Equilibrium Computation

Ruta Mehta

AGT Mentoring Workshop $18^{\text {th }}$ June, 2018

Multiple self-interested agents interacting in the same environment

Deciding what to do.

Q: What to expect?
Probably a "stable outcome" = equilibrium

Fig courtesy Vince Contizer

100+ Years of Extensive Work

Walras (1874)

von Neumann (1928)

Nash (1950)

Arrow-Debreu (1954)

Gale-Shapley (1962)

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games.
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games
(sessions 3B and 7B)

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games

Games

Players

Payoffs

Randomize!

Games (normal-form)

Players

Nash (1950):

Randomize!
There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Computation?

NE existence via fixed-point theorem.

Computation? (in Econ)

- Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, ...

■ Scarf'67: Approximate fixed-point.
\square Numerical instability
\square Not efficient!

Most are path following (complementary pivot) algorithms

Visualizing Fixed Point

Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$, direction vectors of $(f(x)-x)$

Next 5 slides are curtesy Costis Daskalakis

Visualizing Discrete Fixed Point

Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$, direction vectors of $(f(x)-x)$

Trichromatic triangle
$=$ fixed point

Fixed Point \rightarrow Sperner's Lemma

[Sperner 1928]: Color the boundary using three colors in a "legal way". No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Define a directed walk starting from the artificial trichromatic triangle.
[Sperner 1928]: Color the boundary using three colors in a "legal way". No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma: Directed walk

Claim: The walk cannot exit the square, nor can it loop into itself.

Hence, it must stop somewhere inside. This can only happen at tri-chromatic triangle...

For convenience introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Next we define a directed walk.
[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Computation? (in CS)

Not easy!

\exists solution?

What if solution always exists? Like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 :
Nash is NP-hard $\Rightarrow \mathrm{NP}=\mathrm{Co}-\mathrm{NP}$

NP-hardness is ruled out!

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Find an end
Approximate fixed-point is PPAD-complete. $|f(x)-x|<\epsilon$

$$
f(x)=x
$$

Papadimitriou'94
PPAD

Find an end

Approximate fixed-point is PPAD-complete. $|f(x)-x|<\epsilon$

Etessami \& Yannakakis’07
FIXP

Find a fixed-point $f(x)=x$

Irrational but algebraic

Complexity Classes

NE in 2-player

 game
2-Nash

Nature of Rational solution

Complexity

PPAD-complete

[DaskalakisGoldbergPapadimitriou'06, ChenDeng'06]

k-Nash, $k>2$

Algebraic;
Irrational e.g.: Nash'51

Practical Lemke-Howson'64 algorithm algorithm

$A_{m \times n}$

$B_{m \times n}$

Alice

Bob

NE: $x^{T} A y \geq x^{\prime T} A y, \forall x^{\prime}$ ϵ-NE:
$\geq x^{\prime T} A y-\epsilon$

$$
\begin{aligned}
x^{T} B y & \geq x^{T} A y^{\prime}, \forall y^{\prime} \\
& \geq x^{T} A y^{\prime}-\epsilon
\end{aligned}
$$

Example: Matching Penny

H

> Zero-sum:
> $\mathbf{A}+\mathbf{B}=\mathbf{0}$
von Neumann'28: Min-Max strategies are stable (NE)

Dantzig'51: That's an LP!

Computational Complexity

■ PPAD-complete. Even for win-loose, sparse, and lowrank games [AbbotKKaneValiant'05, ChenDengTeng'06, Mehta' 14$]$

- $\frac{1}{\text { poly }(n)}$-approximation is PPAD-complete [ChenDengTechng'06]
\square Smoothed complexity is not in P unless $\mathrm{RP}=$ PPAD.
- ϵ-approximation in $O\left(n^{\epsilon \log n}\right)$ time [LiptonMarkakisMehta우]
\square Best assuming exponential-time hypothesis for PPAD [Rubinstein'16]
■ Decision versions, e.g., if \exists more than one NE, NE with max-payoff
\square NP-complete. No constant approximation assuming ETH for 3SAT [Gilboa-Zemel'89, Conitzer-Sandholm'08, HazanKrauthgamer'11, BravermanKoWeinstein'15, DeligkasFearnleySavani' 16]
■ Query complexity ...
- $i^{\text {th }}$ strategy gives Alice

$\longrightarrow(A y)_{i}$
- Max payoff is $\max _{i}(A y)_{i}$
- x achieves max payoff iff

$$
\forall k, x_{k}>0 \Rightarrow(A y)_{k}=\max _{i}(A y)_{i}
$$

Given support of (x, y), ヨlinear feasibility formulation

Efficient Algorithms

- Quasi-PTAS: ϵ-approximation in $O\left(n^{\epsilon \log n}\right)$ time
[LiptonMarkakisMehta'03]
\square Given NE (x, y), uniform strategy over $O\left(n^{\log n}\right)$ sample as per (x, y) gives constant approximate NE.

