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Summary

This thesis tackles the mechanized verification of realistic programs which

manipulate heap-represented graphs. Many practical problems can be fi-

nally abstracted as problems about graphs, and so graph-manipulating

programs are widely used in many aspects of human society. Although

the modern development of formal proof techniques makes the verification

of real programs feasible, verification is still rather difficult when dealing

with programs involving graphs. This is because graphs often exhibit deep

intrinsic sharing, which is not a typical scenario for existing techniques like

separation logic.

Since the specifications of graph-manipulating programs are easily ex-

pressed using the language of graph theory, we construct a reusable library

of formalized graph theory. It is a modular and general library for rea-

soning about abstract mathematical graphs. Our setup supports various

graphs, from well-organized graphs with specific properties such as directed

acyclic graphs or a disjoint-forest, to totally unstructured graphs such as

objects laid out in the memory of a running program. We distill and for-

malize several key concepts in graph theory, such as reachability and graph

isomorphism. We prove hundreds of theorems about these concepts so as

to support further inference.

Next, we use separation logic to define how such abstract graphs are

represented concretely in the heap. To facilitate the spatial entailments

involving graphs, we propose an inference rule called Localize which gen-

xi



eralize the Ramify rule. We show how this rule can support existential

quantifiers in postconditions and smoothly handle modified program vari-

ables. Furthermore, we summarize several common patterns in premises of

the Localize rule. We prove several supporting theorems about the pat-

terns to ease the applications of the rule. The spatial representations, the

Localize rule, and the supporting theorems together constitute a spatial

graph library.

To illustrate the generality and power of our techniques, we integrate

the mathematical and spatial graph libraries into the Verified Software

Toolchain and certify the functional correctness of six graph-manipulating

programs written in C. They include a graph marking program for binary

graphs and acyclic binary graphs, a spanning tree program, three differ-

ent implementations of the classical union-find algorithm, and a 400-line

generational garbage collector for the CertiCoq project. The verification of

the garbage collector is a huge project which took eight months’ effort and

contains more than 700 theorems.

Our proofs are entirely machine-checked in Coq.
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Chapter 1

Introduction

With the development of theory and technology, formal verification of soft-

ware is becoming more and more practical and widely adopted. Now re-

searchers can verify a large class of programs with full formal machine-

checked proofs [Appel, 2015; Ye et al., 2017]. But it is still an important

and big challenge to formally verify graph-manipulating programs written

in imperative programming languages. In this thesis we developed a general

and powerful framework which facilitates reasoning about such programs.

We show that this framework has reached a certain degree of maturity

by using it to verify several classical graph algorithms written in C, and

further, a substantial and real-world generational garbage collector. Our

framework and all proofs of programs are machine-checked in the Coq proof

assistant [Coq Development Team, 2019].

1.1 Quality Control of Software Systems

Human society is more deeply entangled with software systems than ever.

Software controls many aspects of our modern world: electrical power,

communications, transportation, finance, medicine, and entertainment. In

fact, it is hard to find an area in which we do not depend on software.
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In this sense, modern society relies on the correct functioning of software.

However, people have gotten used to errors in their daily software. Most

of the time it is not a big problem if a word processor crashes or a video

player has no sound when playing movies. People usually just shrug and

try restarting. But sometimes there are extremely serious consequences if

some software systems behave improperly.

In the history of software, it is not rare for people to suffer severe loss on

account of defective software. Between 1985 and 1987, at least six patients

were given massive overdoses of radiation because of concurrent program-

ming errors in Therac-25, a radiation therapy machine [Leveson and Turner,

1993]. In 1996, the malfunction in the control software of Ariane 5 space

rocket resulted in a loss more than 370 million dollars [Lions et al., 1996].

In 2003, a widespread power outage throughout parts of the Northeastern

and Midwestern United States and the Canadian province of Ontario called

“Northeast blackout of 2003” happened due to a software bug known as a

race condition in the alarm system at the control room of a company [North

American Electric Reliability Council, 2004]. In 2009, Google’s search en-

gine erroneously marked every web site worldwide as potentially malicious

because of a bug in Google’s malware detector [Davies, 2009]. In 2010,

Toyota announced recalls of approximately 7.5 million vehicles partially

because Toyota’s electronic throttle control system could cause sudden un-

intended acceleration, which had killed at least 89 people in past decades

[Dunn, 2013]. In 2012, Knight Capital Group lost 440 million dollars in 45

minutes caused by a glitch about its trading software [Popper, 2012]. In

2016, twenty years later after the Ariane 5 failure, Hitomi—an X-ray as-

tronomy satellite costing about 280 million dollars—broke into pieces due

to multiple incidents with the attitude control system [Clark, 2016]. This

enumeration of misfortune caused by software bugs is just the tip of the

iceberg. Besides these exposed ones, there are almost certainly many other
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unexposed bugs in existing software systems. Reducing bugs in software,

in other words, the quality control of software, is an extremely necessary

work in running modern human society smoothly and safely.

