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Today, we will learn how to use primal-dual LP setup to design online algorithms. The
lecture is based on Thomas Kesselheim’s notes1.

1 Online Primal-Dual Setup

The idea of online primal-dual algorithm is to simultaneously maintain a feasible primal
solution x and a feasible dual solution y. At t-th arrival, the algorithm updates both the
primal and the dual while maintaining feasibility. Since weak-duality implies that a feasible
dual gives a bound on the optimal primal value, we get the following lemma (which is a
slight generalization because we allow a scaled dual to be feasible).

Lemma 1. For a minimization problem, if

(a) in every step t the primal increase is bounded by β times the dual increase, that is

P (t) − P (t−1) ≤ β(D(t) −D(t−1)) ,

where P (t) = primal objective and D(t) = dual objective at time t, and

(b) 1
γ times the dual solution is dual-feasible,

then the algorithm is βγ-competitive.

Proof. To see this, observe that at all times t, we have P (t) ≤ βD(t) by a telescoping sum.
Moreover, because 1

γ times the dual solution is dual feasible, we have that OPT (t) ≥ D(t)/γ.

Chaining both inequalities together yields P (t) ≤ OPT (t) · βγ.

2 Online Matching

As a warm-up to online primal-dual setup, we analyze the greedy algorithm for the online
matching problem2. In online matching, edges of a graph are revealed one-by-one and the
algorithm, which starts with M = ∅, has to immediately and irrevocably decide whether to
include the t-th edge e into matching M . The algorithm wants to maximize the size of M .

We will prove that the greedy algorithm, which selects the next edge e = (u, v) into M
if both end points u, v are currently unmatched, gives a 2 competitive ratio (i.e., always
maintains a matching size of at least half of the optimal offline matching size).

1http://tcs.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss20:vl-aau:lecturenotes03.pdf
2Pedantically, the analysis in this section for online matching should be called “online dual-fitting” instead

of “online primal-dual” because the primal algorithm does not use dual variables to make its decisions, but
the dual variables are only used for analysis. Since both ideas rely on weak-duality, we won’t distinguish.

1

http://tcs.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss20:vl-aau:lecturenotes03.pdf
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Let’s start by writing an LP relaxation for the max-matching problem, where we denote
by N (t)(u) the edges incident to vertex u till time t.

maximize
∑
e∈E(t)

x(t)e

subject to
∑

e∈N(t)(u)

x(t)e ≤ 1 for all vertices u

x(t)e ≥ 0 for all e

Its dual program is given by:

minimize
∑
u

y(t)u

subject to y(t)u + y(t)v ≥ 1 for all edges (u, v) till time t

y(t)u ≥ 0 for all vertices u

Consider the primal solution x(0) being all 0 in the beginning. We set x
(t)
e = x

(t−1)
e +1 if

e is the t-th edge and gets selected by the greedy algorithm, and otherwise set x
(t)
e = x

(t−1)
e .

For the dual, we start with y(0) = 0. On arrival of t-th edge e = (u, v), if both u and v

are currently unmatched by the greedy algorithm then we set y
(t)
u = y

(t)
v = 1 and for every

other vertex u we set y
(t)
u = y

(t−1)
u . On the other hand, if on arrival of t-th edge e = (u, v)

either of vertex u or v is already matched, we set y
(t)
u = y

(t−1)
u for all vertices. Next we show

that such a setting of primal and dual variables satisfies the conditions in Lemma 1 (after
making changes corresponding to maximization vs. minimization problem) with β = 1/2
and γ = 1.

First, note that the primal is always feasible because we only set xe = 1 if the edge can
be selected in the greedy matching. Next, to prove dual feasibility, we show the following
invariant: all the vertices u that have been matched by the greedy algorithm till time t

satisfy that y
(t)
u = 1. This invariant is clearly true at t = 0. Since we only increase y(t)

(compared to y(t−1)), we only need to check the invariant for the new t-th edge e = (u, v).
Here the invariant holds because if both u, v are currently unmatched then we select it into

matching and set y
(t)
u = y

(t)
v = 1. Given the invariant, dual feasibility immediately follows

because for any edge (u, v) that does not satisfy y
(t)
u + y

(t)
v ≥ 1, we should have included it

into the greedy matching.

Finally, note that on each edge’s arrival, the increase in primal objective
∑

e∈E(t) x
(t)
e −∑

e∈E(t−1) x
(t−1)
e is at least half of the increase in dual objective

∑
u y

(t)
u −

∑
u y

(t−1)
u . This is

because the dual only increases on arrival of t-th edge (u, v) when both u and v are currently
unmatched in the greedy solution, and then dual increases by 2 and the primal increases
by 1. Thus we have shown a competitive ratio of 2 by Lemma 1.

3 Online Fractional Set Cover

Next we will apply the online-primal dual framework to an online variant of the set cover
problem. Let’s first recall the offline weighted set cover problem: You are given a universe
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of n elements U = {1, . . . , n} and a family of m subsets of U called S ⊆ 2U . For each S ∈ S,
there is a cost cS . Your task is to find a cover C ⊆ S of minimum cost

∑
S∈C cS . A set C

is a cover if for each e ∈ U there is an S ∈ C such that e ∈ S. Alternatively, you could say⋃
S∈C S = U . We assume that each element of U is included in at least one S ∈ S. So in

other words S is a feasible cover. Otherwise, there might not be a feasible solution.
Today, we will consider an online variant of a relaxation of this problem where we are

allowed to fractionally select sets and the elements to be covered are revealed one-by-one.
So, our goal is to solve the following kind of linear program online.

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

We have to maintain a feasible solution x(t) to the linear inequalities. In the t-th step, the
t-th element arrives and therefore we get to know the t-th coverage constraint. Possibly, the
solution x(t−1) we had so far is infeasible now. In this case, we may only increase variables
to get to the solution x(t), which is feasible again.

