Equilibrium Computation

Ruta Mehta

AGT Mentoring Workshop 18th June, 2018

Multiple self-interested agents interacting in the same environment

Deciding what to do.

Q: What to expect? Probably a "stable outcome" = equilibrium

Fig courtesy Vince Contizer

100+ Years of Extensive Work

Walras (1874)

von Neumann (1928) Nash (1950)

Arrow-Debreu (1954)

Gale-Shapley (1962)

This Talk

Games, Nash equilibrium, Algorithms, Complexity Potential Games

□ Network-flow, congestion

Extensive form games.

Commitment: Stackleberg equilibrium

□ Application: Security games

Repeated games

(sessions 3B and 7B)

This Talk

Games, Nash equilibrium, Algorithms, Complexity **Potential Games** □ Network-flow, congestion Extensive form games Commitment: Stackleberg equilibrium □ Application: Security games Repeated games

(sessions 3B and 7B)

Games

Randomize!

Games (normal-form)

Nash (1950):

There exists a (stable) state where no player gains by unilateral deviation.

Nash equilibrium (NE)

Computation?

NE existence via fixed-point theorem.

Computation? (in Econ)

Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, ...

Scarf'67: Approximate fixed-point.
 Numerical instability
 Not efficient!

Most are path following (complementary pivot) algorithms

Visualizing Fixed Point

Given $f: [0,1]^2 \rightarrow [0,1]^2$, direction vectors of (f(x) - x)

Next 5 slides are curtesy Costis Daskalakis

Visualizing Discrete Fixed Point

Given $f: [0,1]^2 \rightarrow [0,1]^2$, direction vectors of (f(x) - x)

Fixed Point → Sperner's Lemma

[Sperner 1928]: Color the boundary using three colors in a "legal way". No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Define a directed walk starting from the artificial trichromatic triangle.

[Sperner 1928]: Color the boundary using three colors in a "legal way". No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma: Directed walk

Claim: *The walk cannot exit the square, nor can it loop into itself.*

Hence, it must stop somewhere inside. This can only happen at tri-chromatic triangle...

For convenience introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Next we define a directed walk.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

What if solution always exists? Like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 : Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Find an end

Approximate fixed-point is PPAD-complete. $|f(x) - x| < \epsilon$ f

 $f(\mathbf{x}) = \mathbf{x}$

Papadimitriou'94 PPAD

Etessami & Yannakakis'07 FIXP

Find an end

Approximate fixed-point is PPAD-complete. $|f(x) - x| < \epsilon$

Find a fixed-point f(x) = x

$$x \xleftarrow{\text{away}} x$$

Rational

Irrational but algebraic

Complexity Classes

NE in 2-player game		
	2-Nash	k-Nash , <i>k</i> > 2
Nature of solution	Rational	Algebraic; Irrational e.g.: Nash'51
Complexity	PPAD-complete [DaskalakisGoldbergPapadimitriou'06, ChenDeng'06]	FIXP-complete [EtessamiYannakakis'07]
Practical algorithm	Lemke-Howson'64 algorithm	

 $A_{m \times n}$

von Neumann'28: Min-Max strategies are stable (NE)

Dantzig'51: That's an LP!

Computational Complexity

- PPAD-complete. Even for win-loose, sparse, and lowrank games [AbbottKaneValiant'05, ChenDengTeng'06, Mehta'14]
- $\frac{1}{poly(n)}$ -approximation is PPAD-complete [ChenDengTechng'06]
 - \Box Smoothed complexity is not in P unless RP = PPAD.
- ϵ -approximation in $O(n^{\epsilon \log n})$ time [LiptonMarkakisMehta'03]
 - □ Best assuming exponential-time hypothesis for PPAD [Rubinstein'16]
- Decision versions, e.g., if ∃ more than one NE, NE with max-payoff
 - NP-complete. No constant approximation assuming ETH for 3-SAT [Gilboa-Zemel'89, Conitzer-Sandholm'08, HazanKrauthgamer'11, BravermanKoWeinstein'15, DeligkasFearnleySavani'16]
- Query complexity …

• Max payoff is $\max_i (Ay)_i$

• x achieves max payoff iff $\forall k, x_k > 0 \Rightarrow (Ay)_k = \max_i (Ay)_i$

Given support of (x, y), \exists linear feasibility formulation

Efficient Algorithms

• Quasi-PTAS: ϵ -approximation in $O(n^{\epsilon \log n})$ time [LiptonMarkakisMehta'03]

□ Given NE (x, y), uniform strategy over $O(n^{\log n})$ sample as per (x, y) gives constant approximate NE.

Technique: Bound the search space, enumerate, and check.