Furthermore, the quality of software is closely related to our under-

standing of nature. Researchers are writing software to model biological

structures, analyze data generated by particle colliders, process signals from

radio telescopes, and simulate the early evolution of the universe. The in-

creasingly important role played by software in research implies that bugs

in the software may threaten the correctness of scientific discoveries. In

fact, we already know that this is happening. In 2007, a structural-biology

group retracted five previously published papers because of the discovery of

a critical bug in the its own custom software tools [Miller, 2006]. At CERN,

physicists adopted some software techniques to find more than 40,000 de-

fects in the system which is used in their pioneering Large Hadron Collider

(LHC) experiment [Ling, 2011]. In cosmology, when two sky images from

the same direction made by two different experiments did not agree at all,

one group of scientists checked and realized that it is caused by a bug in

their computer program [Tegmark, 2014]. Such known defects not only

weaken scientific claims that have been shown to be buggy, but also reduce

the trust we can have in science in general. Moreover, for some critical

topics such as climate change, the weaknesses in software will impede the

ability of collective decision-making [Easterbrook, 2010].

Traditionally software engineers, just like engineers in other fields, adopt

testing to detect potential defects. Although software testing is widely

used and can guarantee the quality of software in some sense, it can never

promise that the software is bug-free. As Dijkstra pointed out, “program

testing can be a very effective way to show the presence of bugs, but is

hopelessly inadequate for showing their absence” [Dijkstra, 1972]. A typical

recent example is TimSort, the standard sorting algorithm used in Python,

3



Java, and Android platform. Such a fundamentally important algorithm

implemented by very experienced developers of the Java standard library

with a lot of tests still contains a sophisticated bug [de Gouw et al., 2015].

Sometimes it is expensive or even impossible to test the software because of

the uncontrollable outside conditions. Besides the well-known difficulty in

testing concurrent programs, modern development of software techniques

raise new challenges in testing. For example, testing software designed to

run on mobile networks is very hard and expensive because mobile terminals

would move around and the software has to change subnetworks, which

leads to complicated situations that are hard to reproduce [Satoh, 2004].

Another example is the traffic situation for a self-driving car, which could

be rather complicated and difficult to test [Cerf, 2018].

Since software systems have huge responsibilities for human well-being,

and testing is inadequate to eliminate bugs in software, researchers explore

alternative approaches to control the quality of programs. One of them is

model checking, a technique for automatically verifying correctness prop-

erties of finite-state systems. In its classical form, model checking consists

of three components: modeling, specification and algorithms [Clarke et al.,

2018]. For example, let us consider temporal-logic model checking, an im-

portant class of model checking methods.

In temporal-logic model checking, the system under investigation is usu-

ally modeled as a finite state-transition graph (a.k.a. Kripke structure) K.

The specification, which is the description of correctness properties for the

systems, such as the absence of deadlocks, is expressed as a temporal-logic

formula ϕ. After these are prepared, an algorithm—the model checker—

decides whether K |= ϕ, i.e., whether the structure K is a model of the

formula ϕ, by exhaustively checking every possible state ofK. If ¬(K |= ϕ),

then the model checker will give a counterexample violating ϕ. Since K

has finitely many different states, the checking is always decidable pro-
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vided there is a decision procedure for any single state. As compared to

conventional testing, where a test simply passes or fails, model checking

gives a certificate of the correctness on the declared property ϕ when no

counterexample is found. When the model is buggy, it will give a helpful

counterexample, which can serve as an aid to the programmer who then

needs to fix the code. The major limitation of model checking is the combi-

natorial blow up of the state-space—the state explosion problem. Thanks

to the ingenious algorithms and data structures developed over the past

three decades, together with the increasing computer speed and memory

size, model checking is now a viable technique. Model checking is widely

used for the verification of hardware and software in industry especially

because its good scalability.

Besides the prohibitive cost caused by the state explosion problem,

model checking has another limitation: expressiveness. There is a mis-

match between the model and the complex system under investigation,

even though the research spanning the last thirty years has helped to close

the gap in many areas. Because of the mismatch, for some programs, model

checking cannot tackle the data manipulation precisely. If someone aims

at full functional correctness, there is another good option: proving the

correctness of the program deductively. Since a program is just a formal

description of a calculation, there is no reason that it cannot be verified

in the same way that mathematicians have proved theorems using logic

for the past 2600 years. Compared to software testing and model check-

ing, theorem proving has the greatest expressive power while it sacrifices

scalability: even for experts, developing proofs is a time-consuming and

non-trivial effort. Over the years, researchers in computer science have

developed various theories and tools to help the theorem proving about

programs and mathematics. This is what we want to discuss in the follow-

ing sections.
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1.2 Formal Proof of Mathematics

The history of mathematical proof can be traced back to the era of ancient

Greece around the sixth century BC. Thales of Miletus (624–546 BC) is

the first known individual to use deductive reasoning in mathematics, by

proving what is now known as Thales’ theorem. Around 300 BC, Euclid

codified geometry in his Elements by adopting the axiomatic deductive ap-

proach. The logically coherent framework and rigorous proofs presented in

this treatise epitomized the axiomatic deductive method. In the following

twenty three centuries until now, generation after generation of mathe-

maticians write mathematical proofs in the same style as Euclid did in

Elements.