Technique: Bound the search space, enumerate, and check.

Efficient Algorithms

■ Quasi-PTAS: ϵ-approximation in $O\left(n^{\epsilon \log n}\right)$ time
[LiptonMarkakisMehta'03]

- Rank of A or B is a constant [JiangGargMeha' 11]
\square If $\operatorname{rank}(\mathrm{A})$ is constant, then the row player has polynomialy many valid strategies.

Technique: Bound the search space, enumerate, and check.

Efficient Algorithms

■ Quasi-PTAS: ϵ-approximation in $O\left(n^{\epsilon \log n}\right)$ time [LiptonMarkakisMehta'03]

- Rank of A or B is a constant [JiangGargMehta' 11]

■ FPTAS for constant rank games; $\operatorname{rank}(\mathrm{A}+\mathrm{B})$ is constant [KannanTheobald'05]

- ($\mathrm{A}+\mathrm{B}$) is sparse ${ }_{[B a r m a n}{ }^{15]}$

Technique: Bound the search space, enumerate, and check.

- Rank-1 games, i.e., $\operatorname{rank}(\mathrm{A}+\mathrm{B})=1$ [AdsulGargSohoniMenta' 1 1]
\square Parameterized LP + binary search
■ Multi-player succinct games ...

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games.
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games

Potential Games

Potential function ϕ that captures progress of all the players

$$
\phi \underset{\mathbf{4}}{(\boldsymbol{s})}-\phi\left(s_{i}^{\prime}, \boldsymbol{s}_{-\boldsymbol{i}}\right)=u_{i}(\boldsymbol{s})-u_{i}\left(s_{i}^{\prime}, \boldsymbol{s}_{-\boldsymbol{i}}\right) \forall \text { players } i, \forall \boldsymbol{s}, \forall s_{i}^{\prime}
$$

Strategies of Strategies of all the players all players except i

Routing (network flow) games

- Directed (road) network given by a graph $G=(V, E)$
- Latency (delay) function on edge e is $l_{e}: R_{+} \rightarrow R_{+}$, nondecreasing
- A set N of players. Player i wants to go from s_{i} to t_{i}
\square Each player wants to take the route that minimize her total delay.
Example

Commute time per person: 1.5 hours

Routing (network flow) games

Example: Braess' Paradox

Commute time per person: 1.5 hours

Routing (network flow) games

Example: Braess' Paradox

Commute time per person: 2 hours!

Routing games: Potential Function

- $P=\left(p_{1}, \ldots, p_{n}\right)$ be the paths taken by players.
- n_{e} : players taking edge e as per P .

$$
\begin{gathered}
\phi(P)=\sum_{e \in E} \sum_{k=1}^{n_{e}} l_{e}(k) \\
u_{i}(P)-u_{i}\left(p_{i}^{\prime}, P_{-i}\right)=\sum_{e \in p_{i} \backslash p_{i}^{\prime}} \underbrace{l}_{l_{e}\left(n_{e}+1\right)}-\sum_{e \in p_{i}^{\prime} \backslash p_{i}} \underbrace{\uparrow}_{\substack{l_{e}\left(n_{e}\right)}} \\
\left(\sum_{k=1}^{n_{e}+1} l_{e}(k)-\sum_{k=1}^{n_{e}} l_{e}(k)\right) \\
=\phi\left(\sum_{k=1}^{n_{e}} l_{e}(k)-\sum_{k=1}^{n_{e}-1} l_{e}(k)\right) \\
=\phi\left(p_{i}^{\prime}, P_{-i}\right)
\end{gathered}
$$

Congestion Games

Each player chooses some subset from a set of resources, and the cost of each resource depends on the number of other agents who select it.

- N players, R resources.
- Set of actions of player $i, A_{i} \subseteq 2^{R}$.
- Cost function for resource r is $l_{r}: \mathbb{N} \rightarrow \mathbb{R}$
- Given an action profile $a=\left(a_{1}, \ldots, a_{N}\right)$, let $n_{r}=\left|\left\{i \mid r \in a_{i}\right\}\right|$
- Cost of player i at profile a is $c_{i}(a)=\sum_{r \in a_{i}} l_{r}\left(n_{r}\right)$
- Potential Function: $\phi(a)=\sum_{r} \sum_{k=1}^{n_{r}} l_{r}(k)$

Equivalent to Potential games.

Properties

- Existence of pure NE
\square Strategy profile with the best potential.
- Sequential best response always converges to a pure NE
\square Because the potential improves in every round.

■ Finding pure NE is PLS-complete
\square Polynomial Local Search: Given a DAG, find a sink

- Finding mixed NE is in CLS
\square Continuous Local Search: Both PPAD and PLS like

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games

(sessions 3B and 7B)

Following slides curtesy Vince Conitzer

Extensive-form Game

- Players move one after another
\square Chess, Poker, etc.
\square Tree representation.

