Online Matroid Intersection: Beating Half for Random Arrival

Sahil Singla (ssingla@cmu.edu)
Guru Prashanth Guruganesh (ggurugan@cs.cmu.edu)

Carnegie Mellon University

26th June, 2017
Outline

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems
Edge arrival

- Bipartite graph: Intersection of \textit{partition matroids}
Edge arrival

- Bipartite graph: Intersection of partition matroids
Edge arrival

- Bipartite graph: Intersection of **partition matroids**

- Immediately & Irrevocably: Maximize size of **matching**
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
Edge arrival

- Bipartite graph: Intersection of *partition matroids*

- Immediately & Irrevocably: Maximize size of *matching*
Edge arrival

- Bipartite graph: Intersection of **partition matroids**

- Immediately & Irrevocably: Maximize size of **matching**
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
Edge arrival

- Bipartite graph: Intersection of **partition matroids**

- Immediately & Irrevocably: Maximize size of **matching**
Edge arrival

- Bipartite graph: Intersection of \textit{partition matroids}

- Immediately & Irrevocably: Maximize size of \textit{matching}
Edge arrival

- Bipartite graph: Intersection of **partition matroids**

- Immediately & Irrevocably: Maximize size of **matching**
- **GREEDY** (pick an edge if possible): maximal matching
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
- \textsc{Greedy} (pick an edge if possible): maximal matching
 \[\frac{1}{2} \leq \frac{ALG}{OPT} : \text{Competitive Ratio} \]
Edge arrival

- Bipartite graph: Intersection of partition matroids

![Bipartite graph image]

- Immediately & Irrevocably: Maximize size of matching
- GREEDY (pick an edge if possible): maximal matching
 \[
 \frac{1}{2} \leq \frac{ALG}{OPT} : \text{Competitive Ratio}
 \]
- Better algo possible?
Edge arrival

- Bipartite graph: Intersection of partition matroids

- Immediately & Irrevocably: Maximize size of matching
- GREEDY (pick an edge if possible): maximal matching
 \[
 \frac{1}{2} \leq \frac{ALG}{OPT} : \text{Competitive Ratio}
 \]
- Better algo possible? Adversarial/Random arrival
The Z graph

Q. Should we pick the first edge?
The Z graph

Q. Should we pick the first edge?
The Z graph

Q. Should we pick the first edge?
The Z graph

Q. Should we pick the first edge?

- Best deterministic is $\frac{1}{2}$-competitive (adversarial arrival)
The Z graph

Q. Should we pick the first edge?

- Best deterministic is $\frac{1}{2}$-competitive (adversarial arrival)
- Select w.p. $\frac{2}{3}$. Gets $\frac{4}{3}$ edges in expectation!
The Z graph

Q. Should we pick the first edge?

- Best deterministic is $\frac{1}{2}$-competitive (adversarial arrival)
- Select w.p. $\frac{2}{3}$. Gets $\frac{4}{3}$ edges in expectation!
- Randomization adds power: $\frac{\mathbb{E}[ALG]}{OPT}$ Competitive Ratio
The Z graph

Q. Should we pick the first edge?

- Best **deterministic** is $\frac{1}{2}$-competitive (adversarial arrival)
- Select w.p. $\frac{2}{3}$. Gets $\frac{4}{3}$ edges in expectation!
- **Randomization** adds power: $\frac{\mathbb{E}[ALG]}{OPT}$ Competitive Ratio
- Now, is better than $\frac{1}{2}$ possible?
Online Matroid Intersection

- Two **unknown** matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$
- Elements revealed one-by-one: Adversarial/Random arrival
- **Matroids oracles** only on the **revealed** elements
- Immediately & Irrevocably decide

Theorem
There exists a $\left(\frac{1}{2} + \epsilon\right)$-competitive algorithm when the elements are revealed in a random order, where $\epsilon > 10^{-5}$.
Online Matroid Intersection

- Two unknown matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$
- Elements revealed one-by-one: Adversarial/Random arrival
- Matroids oracles only on the revealed elements
- Immediately & Irrevocably decide
- GREEDY (pick an element if possible) is $\frac{1}{2}$ competitive
Online Matroid Intersection