Recall the dual of the set cover LP

maximize
∑
e∈U

ye

subject to
∑
e∈S

ye ≤ cS for all S ∈ S

ye ≥ 0 for all e ∈ U

We will use a primal-dual algorithm. That is, besides maintaining a primal solution x(t),
we will also maintain a dual solution y(t) = (y1, y2, . . . , yt). In step t, variable yt is added
to the dual LP and we can only set its value (i.e., we do not change y1, . . . , yt−1). We want
to eventually use Lemma 1.

3.1 Approach for Fractional Online Set Cover

When choosing x(t) and yt, our primary goal is that they have similar objective-function
values so that Property (a) in Lemma 1 holds with a small β.

So, let us figure out what we would like to do. Suppose we are in step t. That is, element
t arrives and we observe a new constraint

∑
S : t∈S xS ≥ 1 in the primal LP. In the dual,

a new variable yt arrives. Our current solution is x(t−1). It fulfills all constraints except

maybe the new one. If we also have
∑

S : t∈S x
(t−1)
S ≥ 1, then there is nothing to do because

we can keep the old solution as the new one by setting x(t) = x(t−1), yt = 0.

In the case
∑

S : t∈S x
(t−1)
S < 1, we will have to increase some primal variables to get a

feasible x(t). Of course, x(t) will be more expensive than x(t−1). We reflect this additional
cost in the value of yt, all other dual variables remain unchanged.

Let us slowly increase x starting from x(t−1) and simultaneously increase yt starting
from 0. We do this in infinitesimal steps over continuous time.
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We are at any point in time for which still
∑

S : t∈S xS < 1. We increase xS by dxS . To
account for the increased cost, we increase yt by dy at the same time. The dual objective
function increases by dy this way. This is at least (

∑
S : t∈S xS)dy because

∑
S : t∈S xS < 1.

Simultaneously, the primal objective function increases by
∑

S : t∈S cSdxS . If we set dxS =
(xScS )dy for all S for which t ∈ S, then these changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from x(0) =
0, so all increases would be 0. Therefore, let η > 0 be a very small constant and set

dxS =
1

cS
(xS + η)dy . (1)

This is a differential equation. We try a solution of the form xS = C1e
C2y+C3. Then we

have dxS
dy = C2(xS − C3). So comparing with (1), we get C3 = −η and C2 = 1

cS
. Moreover,

because for y = 0 we have xS = x
(t−1)
S , we get C1 = x

(t−1)
S + η, This way

x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

where yt is the smallest value such that x(t) is a feasible solution to the first t constraints
of the primal LP.

3.2 Algorithm

Let us now use the algorithmic approach above to design an algorithm for fractional online
set cover.

For our algorithm, we set η = 1
m and initialize all xS = 0. In the t-th step, when

element t arrives, we introduce the primal constraint
∑

S:t∈S xS ≥ 1 and a dual variable yt.
We initialize yt = 0 and update it as follows. For each S with t ∈ S, we increase xS from

x
(t−1)
S to x

(t)
S by

x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

where yt is the smallest value such that x(t) becomes a feasible solution.

Theorem 2. The algorithm is O(logm)-competitive for online fractional set cover.

Proof. We will verify the conditions of Lemma 1 with β = 2 and γ = ln(m+ 1).
We start by property (a). Consider the t-th step; element t arrives in this step. We

have to relate P (t) − P (t−1) =
∑

S cS(x
(t)
S − x

(t−1)
S ) to yt. For every set S such that t ∈ S,

we have
x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

and therefore
x
(t−1)
S + η = e

− 1
cS
yt
(
x
(t)
S + η

)
.

This lets us write the increase of xS as follows (the final inequality follows from ex ≥ 1+x).

x
(t)
S −x

(t−1)
S =

(
x
(t)
S + η

)
−e−

1
cS
yt
(
x
(t)
S + η

)
=
(

1− e−
1
cS
yt
)(

x
(t)
S + η

)
≤ 1

cS

(
x
(t)
S + η

)
yt .
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This way, we can bound the primal increase by

P (t) − P (t−1) ≤
∑
S:t∈S

cS
1

cS

(
x
(t)
S + η

)
yt =

∑
S:t∈S

x
(t)
S yt +

∑
S:t∈S

ηyt ≤ 2yt ,

because
∑

S:t∈S x
(t)
S = 1 (otherwise we would have increased variables by too much) and∑

S:t∈S η ≤ mη = 1.
Now, we turn to property (b). Consider a fixed S ∈ S. We will verify that the dual

constraint for set S is fulfilled. By our algorithm if t ∈ S then

yt = cS ln(x
(t)
S + η)− cS ln(x

(t−1)
S + η) ,

otherwise x
(t)
S = x

(t−1)
S and so cS ln(x

(t)
S + η)− cS ln(x

(t−1)
S + η) = 0.

This lets us write the sum
∑

t∈S yt as

∑
t∈S

yt =
n∑
t=1

(
cS ln(x

(t)
S + η)− cS ln(x

(t−1)
S + η)

)
= cS ln

(
x
(n)
S + η

x
(0)
S + η

)
.

Furthermore, x
(0)
S ≥ 0 because variables are never negative and x

(n)
S ≤ 1 because it does

not make sense to increase variables beyond 1. So∑
t:t∈S

yt ≤ cS ln

(
1 + η

η

)
= cS ln(m+ 1) = γcS .

It is possible to extend Theorem 2 to an O(log n · logm) competitive algorithm for the
online set cover problem where the algorithm has to select sets integrally. The idea is to do
randomized rounding, try this as an exercise or see [1].
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