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. What outcome to

expect?




Multiple self-interested
agents Interacting in the
same environment

Deciding what to do.

ﬁ
Q: What to expect? S

Probably a “stable outcome™ = equilibrium

Fig courtesy Vince Contizer



100+ Years of Extensive Work
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This Talk

Games, Nash equilibrium, Algorithms, Complexity

Potential Games
Network-flow, congestion

Extensive form games.

Commitment: Stackleberg equilibrium
Application: Security games

Repeated games

(sessions 3B and 7B)
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This Talk

Games, Nash equilibrium, Algorithms, Complexity



Games
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Players Strategies

Randomlze!




Games (normal-form)

Players ,f':_ Vs egies ‘ﬂ

Randomize!
Nash (1950):

There exists a (stable) state where no player gains by
unilateral deviation.

Nash equilibrium (NE)



Computation?
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NE existence via fixed-point theorem.




Computation? (in Econ)

m Special cases: Dantzig’51, Lemke-Howson’ 64,
Elzen-Talman’88, Govindan-Wilson’03, ...

m Scarf’67: Approximate fixed-point.
Numerical instability
Not efficient!

Most are path following (complementary pivot) algorithms



Visualizing Fixed Point

Given f:[0,1]% - [0,1]?, direction vectors of (f(x) — x)
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fixed point

Next 5 slides are curtesy Costis Daskalakis



Visualizing Discrete Fixed Point

Given f:[0,1]% - [0,1]?, direction vectors of (f(x) — x)
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Fixed Point = Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a “legal way”. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma

For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Also introduce an
artificial tri-
chromatic triangle.

Define a directed
walk starting from
the artificial tri-
chromatic triangle.

[Sperner 1928]: Color the boundary using three colors in a “legal way”. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma: Directed walk

Claim: The walk
cannot exit the
square, nor can it
loop into itself.

Hence, it must stop
somewhere inside.

This can only happen

at tri-chromatic
triangle...
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For convenience
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Also introduce an
artificial tri-
chromatic triangle.

Next we define a
directed walk.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Computation? (in CS) Not easy!

3 solution?

What if solution always exists? Like Nash Eq.?



Computation? (in CS)

Megiddo and Papadimitriou’91
Nash is NP-hard = NP=Co-NP

NP-hardness is ruled out!



Papadimitriou’94
PPAD  Polynomial Parity Argument for Directed graph

1)
s ./I._).\I'
*t N v
Find an end

Approximate fixed-point is
PPAD-complete. |f(x) —x| <€ fx)=x



Papadimitriou’94 Etessami & Yannakakis’07

PPAD FIXP
0 8(0) 8(8(0)) ¢ ¢ --------- ¢
O ) @ —) O —) l\._) .

o 1 RS

AN S J
o &0
Find an end
Approximate fixed-point is Find a fixed-point
PPAD-complete. |f(x) —x| <€ fx)=x
X <€ > X
away

Rational Irrational but algebraic



Complexity Classes

PSPACE

FIXP
NP co-NP

PPAD




Nature of
solution

NE in 2-player
game

2-Nash

Rational

Complexity PPAD-complete

Practical
algorithm

[DaskalakisGoldbergPapadimitriou’06,
ChenDeng’06]

| emke-Howson’64
algorithm

k-Nash, k > 2
Algebraic;

Irrational e.g.: Nash’51

FIXP-complete

[EtessamiYannakakis’07]



Alice Bob
m strategies n strategies

g L

$

[] =) [




* Alice * Bob
Randomize

V1 wee e Yj wer e Yn Vi eee one Vi wer e Vi
X1 X1
Xi A Xi =
Xm Xm
NE: xTAy > x’TAy, Vx' x'By = xTAy', vy’

T
e-NE: >x'""Ay — € = x"Ay' —¢€



Example: Matching Penny

H 1 -1 1 1 Zero-sum:
A+B=0

von Neumann’28: Min-Max . ,
strategies are stable (NE) Dantzig’51: That’s an LP!



Computational Complexity

m PPAD-complete. Even for win-loose, sparse, and low-
I‘ank games [AbbottKaneValiant’05, ChenDengTeng’06, Mehta’14]

-approximation is PPAD-complete [chenbengTechng 06]
poly(n)

Smoothed complexity is not in P unless RP = PPAD.
m e-approximation in O (n€'°8™) time [LiponMarkakisMehta'03
Best assuming exponential-time hypothesis for PPAD [Rubinstein’16]
m Decision versions, e.g., If 3 more than one NE, NE with
max-payoff

NP-complete. No constant approximation assuming ETH for 3-

SAT [Gilboa-Zemel’89, Conitzer-Sandholm’08, HazanKrauthgamer’11,
BravermanKoWeinstein’ 15, DeligkasFearnleySavani’16]

m Query complexity ...



m " strategy glves Alice @

|72 Bob
= | > (Ay);

A Yn

m Max payoff is max (4y);
l

m x achieves max payoff iff
Vk,x;, > 0= (Ay),= max (Ay);
l

Given support of (x, y), 3linear feasibility formulation



Efficient Algorithms

m Quasi-PTAS: e-approximation in O (n€°8™) time
[LiptonMarkakisMehta’03]

Given NE (x,y), uniform strategy over O (n'°8™) sample as
per (x,y) gives constant approximate NE.