Efficient Algorithms

- Quasi-PTAS: ϵ -approximation in $O(n^{\epsilon \log n})$ time [LiptonMarkakisMehta'03]
- Rank of A or B is a constant [JiangGargMehta'11]
 - □ If rank(A) is constant, then the row player has polynomialy many *valid* strategies.

Technique: Bound the search space, enumerate, and check.

Efficient Algorithms

- Quasi-PTAS: ϵ -approximation in $O(n^{\epsilon \log n})$ time [LiptonMarkakisMehta'03]
- Rank of A or B is a constant [JiangGargMehta'11]
- FPTAS for constant rank games; rank(A+B) is constant [KannanTheobald'05]
- (A+B) is sparse [Barman'15]

Technique: Bound the search space, enumerate, and check.

- Rank-1 games, i.e., rank(A+B)=1 [AdsulGargSohoniMehta'11]
 Parameterized LP + binary search
- Multi-player succinct games ...

This Talk

Games, Nash equilibrium, Algorithms, Complexity Potential Games □ Network-flow, congestion Extensive form games. Commitment: Stackleberg equilibrium □ Application: Security games Repeated games

(sessions 3B and 7B)

Potential Games

Potential function ϕ that captures progress of all the players

$$\phi(\mathbf{s}) - \phi(\mathbf{s}'_i, \mathbf{s}_{\mathbf{i}}) = u_i(\mathbf{s}) - u_i(\mathbf{s}'_i, \mathbf{s}_{-\mathbf{i}}) \quad \forall \text{players } i, \forall \mathbf{s}, \forall \mathbf{s}'_i$$

Strategies ofStrategies ofall the playersall players except i

 $\phi(s_1, s_2) = A_{s_1 s_2}$

Routing (network flow) games

- Directed (road) network given by a graph G = (V, E)
- Latency (delay) function on edge e is $l_e: R_+ \rightarrow R_+$, non-decreasing
- A set N of players. Player *i* wants to go from s_i to t_i
 Each player wants to take the route that minimize her total delay.

Commute time per person: 1.5 hours

Routing (network flow) games

Example: Braess' Paradox

Commute time per person: 1.5 hours

Routing (network flow) games

Example: Braess' Paradox

Commute time per person: 2 hours!

Routing games: Potential Function

- $P = (p_1, ..., p_n)$ be the paths taken by players.
- n_e : players taking edge e as per P.

$$\phi(P) = \sum_{e \in E} \sum_{k=1}^{n_e} l_e(k)$$

$$u_{i}(P) - u_{i}(p_{i}', P_{-i}) = \sum_{e \in p_{i} \setminus p_{i}'} \underbrace{l_{e}(n_{e} + 1)}_{k=1} - \sum_{e \in p_{i}' \setminus p_{i}} \underbrace{l_{e}(n_{e})}_{k=1} \underbrace{1}_{k=1} \underbrace{l_{e}(k) - \sum_{k=1}^{n_{e}} l_{e}(k)}_{k=1} - \underbrace{l_{e}(k) - \sum_{k=1}^{n_{e}-1} l_{e}(k)}_{k=1} \underbrace{l_{e}(k) - \sum_{k=1}^{n_{e}-1} l_{e}(k)}_{k=1} + \underbrace{l_{e}(k) - \sum_{k=1}^{n_{e}-1} l_{e}(k)}_{k=$$

$$= \phi(P) - \phi(p'_i, P_{-i})$$

Congestion Games

Each player chooses some subset from a set of resources, and the cost of each resource depends on the number of other agents who select it.

- N players, R resources.
- Set of actions of player *i*, $A_i \subseteq 2^R$.
- Cost function for resource r is $l_r: \mathbb{N} \to \mathbb{R}$
- Given an action profile $a = (a_1, ..., a_N)$, let $n_r = |\{i \mid r \in a_i\}|$
- Cost of player *i* at profile *a* is $c_i(a) = \sum_{r \in a_i} l_r(n_r)$
- Potential Function: $\phi(a) = \sum_{r} \sum_{k=1}^{n_r} l_r(k)$

Equivalent to Potential games.

Properties

- Existence of pure NE
 - □ Strategy profile with the best potential.
- Sequential best response always converges to a pure NE
 Because the potential improves in every round.
- Finding pure NE is PLS-complete
 Polynomial Local Search: Given a DAG, find a sink
- Finding mixed NE is in CLS
 Continuous Local Search: Both PPAD and PLS like

This Talk

Games, Nash equilibrium, Algorithms, Complexity Potential Games

□ Network-flow, congestion

Extensive form games

Commitment: Stackleberg equilibrium

Application: Security games

Repeated games

(sessions 3B and 7B)

Following slides curtesy Vince Conitzer

Extensive-form Game

- Players move one after another
 Chess, Poker, etc.
 - □ Tree representation.