Although ancient Greek philosophers like Aristotle and Chrysippus an-

alyzed patterns of reasoning and summarized some theories like syllogism

and Stoic logic, Euclid’s Elements does not use these theories because the

patterns of language addressed by their theories for reasoning are quite

limited. In other words, they are not rich enough. Until 1879, it was a

German mathematician Gottlob Frege who first proposed a unified and

comprehensive system of logic capable of analyzing and representing math-

ematical proofs completely and adequately [Kneale and Kneale, 1985]. His

theory has gradually developed into modern mathematical logic, which has

become the foundation of mathematics and any other deductive science

relying on rigorous reasoning.

Traditional mathematical proofs are written in informal languages. In

such typical proofs, routine logical steps are usually omitted, and a large

amount of context is assumed on the part of the readers because the proofs

are only supposed to be understood by trained mathematicians. Although

mathematics is thought to consist of analytic truths, it is still common to

find gaps or errors in published and accepted proofs because sometimes even
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the intuition of professional mathematicians can be wrong. Furthermore,

modern proofs can be thousands of pages long. This fact makes it extremely

difficult for mathematicians to develop enough confidence in the proofs.

Since the mechanism underlying proofs—the mathematical logic—is well-

studied, a natural expectation is that people can employ programs to check

mathematical proofs mechanically to gain more assurance of correctness.

This is one of the motivations for the sprouting up of formal proofs.

In contrast to traditional mathematical proofs, formal proofs are writ-

ten in formal languages, which are explicitly defined by a specific set of

formation rules. In formal proofs, all the intermediate logical steps should

be supplied even though they are routine, basic application of inference

rules. Since a formal proof is in such a greatly expanded form without

any intuitive arguments, it can be easily checked by a simple program all

the way back to the fundamental axioms. Thus the trust of formal proofs

is built on the trust of the checking program and the underlying theory

of the program. As we mentioned before, a computer program is error-

prone. Therefore ideally the checking program should be simple enough

to be easily verified by people to ensure that there are obviously no defi-

ciencies. Besides the checking program, the other trust base is usually the

mathematical logic itself or some equivalent theory of logic underlying the

checking program.

In 1954, Martin Davis implemented Presburger’s decision procedure,

which proved that the sum of two even numbers is even for a JOHNNIAC

vacuum tube computer at the Institute for Advanced Study [Bibel, 2007].

In 1959, Hao Wang’s program on an IBM704 mechanically proved several

hundred mathematical logic theorems in Whitehead and Russell’s Principia

Mathematica [Wang, 1960]. In 1968, N.G. de Bruijn designed the first com-

puter system Automath which can verify the correctness of mathematical

proofs written in its own defined formal language. Automath was later used
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in verifying propositions from Edmund Landau’s Foundations of Analysis

[Kamareddine, 2011]. Influenced by de Bruijn’s Automath, many computer

proof assistants were developed in the following years. They do not only

provide languages to express theories, write proofs and programs to check

the validity of proofs, but also provide some procedures called tactics to

help generate proof terms sometimes because formal proofs could be rather

verbose and complicated. Since the validity of a formal proof is guaranteed

by the small checking core, those tactics which help forming proofs could be

arbitrarily complex and not necessarily be as reliable as the checking core.

Over the decades researchers developed various proof assistants, but only

recently were those assistants robust and efficient enough to formally prove

substantial theorems in practice. In 2004, Georges Gonthier proved the fa-

mous four-color theorem in proof assistant Coq [Gonthier, 2008]. It should

be noted that this is different from the Appel–Haken proof which also used

a program to check the thousands of reducible configurations one-by-one

in 1976 [Appel et al., 1977]. If Appel–Haken proof is the computation of

1+ 1 = 2, Gonthier’s formal proof is the justification of 1+ 1 = 2 from the

rigorous construction of the natural numbers and the plus operation. In

2005, the Jordan curve theorem was formally proved by Thomas Callister

Hales in another proof assistant HOL Light [Hales, 2007]. The proof con-

tains about 60,000 lines. In 2012, the Feit–Thompson theorem was proved

in Coq by a team led by Georges Gonthier after a 6-year long research effort

[Gonthier et al., 2013]. This is a big proof which contains 170,000 lines. In

2014, Thomas Hales et al. finished a ten-year collaborative project called

Flyspeck—the formal proof of the Kepler conjecture in the HOL Light and

Isabelle proof assistants [Hales et al., 2017].