- Two **unknown** matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$
- Elements revealed one-by-one: Adversarial/Random arrival
- **Matroids oracles** only on the **revealed** elements
- Immediately & Irrevocably decide
- **GREEDY** (pick an element if possible) is $\frac{1}{2}$ competitive
- Better algo possible?
Online Matroid Intersection

- Two unknown matroids $M_1 = (E, I_1)$ and $M_2 = (E, I_2)$
- Elements revealed one-by-one: Adversarial/Random arrival
- Matroids oracles only on the revealed elements
- Immediately & Irrevocably decide
- GREEDY (pick an element if possible) is $\frac{1}{2}$ competitive
- Better algo possible?

Theorem

There exists a $(\frac{1}{2} + \epsilon)$-competitive algorithm when the elements are revealed in a random order, where $\epsilon > 10^{-5}$.
Outline

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems
Comparison to Vertex Arrival

- **Adversarial arrival (KVV algo.1):** $1 - \frac{1}{e} \approx 0.63$

 (a) Give a random rank to \(\{u_1, u_2, \ldots, u_n\} \)

 (b) Match \(v_i \) to lowest available \(u_j \)

1Karp-Vazirani-Vazirani STOC '90
2Mahdian-Yan STOC '11
3Wajc, Unpublished
Comparison to Vertex Arrival

- **Adversarial arrival (KVV algo.)**: $1 - \frac{1}{e} \approx 0.63$

 (a) Give a random rank to $\{u_1, u_2, \ldots, u_n\}$

 (b) Match v_i to lowest available u_j

- **Random arrival (MY algo.)**: > 0.69

1 Karp-Vazirani-Vazirani STOC ’90
2 Mahdian-Yan STOC ’11
3 Wajc, Unpublished
Comparison to Vertex Arrival

- **Adversarial arrival (KVV algo.\(^1\))**: \(1 - \frac{1}{e} \approx 0.63\)
 (a) Give a random rank to \(\{u_1, u_2, \ldots, u_n\}\)
 (b) Match \(v_i\) to lowest available \(u_j\)

- **Random arrival (MY algo.\(^2\))**: \(> 0.69\)

<table>
<thead>
<tr>
<th></th>
<th>Vertex arriv</th>
<th>Edge arriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>(> 0.69)</td>
<td></td>
</tr>
<tr>
<td>Adversarial</td>
<td>(\approx 0.63)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

\(^1\)Karp-Vazirani-Vazirani STOC ’90
\(^2\)Mahdian-Yan STOC ’11
\(^3\)Wajc, Unpublished
Comparison to Vertex Arrival

- **Adversarial arrival (KVV algo.1):** $1 - \frac{1}{e} \approx 0.63$

 (a) Give a random rank to \(\{u_1, u_2, \ldots, u_n\} \)

 (b) Match \(v_i \) to lowest available \(u_j \)

- **Random arrival (MY algo.2):** > 0.69

<table>
<thead>
<tr>
<th></th>
<th>Vertex arriv</th>
<th>Edge arriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>> 0.69</td>
<td></td>
</tr>
<tr>
<td>Adversarial</td>
<td>≈ 0.63</td>
<td>$\geq \frac{1}{2}$ & < 0.572 3</td>
</tr>
</tbody>
</table>

1Karp-Vazirani-Vazirani STOC ’90

2Mahdian-Yan STOC ’11

3Wajc, Unpublished
Comparison to Vertex Arrival

- **Adversarial arrival (KVV algo.\(^1\))**: \(1 - \frac{1}{e} \approx 0.63\)

 (a) Give a random rank to \(\{u_1, u_2, \ldots, u_n\}\)

 (b) Match \(v_i\) to lowest available \(u_j\)

- **Random arrival (MY algo.\(^2\))**: \(> 0.69\)

<table>
<thead>
<tr>
<th></th>
<th>Vertex arriv</th>
<th>Edge arriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>(> 0.69)</td>
<td>(> \frac{1}{2} + \epsilon & < 0.822)</td>
</tr>
<tr>
<td>Adversarial</td>
<td>(\approx 0.63)</td>
<td>(\geq \frac{1}{2} & < 0.572^3)</td>
</tr>
</tbody>
</table>