Session 3B

Strategy of a player: What to play at each of its node.

A poker-like game

- Player 1 gets a card (King is a winning card, Jack a losing card)
- Player 1 decides to raise (add one to the pot) or check
- Player 2 decides to call (match) or fold (P1 wins)
- If player 2 called, player
 1's card determines
 pot winner

Poker-like game in normal form

	сс	cf	fc	ff
rr	0, 0	0, 0	1, -1	1, -1
rc	.5,5	1.5, -1.5	0, 0	1, -1
cr	5, .5	5, .5	1, -1	1, -1
сс	0, 0	1, -1	0, 0	1, -1

Can be exponentially big!

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction

This Talk

Games, Nash equilibrium, Algorithms, Complexity Potential Games □ Network-flow, congestion Extensive form games Commitment: Stackleberg equilibrium □ Application: Security games Repeated games

(sessions 3B and 7B)

Commitment

von Stackelberg

- Suppose the game is played as follows:
 - Player 1 commits to playing one of the rows,
 - Player 2 observes the commitment and then chooses a column
- Optimal strategy for player 1: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:

Commitment to mixed strategies

Also called a Stackelberg (mixed) strategy

For the follower, pure best response always exist

Commitment: an extensive-form game

• ... for the case of committing to a mixed strategy:

- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to [Conitzer & Sandholm EC'06]

- Alice is a leader.
- Separate LP for every column $j^* \in S_2$ (actions of the column player

maximize
$$\sum_{i} x_{i} A_{ij^{*}}$$
 Row utility
subject to $\forall j$, $(x^{T}B)_{j^{*}} \ge (x^{T}B)_{j}$ j^{*} Column optimality
 $\sum_{i} x_{i} = 1$ distributional constraint

Pick the one that gives max utility.

On the game we saw before

maximize
$$1x_1 + 0x_2$$
maximize $3x_1 + 2x_2$ subject tosubject to $1x_1 + 0x_2 \ge 0x_1 + 1x_2$ $0x_1 + 1x_2 \ge 1x_1 + 0x_2$ $x_1 + x_2 = 1$ $x_1 + x_2 = 1$ $x_1 \ge 0, x_2 \ge 0$ $x_1 \ge 0, x_2 \ge 0$

Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

• No equilibrium selection problem

- 0, 0 -1, 1 1, -1 -5, -5
- Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]

- Players: Defender team, Attacker team
 Defender's goal: Design a security strategy such that even if attacker has some idea, it can not gain much.
 Defender is a natural leader, and attacker the follower.
 - LAX security, NYC Coast guards, Poaching, etc. [Teamcore, USC]

This Talk

Games, Nash equilibrium, Algorithms, Complexity **Potential Games** □ Network-flow, congestion Extensive form games Commitment: Stackleberg equilibrium □ Application: Security games Repeated games

(sessions 3B and 7B)

Repeated games

- In a (typical) repeated game,
 - players play a normal-form game (aka. the stage game),
 - then they see what happened (and get the utilities),
 - then they play again,
 - etc.
- Can be repeated finitely or infinitely many times
- Really, an extensive form game
 Would like to find subgame-perfect equilibria
- One subgame-perfect equilibrium: keep repeating some Nash equilibrium of the stage game
- But are there other equilibria?

Finitely repeated Prisoner's Dilemma

• Two players play the Prisoner's Dilemma k times

	cooperate	defect
cooperate	2, 2	0, 3
defect	3, 0	1, 1

- In the last round, it is dominant to defect
- Hence, in the second-to-last round, there is no way to influence what will happen
- So, it is optimal to defect in this round as well
- Etc.
- So the only equilibrium is to always defect

Infinitely repeated games

- First problem: are we just going to add up the utilities over infinitely many rounds?
 - Everyone gets infinity!
- (Limit of) average payoff: $\lim_{n\to\infty} \Sigma_{1 \le t \le n} u(t)/n$ – Limit may not exist...
- Discounted payoff: $\Sigma_t \delta^t u(t)$ for some $\delta < 1$

Infinitely repeated Prisoner's Dilemma

	cooperate	defect
cooperate	2, 2	0, 3
defect	3, 0	1, 1

- Tit-for-tat strategy:
 - Cooperate the first round,
 - In every later round, do the same thing as the other player did in the previous round
- Is both players playing this a Nash/subgame-perfect equilibrium? Does it depend on δ?
- Trigger strategy:
 - Cooperate as long as everyone cooperates
 - Once a player defects, defect forever
- Is both players playing this a subgame-perfect equilibrium?
- What about one player playing tit-for-tat and the other playing trigger?

THANK YOU