Strategy of a player:
What to play at each of its node.

Entry game

A poker-like game

- Player 1 gets a card (King is a winning card, Jack a losing card)
- Player 1 decides to raise (add one to the pot) or check
- Player 2 decides to call (match) or fold (P1 wins)
- If player 2 called, player 1's card determines pot winner

Poker-like game in normal form

	cc		cf	fc
ff				
rr	0,0	0,0	$1,-1$	$1,-1$
rc	$.5,-.5$	$1.5,-1.5$	0,0	$1,-1$
cr	$-.5, .5$	$-.5, .5$	$1,-1$	$1,-1$
cc	0,0	$1,-1$	0,0	$1,-1$

Can be exponentially big!

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

Entry game

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games

Commitment

- Suppose the game is played as follows:

von Stackelberg
- Player 1 commits to playing one of the rows,
- Player 2 observes the commitment and then chooses a column
- Optimal strategy for player 1: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:

Commitment to mixed strategies

Also called a Stackelberg (mixed) strategy

For the follower, pure best response always exist

Commitment: an extensive-form game

- ... for the case of committing to a mixed strategy:

- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to [Conitzer \& Sandholm EC'06]

- Alice is a leader.
- Separate LP for every column $j^{*} \in S_{2}$ (actions of the column player
maximize $\sum_{i} x_{i} A_{i j^{*}} \quad$ Row utility
subject to $\forall j, \quad\left(x^{T} B\right)_{j^{*}} \geq\left(x^{T} B\right)_{j} \quad j^{*}$ Column optimality

$$
\sum_{i} x_{i}=1 \quad \text { distributional constraint }
$$

Pick the one that gives max utility.

On the game we saw before

$$
\begin{array}{|l|l|}
x_{1} & 1,1 \\
\hline x_{2} & 0,0 \\
\hline, 0 & 2,1 \\
\hline
\end{array}
$$

maximize $1 x_{1}+0 x_{2}$
subject to
maximize $3 x_{1}+2 x_{2}$ subject to
$0 x_{1}+1 x_{2} \geq 1 x_{1}+0 x_{2}$
$x_{1}+x_{2}=1$
$x_{1} \geq 0, x_{2} \geq 0$

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

minimax strategies
zero-sum games
general-sum games

Nash equilibrium
zero-sum games
general-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

- No equilibrium selection problem

- Leader's payoff at least as good as any

Nash eq. or even correlated eq.
(von Stengel \& Zamir [GEB '10])

Applications

Security Games

■ Players: Defender team, Attacker team
■ Defender's goal: Design a security strategy such that even if attacker has some idea, it can not gain much.
\square Defender is a natural leader, and attacker the follower.

■ LAX security, NYC Coast guards, Poaching, etc. [Teamcore, USC]

This Talk

Games, Nash equilibrium, Algorithms, Complexity
Potential Games
\square Network-flow, congestion
Extensive form games
Commitment: Stackleberg equilibrium
\square Application: Security games
Repeated games

Repeated games

- In a (typical) repeated game,
- players play a normal-form game (aka. the stage game),
- then they see what happened (and get the utilities),
- then they play again,
- etc.
- Can be repeated finitely or infinitely many times
- Really, an extensive form game
- Would like to find subgame-perfect equilibria
- One subgame-perfect equilibrium: keep repeating some Nash equilibrium of the stage game
- But are there other equilibria?

Finitely repeated Prisoner's Dilemma

- Two players play the Prisoner's Dilemma k times

	cooperate	defect
cooperate	2,2	0,3
defect	3,0	1,1

- In the last round, it is dominant to defect
- Hence, in the second-to-last round, there is no way to influence what will happen
- So, it is optimal to defect in this round as well
- Etc.
- So the only equilibrium is to always defect

Infinitely repeated games

- First problem: are we just going to add up the utilities over infinitely many rounds?
- Everyone gets infinity!
- (Limit of) average payoff: $\lim _{n \rightarrow \infty} \Sigma_{1 \leq t \leq n} u(t) / n$
- Limit may not exist...
- Discounted payoff: $\Sigma_{\mathrm{t}} \delta^{t} u(\mathrm{t})$ for some $\delta<1$

Infinitely repeated Prisoner's Dilemma

	cooperate	defect
coopeate	2, 2	0, 3
detert	3, 0	1,1

- Tit-for-tat strategy:
- Cooperate the first round,
- In every later round, do the same thing as the other player did in the previous round
- Is both players playing this a Nash/subgame-perfect equilibrium? Does it depend on δ ?
- Trigger strategy:
- Cooperate as long as everyone cooperates
- Once a player defects, defect forever
- Is both players playing this a subgame-perfect equilibrium?
- What about one player playing tit-for-tat and the other playing trigger?

THANK YOU