\(^1\)Karp-Vazirani-Vazirani STOC ’90

\(^2\)Mahdian-Yan STOC ’11

\(^3\)Wajc, Unpublished
Online Matroid Intersection: Beating Half for Random Arrival

Sahil, Guru

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems

4 Hopcroft-Karp SICOMP’73
5 Chekuri-Quanrud, SODA’16 and Huang et al., SODA’16
6 Harvey, SODA’08

Faster Algorithms

Offline Algorithms
Faster Algorithms

Offline Algorithms

- Linear time \((1 - \epsilon)\)-approx max cardinality matching\(^4\)

\(^{4}\)Hopcroft-Karp SICOMP’73

\(^{5}\)Chekuri-Quanrud, SODA’16 and Huang et al., SODA’16

\(^{6}\)Harvey, SODA’08
Faster Algorithms

Offline Algorithms

- Linear time \((1 - \epsilon)\)-approx max cardinality matching\(^4\)
- Recent works give **quadratic time** \((1 - \epsilon)\)-approx algos for max-weight matroid intersection\(^5\)

\(^4\)Hopcroft-Karp SICOMP’73
\(^5\)Chekuri-Quanrud, SODA’16 and Huang et al., SODA’16
\(^6\)Harvey, SODA’08
Faster Algorithms

Offline Algorithms

- Linear time \((1 - \epsilon)\)-approx max cardinality matching\(^4\)
- Recent works give \textit{quadratic time} \((1 - \epsilon)\)-approx algos for max-weight matroid intersection\(^5\)
- Our algorithm gives first \textit{linear time} \((1/2 + \epsilon)\)-approx algo for max-cardinality matroid intersection

\(^4\)Hopcroft-Karp SICOMP’73
\(^5\)Chekuri-Quanrud, SODA’16 and Huang et al., SODA’16
\(^6\)Harvey, SODA’08
Faster Algorithms

Offline Algorithms

- Linear time \((1 - \epsilon)\)-approx max cardinality matching\(^4\)
- Recent works give \textbf{quadratic time} \((1 - \epsilon)\)-approx algos for max-weight matroid intersection\(^5\)
- Our algorithm gives first \textbf{linear time} \((1/2 + \epsilon)\)-approx algo for max-cardinality matroid intersection
- Even for exact matroid intersection, only linear time lower bounds known\(^6\)

\(^4\)Hopcroft-Karp SICOMP’73
\(^5\)Chekuri-Quanrud, SODA’16 and Huang et al., SODA’16
\(^6\)Harvey, SODA’08
Other Edge Arrival Models

- **Edge Weighted Bipartite Matching**
 - (a) Maximize weight of matching
 - (b) No constant approx possible for adversarial arrival
 - (c) For random arrival, constant approx possible\(^7\)

\(^7\)Korula-Pal, ICALP’09 and Kesselheim et al., ESA’13
\(^8\)Paz-Schwartzman, SODA’17
\(^9\)Konrad et al., APPROX’12
Other Edge Arrival Models

- **Edge Weighted Bipartite Matching**
 - (a) Maximize weight of matching
 - (b) No constant approx possible for adversarial arrival
 - (c) For random arrival, constant approx possible\(^7\)

- **Semi-Streaming Models**
 - (a) Decisions for \(\tilde{O}(n)\) edges can be postponed
 - (b) For edge-weighted, \(1/2 - \epsilon\) recently shown\(^8\)
 - (c) For unweighted, \(1/2 + \epsilon\) known when edges arrive randomly\(^9\)

\(^7\)Korula-Pal, ICALP’09 and Kesselheim et al., ESA’13
\(^8\)Paz-Schwartzman, SODA’17
\(^9\)Konrad et al., APPROX’12
Outline

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems
Online Matroid Intersection: Beating Half for Random Arrival

Sahil, Guru

Introduction
Related Work
Bipartite Matching
Extensions
Open Problems

GREEDY algorithm – random edge arrival

- **GREEDY algorithm**: Pick the edge if you can
GREEDY algorithm – random edge arrival