Each of those established proofs is not just a single statement of the

declared proposition but a large formal library of mathematical theories.

For example, the library of the Feit–Thompson theorem formalized a large
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portion of the finite group theory. It contains about 15,000 definitions and

4,200 theorems. Researchers can further contribute to the library to prove

other important theorems, just like mathematicians did in centuries past.

It is hoped that one day the formal system can help to support state-of-the-

art research in mathematics, with a sufficiently large formalized library of

theorems. In 1993, researchers proposed the QED manifesto, a proposal for

a computer-based database of all mathematical knowledge, strictly formal-

ized. Although it failed in 1996 partly because the serious shortcomings of

existing proof assistants to express mathematics [Wiedijk, 2007], the spirit

lived on. Now there is another on-going project called UniMath that aims

to formalize a substantial body of mathematics [Voevodsky et al.].

1.3 Formal Verification of Programs

Abstractly, computer programs are just formal descriptions of calculations.

The essence of a Python program which computes the greatest common

divisor (GCD) of two natural numbers using the Euclidean algorithm is

no different from the procedure described in Euclid’s Elements at 300 BC,

except that the program is executable in a machine. Thus the mathematical

logic is definitely capable of proving the correctness of computer programs,

just as it proved the validity of mathematical theorems. The proof about

program correctness could be rather complex because it is not only about

the abstract algorithms but also involves the concrete semantics of the

programming languages used in the program. With the help of modern

proof assistants, we can now manage such complexity.

The awareness of the need for proofs of program correctness by math-

ematics can date back to the beginning of computer science history. In

the first introduction of “von Neumann machine”, John von Neumann de-

scribed how to prove the correctness of machine code programs [Goldstine
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and Von Neumann, 1948]. Alan Turing gave a proof of a program with two

nested loops and an indication of a general proof method [Turing, 1949].

Unfortunately this work had little impact on the subject of reasoning about

software. In early years of 1960s, John McCarthy pointed out the direc-

tion of modern program verification in his two visionary papers [McCarthy,

1962, 1963]: Instead of debugging a program, we need a machine-checked

proof saying that a program meets its specification.

The more fruitful development of program proofs started fifty years

ago. Peter Naur gave a first workable method for verifying programs writ-

ten in ALGOL 60 [Naur, 1966]. Later Robert Floyd provided a system

in flowcharts which can prove correctness, equivalence, and termination of

computer programs [Floyd, 1967]. C.A.R. Hoare formalized Floyd’s partial

correctness proof method in a logic (called “Hoare logic” or “Floyd-Hoare

logic”) [Hoare, 1969], which now can be seen as a cornerstone in verify-

ing programs written in imperative programming languages. Edsger Dijk-

stra introduced predicate transformers which gives complete strategies to

build valid deductions of Hoare logic [Dijkstra, 1975]. Around 2000, Peter

O’Hearn et al. developed separation logic as an extension of Hoare logic,

which support local reasoning about a program component, not the entire

global state of the system [O’Hearn et al., 2001; Reynolds, 2002].

Along with the evolution of the proof theories, researchers also devel-

oped many tools which can assist program verification. In 1970s, Robert S.

Boyer and J Strother Moore started to make a fully automatic, logic-based

theorem prover Nqthm, which was used in the verification of many sym-

bolic programs [Boyer et al., 1995]. Its successor is ACL2 [Kaufmann et al.,

2000b,a], which can be seen as an ”industrial strength” version of Nqthm.

Robin Milner developed LCF (Logic for Computable Functions), an in-

teractive automated theorem prover which allows users to write theorem-

proving tactics [Milner, 1972]. LCF has two successors, HOL [Gordon,
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2000] and Isabelle [Paulson, 1989]. HOL (High Order Logic) is a family

of interactive theorem proving systems using higher-order logic and im-

plementation strategies. Isabelle is another interactive theorem prover in

the LCF-style which features efficient automatic reasoning tools. In this

thesis, we use Coq [Coq Development Team, 2019]—a powerful interac-

tive theorem prover built within the theory of the calculus of inductive

constructions—to verify the correctness of programs. The initial release

of Coq can be dated back to 1989. After twenty years of continuous de-

velopment, it is widely used in both program verification and mathemati-

cal theorem proving. As mentioned before, Coq has been used in proving

very large mathematical theorems like the four-color theorem and the Feit–

Thompson theorem. Another large application of Coq is the development

of CompCert.

