|/

√
|Sj |. Note that if S′i ⊇ Si,

the RHS can only go up. This is because first, |S′i| > |Si|, and second, the earliest bidder
which intersects S′i can only be earlier. So the price offered to you can only go up as you
report a set strictly containing Si, and doing so is dominated.
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