- **GREEDY algorithm**: Pick the edge if you can
- **Thick-Z graph**:

![Diagram](image_url)
The GREEDY algorithm – random edge arrival

- **GREEDY algorithm**: Pick the edge if you can
- **Thick-Z graph**:

 ![Graph](image)

 - Only $\frac{1}{2} + o(1)$ approx – bad graph
GREEDY algorithm – random edge arrival

- **GREEDY algorithm**: Pick the edge if you can
- **Thick-Z graph**:

 ![Thick-Z graph diagram]

- Only $\frac{1}{2} + o(1)$ approx – **bad graph**
- Regular graphs > 0.63 approx
Can assume GREEDY is bad

- Design ALG that gives $\frac{1}{2} + \epsilon$ for ‘bad’ graphs
Can assume **GREEDY** is bad

- Design **ALG** that gives $\frac{1}{2} + \epsilon$ for ‘bad’ graphs

<table>
<thead>
<tr>
<th></th>
<th>Good graphs</th>
<th>Bad Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEDY</td>
<td>$\geq \frac{1}{2} + \epsilon$ ($= 50.1%$)</td>
<td>$\geq \frac{1}{2}$</td>
</tr>
<tr>
<td>ALG</td>
<td>≥ 0</td>
<td>$\geq \frac{1}{2} + \epsilon$ ($= 50.1%$)</td>
</tr>
</tbody>
</table>
Can assume GREEDY is bad

- Design ALG that gives $\frac{1}{2} + \epsilon$ for 'bad' graphs

<table>
<thead>
<tr>
<th></th>
<th>Good graphs</th>
<th>Bad Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEDY</td>
<td>$\geq \frac{1}{2} + \epsilon$ (=$50.1%$)</td>
<td>$\geq \frac{1}{2}$</td>
</tr>
<tr>
<td>ALG</td>
<td>≥ 0</td>
<td>$\geq \frac{1}{2} + \epsilon$ (=$50.1%$)</td>
</tr>
</tbody>
</table>

- Run GREEDY w.p. $1 - \epsilon$ (=99.9%)
 and ALG w.p. ϵ (=0.1%)
Can assume GREEDY is bad

- Design ALG that gives $\frac{1}{2} + \epsilon$ for ‘bad’ graphs

<table>
<thead>
<tr>
<th></th>
<th>Good graphs</th>
<th>Bad Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEDY</td>
<td>$\frac{1}{2} + \epsilon$ ($= 50.1%$)</td>
<td>$\geq \frac{1}{2}$</td>
</tr>
<tr>
<td>ALG</td>
<td>≥ 0</td>
<td>$\geq \frac{1}{2} + \epsilon$ ($= 50.1%$)</td>
</tr>
</tbody>
</table>

- Run GREEDY w.p. $1 - \epsilon$ ($= 99.9\%$)
 and ALG w.p. ϵ ($= 0.1\%$)

- Now, $\mathbb{E}[Good] \geq (1/2 + \epsilon)(1 - \epsilon) + 0 = 1/2 + \epsilon/2 - \epsilon^2$
 and $\mathbb{E}[Bad] \geq 1/2(1 - \epsilon) + \epsilon(1/2 + \epsilon) = 1/2 + \epsilon^2$.
Prior work

- Hastiness Lemma [Konrad-Magniez-Mathieu10]:
 If \textsc{Greedy} is \textbf{bad} then whatever it picks, it picks quickly

10 Maximum matching in semi-streaming with few passes., APPROX '12
Prior work

- **Hastiness Lemma [Konrad-Magniez-Mathieu10]:**
 If \textsc{greedy} is bad then whatever it picks, it picks quickly

\[
\text{If } \mathbb{E}[\textsc{greedy} (100\%)] < \frac{1}{2} + \epsilon \quad (50.1\%)
\]

then \[
\mathbb{E}[\textsc{greedy} (10\%)] \geq \frac{1}{2} - 10\epsilon \quad (49\%)
\]