Starting from 2005, a team of researchers led by Xavier Leroy developed

CompCert—a formally verified optimizing compiler for the majority of C99

programming language which is specified, programmed and proved in Coq

[Leroy et al., 2012]. The executable code generated by this realistic compiler

is proved with a mathematical, machine-checked proof to behave exactly

as prescribed by the semantics of the source program. In other words, the

code compiled from CompCert is exempt from miscompilation. Before the

CompCert project, even though we could prove that a C source program is

bug-free, the executing machine code could still behave incorrectly because

it is difficult to rule out the possibility of compiler-introduced bugs. It is the

appearance of CompCert that makes end-to-end verification of C programs

much easier without sacrificing performance of the machine code.

With the help of theoretical approaches and applicable software, there

are several other impressive breakthroughs in recent years in the code-level

formal verification of real-life programs. Compared to some theoretical ex-

ploration projects which are usually built on simple/pseudo programming
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languages and illustrative semantics, the code-level formal proof empha-

sizes pragmatic benefit of verifying real implementations and reveals un-

seen complexity of real programming language semantics. NICTA’s seL4

(Secure Embedded L4 microkernel) is a general-purpose operating-system

kernel whose formal proof of functional correctness was completed via Is-

abelle in 2009 [Klein et al., 2009]. Encouraged by the success of CompCert,

Ramana Kumar et al. developed CakeML, a mechanically verified com-

piler which supports a substantial subset of Standard ML [Kumar et al.,

2014]. In particular, this formally verified compiler can bootstrap itself:

the verified compiler is applied to itself to produce a verified machine-code

implementation of the compiler. In 2015, researchers in Massachusetts In-

stitute of Technology developed a verified crash-resistant file system FSCQ

through Coq [Chen et al., 2015]. In 2016, researchers in Yale University pre-

sented the first functional correctness proof of a complete, general-purpose

concurrent OS kernel with fine-grained locking called CertiKOS [Gu et al.,

2016]. The complete formal verification of CertiKOS leverages CompCert

and Coq. There are even verified interactive theorem provers such as Mi-

lawa [Davis and Myreen, 2015] and Candle [Kumar et al., 2016]. None of

these projects are toy systems. Their verification required significant effort.

1.4 Gaps in Formal Verification of Programs

As we can see, over the years great progress has been made in the formal

verification of real programs. However, the effort needed for full functional

correctness proof of real programs is considerably high so far. We must

decrease the effort for such verification to be practical for widespread use.

The high cost of formal verification of real programs could be due to

several factors and researchers developed various strategies to attack them.

One of them is the magnitude of the program to be verified. The de Bruijn
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factor, a ratio between sizes of the formalized proof and the corresponding

conventional proof is a standard benchmark to measure the overhead of a

formal proof. For mathematical theories, the factor is around 4 [Wiedijk,

2000]. For formal proofs of programs, we can adjust the factor to be the ra-

tio between sizes of the proof and the corresponding program. In the case of

MIT’s FSCQ file system, the ratio is around 10, which is much higher than

4 [Wang, 2017]. This high ratio is not feasible for large applications. One

solution of this ratio problem is splitting the software system into several

isolated components. For the critical components that a system’s safety or

security relies on, we can formally verify them. For the less critical com-

ponents, we can use some other techniques such as conventional testing.

The combination of formal and informal techniques can still dramatically

increase the assurance of the system. Even the informal part can reap the

benefits from the formal part. For example, the formal proof of a program

usually assumes some explicit conditions under which the program would

run. Thus when developers are testing the callers of the program, they can

focus on confirming those assumptions hold. Another solution to this ratio

problem is partially automating the formal proofs. The halting problem

is undecidable [Turing, 1937]. In addition, Rice’s theorem tells us that

all non-trivial, semantic properties of programs are undecidable too [Rice,

1953], which means there exists no automatic method that decides with

generality non-trivial questions on the behavior of computer programs. So

we cannot expect fully automatic provers. However, a certain portion of

proof obligations generated by proof assistants can be transformed into de-

cision problems which are decidable. Thus researchers developed decision

procedures—algorithms that terminate with correct yes/no answers—for

decidable decision problems [Kroening and Strichman, 2016]. Furthermore,

those decidable theories can be combined and expressed in classical first-

order logic as logical formulas, which are instances of so-called satisfiabil-
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ity modulo theories (SMT). There are various SMT solvers such as STP

[Ganesh and Dill, 2007], CVC4 [Barrett et al., 2011] and Z3 [de Moura and

Bjørner, 2008] which are widely used in verification now.

Despite the various strategies for the high ratio problem of formal verifi-

cation, another problem which prevents the widespread applications of full

functional verification of programs—the inherent complication of proofs—

is rather intricate to solve. The complication is twofold. One is to describe

and reason about the state transition between instructions in a program.