Technigue: Bound the search space, enumerate, and check.



Efficient Algorithms

m Quasi-PTAS: e-approximation in O (n€°8™) time
[LiptonMarkakisMehta’03]

m Rank of A or B is a constant [JiangGargMehta’11]

If rank(A) Is constant, then the row player has polynomialy
many valid strategies.

Technique: Bound the search space, enumerate, and check.



Efficient Algorithms

m Quasi-PTAS: e-approximation in O (n€°8™) time
[LiptonMarkakisMehta’03]

m Rank of A or B iIs a constant [JiangGargMehta’11]

m FPTAS for constant rank games; rank(A+B) Is constant
[KannanTheobald’05]

m (A+B) IS sparse [Barman’1s]
Technique: Bound the search space, enumerate, and check.

m Rank-1 games, I.e., rank(A+B)=1 [adsuGargSohoniMehta’11]
Parameterized LP + binary search

m Multi-player succinct games ...
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Potential Games
1 Network-flow, congestion



Potential Games

Potential function ¢ that captures progress of all the players

gb(f) — (s}, S?-) = u;(s) —u;(s;,s_;) Vplayersi,Vs,Vs;

Strategies of  Strategies of
all the players all players except i




Routing (network flow) games

m Directed (road) network given by a graph ¢ = (V,E)
m Latency (delay) functiononedgeeisl,: R, = R,, non-
decreasing

m A set N of players. Player i wants to go from s; to t;
Each player wants to take the route that minimize her total delay.

Example

100
commuters

Commute time per person: 1.5 hours



Routing (network flow) games

Example: Braess’ Paradox

100 commuters S

Commute time per person: 1.5 hours



Routing (network flow) games

Example: Braess’ Paradox

100 commuters s €

V

x/100 hours

L~

Commute time per person: 2 hours!



Routing games: Potential Function

m P = (pq,..,p,) be the paths taken by players.
m n,: players taking edge e as per P.

6P =) Z o (K)

e€eE k=1

w0 (P) = wi (0}, P-1) = Zpepph le (e + DI= Toepni,
7
(SRt (k) — Xre LK) (T, L(k) — Xre 1 (K))

= ¢(P) — ¢(p;, P-;)



Congestion Games

Each player chooses some subset from a set of resources, and the cost of each
resource depends on the number of other agents who select it.

N players, R resources.

Set of actions of player i, 4; € 2&.

Cost function for resourceris ,.: N - R

Given an action profile a = (aq, ...,ay), letn, = |{i | r € a;}|
Cost of player i at profile a is ¢;(a) = Xyreq, I (1y)

m Potential Function: ¢(a) = X, X", L-(k)

Equivalent to Potential games.



Properties

m Existence of pure NE
Strategy profile with the best potential.

m Sequential best response always converges to a pure NE
Because the potential improves in every round.

m Finding pure NE Is PLS-complete
Polynomial Local Search: Given a DAG, find a sink

m Finding mixed NE i1s in CLS
Continuous Local Search: Both PPAD and PLS like
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Extensive form games

Following slides curtesy Vince Conitzer



Extensive-form Game

Session 3B
m Players move one after another ’

Chess, Poker, etc. >
Tree representation.

Firm 2

Strategy of a player: out
What to play at each of its node. Firm 1

| 0 figh accommodate
1,1
F ’ 20 1,1 1,1
1,1 2,0
A Entry game




A poker-like game

m Player 1 gets a card (King is a winning card, Jack a losing card)

m Player 1 decides to raise (add one to the pot) or check

m Player 2 decides to call
(match) or fold (P1 wins) “nature”

m |f player 2 called, player 1 gets King
1’s card determines
pot winner

1 gets Jack

- ~~ - -o



Poker-like game in normal form

“nature”