10Maximum matching in semi-streaming with few passes., APPROX '12
Proof idea

Assume we know **GREEDY** is bad
Proof idea

Assume we know **GREEDY** is bad

- Suppose **GREEDY** for first 10% edges
Proof idea

Assume we know **GREEDY** is bad

- Suppose **GREEDY** for first 10% edges – close to half
Proof idea

Assume we know GREEDY is bad

- Suppose GREEDY for first 10% edges – close to half

Would like to ‘mark’ some edges
Proof idea

Assume we know GREEDY is bad

- Suppose GREEDY for first 10% edges – close to half

Would like to ‘mark’ some edges and ‘augment’ them later
Proof idea

Assume we know GREEDY is bad

- Suppose GREEDY for first 10% edges – close to half

![Diagram showing sets U1, V1, U2, V2 with edges between them]

- Would like to ‘mark’ some edges and ‘augment’ them later
- What edges are augmentable?
Two Phase Algorithm **ALG**

(a) **GREEDY** for 10% edges
Two Phase Algorithm \textbf{ALG}

(a) \textsc{Greedy} for 10\% edges – but \textit{randomly mark} 20\%
Two Phase Algorithm \textbf{ALG}

(a) \textbf{GREEDY} for 10\% edges – but \textbf{randomly mark} 20\%

(b) Try \textbf{augmenting} marked
Two Phase Algorithm ALG

(a) GREEDY for 10% edges – but $\textbf{randomly mark}$ 20%

(b) Try $\textbf{augmenting}$ marked – For next 90% edges

Run $\text{GREEDY} (U_1, V_1)$ and $\text{GREEDY} (U_2, V_2)$
Two Phase Algorithm ALG

(a) GREEDY for 10% edges – but randomly mark 20%

(b) Try augmenting marked – For next 90% edges
Run GREEDY \((U_1, V_1)\) and GREEDY \((U_2, V_2)\)

▶ Augmentations kill each other?
Random sampling

- Bip. graph \((T, S)\) with \(S\)-perfect matching
Random sampling

- Bip. graph \((T, S)\) with \(S\)-perfect matching
- \(S' \subseteq S\) with sampling prob 0.2
Random sampling

- Bip. graph \((T, S)\) with \(S\)-perfect matching
- \(S' \subseteq S\) with sampling prob 0.2
- \(\mathbb{E}[\text{GREEDY} (T, S')]\): Better than \(\mathbb{E}[|S'|] \left(\frac{1}{2}\right)\)?
Sampling Lemma

Q. \(\mathbb{E}[\text{GREEDY} (T, S')] \): Better than \(\mathbb{E}[|S'|] (\frac{1}{2}) \)?
Sampling Lemma

Q. $\mathbb{E}[\text{GREEDY}(T, S')]$: Better than $\mathbb{E}[|S'|] \left(\frac{1}{2}\right)$?

A. Yes, $\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2}\right)$
Sampling Lemma

Q. $\mathbb{E}[\text{GREEDY} (T, S')]$: Better than $\mathbb{E}[|S'|] \left(\frac{1}{2}\right)$?

A. Yes, $\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2}\right)$
Q. $\mathbb{E}[\text{GREEDY } (T, S')]$: Better than $\mathbb{E}[|S'|] \left(\frac{1}{2} \right)$?

A. Yes, $\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2} \right)$
Sampling Lemma

Q. \(\mathbb{E}[\text{GREEDY} (T, S')] \): Better than \(\mathbb{E}[|S'|] \left(\frac{1}{2} \right) \)?

A. Yes, \(\geq \mathbb{E}[|S'|] \left(\frac{1}{1 + 0.2} \right) \)
Sampling Lemma

Q. \(\mathbb{E}[\textsc{Greedy}(T, S')] \): Better than \(\mathbb{E}[|S'|] \left(\frac{1}{2} \right) \)?
A. Yes, \(\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2} \right) \)
Sampling Lemma