For verification at the source code level, it partially depends on the seman-

tics of the concrete programming language, which could be rather com-

plicated or verbose. In recent years, this factor has been alleviated by

separation logic. The second complication is to prove the mathematical

truth about the program. Here we use mathematical truth to refer to the

statement of the program behavior which is independent of program-related

representations in the specification of a program, since miscellaneous math-

ematical concepts and theories provide good abstractions and support for

various phenomena. For example, to describe the specification of a sorting

program, we abstract the concept of number sequence to say “the result-

ing sequence is a permutation of the original sequence and the numbers in

the sequence are in ascending order”, regardless of whether the program

stores the numbers in an array or in a linked list. In order to prove such

mathematical truth, it is natural to define some helper concepts and to

prove some lemmas, which is the main activity when developing proofs of

full functional correctness. Some mathematical properties like the transi-

tive law of the “less than or equal to” relation of integers in verifying a

sorting algorithm is not difficult to prove while some other properties of

more complicated mathematical concepts such as the limit of a real number

series which is needed to prove the correctness of a numerical algorithm or

prime number related lemmas which is needed in verifying a cryptography
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program may need significant human effort to establish. To ease the bur-

den of such kinds of verification, we can classify programs according to the

mathematical concepts involved and then develop frameworks composed

by definitions and theorems all around the central concept. The leitmotif

of this thesis is one such concept: graphs. As we shall see, for programs

which manipulate graphs, the two factors of the verification complication is

sometimes entangled, which makes their full functional verification a very

challenging problem.

1.5 Goals and Scope of the Research

In the field of discrete mathematics, graphs are a general and powerful ab-

straction for modeling relationships and processes in physical, biological,

social and information systems. Graph-related programs are widely appli-

cable since many practical problems can be represented by graphs. So it is

definitely valuable to verify graph-manipulating programs.

On the other hand, verifying graph-manipulating programs is also a

difficult problem. Separation logic greatly simplifies the verification of pro-

grams on shared mutable data structures such as lists and trees while the

inference for data structures with intrinsic sharing (e.g., graphs) is notori-

ously hard, especially for modular reasoning. Over the years, much effort

was devoted to verifying algorithms on graphs. In 2001, Hongseok Yang

verified the Schorr-Waite graph marking algorithm using separation logic

[Yang, 2001]. In 2004, Lars Birkedal et al. verified the Cheney two-space

garbage-collection algorithm by global invariants [Birkedal et al., 2004].

Richard Bornat et al. verified graph disposing and copying algorithms via

a more systematic way [Bornat et al., 2004]. In 2008, Carsten Varming

and Lars Birkedal [Varming and Birkedal, 2008] gave a machine-checked

proof of Cheney’s copying garbage collector, which generalized the results
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in [Birkedal et al., 2004]. In 2013, Aquinas Hobor and Jules Villard pro-

posed a new proof theory called ramification theory which is handy for data

structures with intrinsic sharing. They also verified various graph-related

algorithms such as graph marking and dag copying using their new theory

[Hobor and Villard, 2013]. However, most of them are theoretical explo-

rations. The only mechanically checked verification is based on a simplified

language with a standard operational semantics, to say nothing of being

end-to-end checked for a real programming language.

Apart from the category of programs under investigation—the graph-

manipulating programs, as for the category of verification, we focus on the

end-to-end, full functional correctness verification of realistic programs, i.e.,

C programs. One obvious reason for our interest in end-to-end proof of C

programs is that recent research developments have made such proofs feasi-

ble. The theoretical support (e.g., separation logic) and tool-chain support

(e.g., CompCert and VST [Appel et al., 2014]) are ready. But more impor-

tantly, the end-to-end proof provides the highest assurance of correctness

and a lot of fundamentally important programs are written in C. It should

be noticed that even with the theoretical support and tool-chain support,

it is still intricate to mechanically verify the functional correctness of C

programs. Some elaborate conditions or assertions to exclude undefined

behavior will only be exposed with full formal semantics of the C program-

ming language [Krebbers, 2015].

Another critical issue is to draw inferences from the abstract, mathe-

matical graphs which underly these programs. We need to develop a library

of formal graph theory. Although there is a long history, going back at least

twenty-five years, of mechanized reasoning about mathematical graphs, to

our knowledge, there is no modular and general-purpose framework for

graphs with broad applications yet. Some of them are used for very spe-

cific purposes [Wong, 1991; Yamamoto et al., 1995; Tamai, 2000; Nordhoff
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and Lammich, 2012]. Some of them are restricted to graphs with special

shapes or properties [Chou, 1994; Butler and Sjogren, 1998; Ridge, 2005;

Nipkow et al., 2006]. Some of them only provide support for some basic

concepts [Duprat, 2001]. Some of them cannot be integrated into existing

frameworks smoothly [Ridge, 2005; Noschinski, 2015a]. We hope our frame-

work has no such limitations. It should be general and powerful enough to

support end-to-end proof.

The goal of this research is to ease the burden of the formal verification

of programs with intrinsic sharing data structures. One objective of this

research is to explore and develop a general and more simple way to ver-

ify realistic graph-manipulating programs mechanically. This verification

focuses on proving the fully functional correctness of graph algorithms for-

mally and manually. We intend to verify real, runnable programs written

in the C programming language. The scope of the research includes sepa-

ration logic, certified proof and formalization of mathematical structures.