1 gets King 1 gets Jack

~~~~~

I'r

rc

Cr

CC

Can be exponentially big!

cC cf fc ff

0,0 0,0 1, - 1, -1
5,-5 [15,-15 1, -1
-5,.5 -.5,.5 - 1, -1

0,0 1, -1 1, -1




Sub-Game Perfect Equilibrium

m Every sub-tree is at equilibrium

m Computation when perfect information (no
nature/chance move): Backward induction

Firm 2

out
Firm 1

accommodate

-1,1 1,1
2.0 1,1 accommodate

Entry game



Sub-Game Perfect Equilibrium

m Every sub-tree is at equilibrium

m Computation when perfect information (no
nature/chance move): Backward induction

Firm 2

out
Firm 1

(accommodate, in) 20

accommodate

-1,1 1,1
2.0 1,1 accommodate

Entry game
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Commitment: Stackleberg equilibrium
1 Application: Security games



Commitment

-

3,0

1,1
b

Unique Nash equilibrium O O
)

2,1

e Suppose the game is played as follows:

— Player 1 commits to playing one of the rows,

L i
< v
v |
L .
-
ik
Bl ‘

von Stackelberg

— Player 2 observes the commitment and then chooses a column

« Optimal strategy for player 1: commit to Down



Commitment: an extensive-form game

For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

Left Right Left Right

1,1 3,0 0,0 2,1



Commitment to mixed strategies
0 1

49 11,1(3,0

51 (0,02, 1

Also called a Stackelberg (mixed) strategy

For the follower, pure best response always exist



Commitment: an extensive-form game

« ... for the case of committing to a mixed strategy:
Player 1

Player 2

Left Right

1,1 3,0 D, .5 2.5,.5 0,0 2,1

Economist: Just an extensive-form game, nothing new here

Computer scientist: Infinite-size game! Representation matters



Computing the optimal mixed strategy to
commit to [Conitzer & Sandholm EC’06]

m Alice is a leader.

m Separate LP for every column j* € S, (actions of the
column player

maximize Y.; x;A; i Row utility
subject to Vj, (XTB)]-* > (XTB)]- j* Column optimality

Zixi =1 istributional constraint

Pick the one that gives max utility.



On the game we saw before

X1

1,1

3,0

X2

0,0

2,1

maximize 1x; + Ox,
subject to
1x;+0x,>0x; +1x,
X1 +x,=1

x120,x220

maximize 3 x; + 2 x,
subject to
Ox;+1x,>1x;+0x,
X1 +x,=1

x120,x220



Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

&

0,0

-1,1

-1,1
ZEro-sum games

0,0

minimax strategies

Zero-sum games general-sum.

Nash equilibrium

“upm|
i

Zero-sum games general-'

Stackelberg mixed strategies

¥ ®




* No equilibrium selection problem

Other nice properties of commitment
to mixed strategies

0,0 -1,1
1, -1 -5, -5

« Leader’s payoff at least as good as any

Nash eq. or even correlated eq.

( )




Applications

-

Security Games

m Players: Defender team, Attacker team

m Defender’s goal: Design a security strategy such that
even If attacker has some idea, it can not gain much.

Defender iIs a natural leader, and attacker the follower.

m LAX security, NYC Coast guards, Poaching, etc.
[Teamcore, USC]
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Repeated games



Repeated games

Session 3B

* In a (typical) repeated game, &
— players play a normal-form game (aka. the stage game),
— then they see what happened (and get the utilities),
— then they play again,

— eftc.
Can be repeated finitely or infinitely many times

Really, an extensive form game
— Would like to find subgame-perfect equilibria

* One subgame-perfect equilibrium: keep repeating
some Nash equilibrium of the stage game

But are there other equilibria?



Finitely repeated Prisoner’s Dilemma

» Two players play the Prisoner’s Dilemma k times

cooperate defect

cooperate 2, 2 O, 3
defect 3, O 1, 1

* |n the last round, it Is dominant to defect

* Hence, In the second-to-last round, there is no way to
Influence what will happen

* S0, It is optimal to defect in this round as well
* Eftc.
« So the only equilibrium is to always defect



Infinitely repeated games

* First problem: are we just going to add up the utilities
over infinitely many rounds?

— Everyone gets infinity!

 (Limit of) average payoff: lim__ .2, u(t)/n
— Limit may not exist...

 Discounted payoff: 2,0'u(t) for some d <1



Infinitely repeated Prisoner’s Dilemma

cooperate defect

cooperate 2, 2 O, 3

defect 3, 0 1, 1

» Tit-for-tat strategy:
— Cooperate the first round,

— In every later round, do the same thing as the other player did in the
previous round

 |Is both players playing this a Nash/subgame-perfect
equilibrium? Does it depend on 67

* Trigger strategy:
— Cooperate as Iong as everyone cooperates
— Once a player defects, defect forever

 |Is both players playing this a subgame-perfect equilibrium?

« What about one player playing tit-for-tat and the other playing
trigger?
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