Q. $\mathbb{E}[\text{GREEDY} (T, S')]$: Better than $\mathbb{E}[|S'|] \left(\frac{1}{2} \right)$?

A. Yes, $\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2} \right)$

![Diagram](image.png)
Sampling Lemma

Q. $\mathbb{E}[\text{GREEDY }(T, S')]$: Better than $\mathbb{E}[|S'|] \left(\frac{1}{2}\right)$?

A. Yes, $\geq \mathbb{E}[|S'|] \left(\frac{1}{1+0.2}\right)$

- Note s_2 marked w.p. only 0.2
Outline

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems
General Matching

Assume \textsc{Greedy} is bad

\[U \text{ denotes vertices matched by \textsc{Greedy} (in Phase (a))} \]
General Matching

Assume **GREEDY** is bad

- U denotes vertices matched by **GREEDY** (in Phase (a))
- **Reduces** to bipartite matching problem
Matroid Intersection

- Assume GREEDY is bad
Matroid Intersection

- Assume GREEDY is bad
- Extend Hastiness Lemma
Matroid Intersection

- Assume GREEDY is bad
- Extend Hastiness Lemma
- Run GREEDY with Marking in Phase (a):
 let T_f be the GREEDY and S be the picked elements
Matroid Intersection

- Assume `GREEDY` is bad
- Extend **Hastiness Lemma**
- Run `GREEDY` with Marking in Phase (a):
 let T_f be the `GREEDY` and S be the picked elements
- In Phase (b):
 - Consider e only if in span of **exactly one matroid**, say $span_1(T_f)$
 - Pick only if e independent w.r.t. S in M_1 and w.r.t. T_f in M_2, along with the **newly picked** elements.
Matroid Intersection

- Assume Greedy is bad
- Extend Hastiness Lemma
- Run Greedy with Marking in Phase (a):
 let \(T_f \) be the Greedy and \(S \) be the picked elements
- In Phase (b):
 - Consider \(e \) only if in span of exactly one matroid, say \(\text{span}_1(T_f) \)
 - Pick only if \(e \) independent w.r.t. \(S \) in \(\mathcal{M}_1 \) and w.r.t. \(T_f \) in \(\mathcal{M}_2 \), along with the newly picked elements.
- Extend Sampling Lemma
Outline

Introduction

Related Work

Bipartite Matching

Extensions

Open Problems
Open Problems

Question 1

Is there a linear time $(1 - \epsilon)$-approximation algorithm for offline matroid intersection?
Open Problems

Question 1
Is there a linear time $(1 - \epsilon)$-approximation algorithm for offline matroid intersection?

Question 2
Can we beat half for adversarial edge arrival?
Open Problems

Question 1

Is there a linear time \((1 - \epsilon)\)-approximation algorithm for offline matroid intersection?

Question 2

Can we beat half for adversarial edge arrival?

Question 3

For OMI, can we “significantly” improve the \((1/2 + \epsilon)\)-competitive ratio?
Conclusion

- **Random edge arrival**
 - Showed \((\frac{1}{2} + \epsilon)\)-approx for bipartite graphs
 - Use Hastiness Lemma and Sampling Lemma
 - Cannot do better than 0.822
Conclusion

- **Random edge arrival**
 - Showed $(\frac{1}{2} + \epsilon)$-approx for bipartite graphs
 - Use Hastiness Lemma and Sampling Lemma
 - Cannot do better than 0.822

- **Extensions**
 - General Graphs
 - Online Matroid Intersection

QUESTIONS?
Conclusion

- **Random edge arrival**
 - Showed \((\frac{1}{2} + \epsilon)\)-approx for bipartite graphs
 - Use Hastiness Lemma and Sampling Lemma
 - Cannot do better than 0.822

- **Extensions**
 - General Graphs
 - Online Matroid Intersection

- **Open problems**
 - Linear time \((1 - \epsilon)\)-approx matroid intersection?
 - Can we beat half for adversarial edge arrival?
Conclusion

▶ Random edge arrival
 ▶ Showed \((\frac{1}{2} + \epsilon)\)-approx for bipartite graphs
 ▶ Use Hastiness Lemma and Sampling Lemma
 ▶ Cannot do better than 0.822

▶ Extensions
 ▶ General Graphs
 ▶ Online Matroid Intersection

▶ Open problems
 ▶ Linear time \((1 - \epsilon)\)-approx matroid intersection?
 ▶ Can we beat half for adversarial edge arrival?

QUESTIONS?