1.6 Our Method and Contribution

To this end, we decide to combine the theoretical research with practical

proof engineering. The theoretical research is based on survey and reason-

ing while the proof engineering is mainly about proving a set of theorems

with the Coq proof assistant, so as to build a framework for graph-related

reasoning. The whole framework is built on top of CompCert (giving for-

mal semantics of C) and VST (giving a higher-order separation logic) to

be cable of verifying C programs from end to end.

The main contributions are as follows. We provide a general and mod-

ular framework for graph-related reasoning which can be roughly split into

two parts: a formalization of graph theory in mathematics and a spa-

tial library in separation logic. The latter connects the underlying math-
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ematical graph model and the graph representations in heaps. We use

the framework to verify several graph-manipulating algorithms, including

graph mark, spanning tree, two versions of union-find, and a generational

garbage collector with industrial strength.
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Chapter 2

Preliminaries

This chapter gives some preliminaries about our work. It is not a com-

plete survey of all aspects about mechanized program verification but only

contains closely-related topics. For example, there are many examples of

proof-assistant software such as HOL, Isabelle, LEGO, etc. but only Coq

is discussed here. Other topics include Hoare logic, separation logic, rami-

fication, dependent type theory and their applications.

2.1 Logic

2.1.1 Hoare logic

Hoare logic is a great attempt to reason about program properties rig-

orously [Hoare, 1969]. It explores and builds the logical foundations of

computer programming by using axioms and inference rules for the first

time. The central concept of Hoare logic is the Hoare triple of the form

{P}C {Q} where P and Q are assertions called the precondition and post-

condition respectively and C is a program. It can be interpreted “If P is

satisfied, successfully executing C establishes Q”. The assertions (P and

Q) about properties of programs can be expressed as formulas in mathe-

matical logic in terms of values which the relevant program variables will
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take. In imperative programming languages, a program C is composed by

various basic constructs. Thus Hoare logic provides axiom schemas and

inference rules for several typical constructs of imperative languages so as

to deduce properties of a whole program composed by those constructs.

Empty

{P} skip {P}

Assignment

{P [E/x]}x := E {P}

Composition
{P}S {Q} {Q}T {R}

{P}S;T {R}

Branch
{B ∧ P}S {Q} {¬B ∧ P}T {Q}
{P} if B then S else T endif {Q}

Consequence
P1 → P2 {P2}S {Q2} Q2 → Q1

{P1}S {Q1}

Iteration
{P ∧B}S {P}

{P}while B do S done {¬B ∧ P}

Figure 2.1: Axioms and Rules of Hoare Logic

Figure 2.1 gives the axiom schemas and inference rules of empty state-

ment, assignment, composition, branch, consequence, and iteration. The

Empty axiom is the simplest one: skip does not change the state of the

program. In the Assignment axiom, P [E/x] denotes the assertion P in

which each free occurrence of x has been replaced by the expression E.

This axiom means the truth of assertion P after the assignment depends

on the truth of P [E/x] before the assignment. The rule of Composition is

quite easy to understand: with the postcondition of S and the precondition

of T are the same, then we can conclude the Hoare triple of the sequential

execution of S and T . The Branch rule states that two branches of the

program share the same postcondition as the global postcondition while

their preconditions have the unnegated and negated condition B respec-

tively. Technically it is not included in Hoare’s original publication but is

derived from the other Hoare rules by program transformation. The Con-

sequence rule is applied to strengthen the precondition and/or to weaken
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the postcondition. In the Iteration rule, P is the loop invariant, which is

to be preserved by the loop body S. It still holds after the loop is finished

because of ¬B.

It should be noted that the original Hoare logic can only be used to

prove partial correctness because the rule for while construct gives no basis

for a proof of termination. This can be fixed by adding a loop invariant

whose value strictly decreases with respect to a well-founded relation on

some domain during each iteration [Reynolds, 1998]. In [Hoare, 1969], very

limited kinds of constructs can be proved formally. But the axiomatic

treatment of programming languages does not rely on concrete language

constructs and the whole framework of Hoare logic can be extended. Over

the years, more kinds of programs have been shown to be verifiable by

adding more and more rules for other constructs under the paradigm of

Hoare logic.

2.1.2 Separation logic

Separation logic is one of the most promising extensions for low-level pro-

grams manipulating structured data containing embedded pointers among

various extensions of Hoare logic [O’Hearn et al., 2001; Reynolds, 2002].

The programs which can be verified by separation logic can access/modify

shared data structures and explicitly allocate/deallocate storage, as re-

quired by programs written in C and Java. In principle, Hoare logic is

sufficient to deal with pointer operations but there is a mismatch between

the simple computational intuition of pointer operations and the complex-

ity of their axiomatic treatments. To be more specific, one feature of the

pointers is aliasing, a situation where the same memory cell is accessed

by several pointers. When there is aliasing, a change of a single memory

location may affect many syntactically unrelated expressions, which will
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lead to extremely complex logical entailment.

h1 h2

P Q

P ∗Q

Figure 2.2: Separating Conjunction

To avoid this difficulty, separation logic introduces a novel logical op-

erator ∗ called separating conjunction or spatial conjunction to prohibit

sharing. An assertion P ∗Q can be interpreted “P and Q hold for disjoint

portions of the addressable storage (which is usually the heap in computer

memory)”. As illustrated in Figure 2.2, P ∗Q is true of a heap if it can be

split into two disjoint heaplets, one of which makes P true and the other

of which makes Q true. This can be formally written as:

h |= P ∗Q def
= ∃ h1, h2 s.t. h1 ⊕ h2 = h ∧ h1 |= P ∧ h2 |= Q (2.1)

where h1 |= P means P holds in heap h and h1⊕h2 = h means heap h can

be split into disjoint heaplets h1 and h2. In the assertion P ∗Q, P and Q are

local assertions on isolated addressable storage which they actually access.

So in separation logic, assertions of a program component only describe the

portion of memory used by the component. A distinction between ∗ and

Boolean conjunction ∧ is that P ∗ P 6= P whereas P ∧ P = P .

h1 h

P P −−∗ Q

Q

Figure 2.3: Separating Implication

There is another connective, the separating implication or “magic wand”.
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P −−∗ Q means if the current heaplet can be extended with a disjoint

heaplet satisfying P , the combined heaplet will satisfy Q. As illustrated in

Figure 2.3, P −−∗ Q can be formally defined as:

h |= P −−∗ Q def
= ∀h1, h2 . h1 ⊕ h = h2 → h1 |= P → h2 |= Q (2.2)

The relation between ∗ and −−∗ is like the relation between conjunction ∧

and implication → in standard logic:

∀P,Q . P ∗ (P −−∗ Q) ` Q (2.3)

where ` is read as “entails” and is defined as:

P ` Q def
= ∃ h s.t. h |= P → h |= Q. (2.4)

Finally there is an assertion emp which means “the heaplet is empty”. It is

the unit of ∗, meaning that we have P = emp ∗ P = P ∗ emp.

Store

{x 7→ −} [x] := v {x 7→ v}

Load

{x 7→ v} y := [x] {y = v ∧ x 7→ v}

Alloc

{emp}x := alloc() {x 7→ −}

DeAlloc

{x 7→ −} alloc(x) {emp}

Frame
{P}C {Q}

{P ∗ F}C {Q ∗ F}
FreeVar(F ) ∩ ModVar(C) = ∅

x 7→ − def
= ∃v s.t.x 7→ v

Figure 2.4: Axioms and Rules of Separation Logic

The introduction of ∗ and −−∗ does not only simplify the specifications

greatly for reasoning but also provides the benefit of scalability. Figure 2.4
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gives axiom schemas and inference rules in separation logic. Here the no-

tation x 7→ v says that pointer variable x holds the address of a memory

location where value v is stored. In other words, x points to v. The four

axioms, Store, Load, Alloc and DeAlloc are quite straightforward.

The inference rule Frame, the key feature of separation logic, says that

an assertion which holds for some portion of the addressable storage would

still hold for any expansion of that portion. The Frame rule has a side

condition, which says that no variable occurring free in the “frame” F (i.e.,

FreeVar(F )) is modified by the program C (i.e., ModVar(C)). This rule is

vital for scalability because one can extend a local specification by adding

arbitrary assertions about disjoint parts of the heap. From another per-

spective, once a specification of C on a heap is proved, it can be reused on

any bigger heap containing the original. This Frame rule makes compo-

sitional proofs of programs with list or tree-like data structures easier. It

should be noted that researchers further developed concurrent separation

logic (CSL), which shows efficient reasoning about threads that share ac-

cess to storage. Although CSL has made significant progress, it is outside

the scope of this thesis.

Now separation logic is a cornerstone for efficient proof search about

programs in automatic and semi-automatic proof tools. In a recent sur-

vey, Peter O’Hearn said “separation logic is a key development in formal

reasoning about programs, opening up new lines of attack on longstanding

problems” [O’Hearn, 2019].

2.1.3 Ramification

Hobor and Villard [2013] provide a compositional proof system to address

the more difficult “ramification” problem rather than the “frame” problem

which has been successfully handled by separation logic. The term “ram-
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ification” refers to the problem of reasoning about the indirect (global)

consequences of (local) actions which naturally arises in verification of pro-

grams having intrinsic shared data structures with deep aliasing inside such

as graphs, because changes in one part of the structure (e.g. the left child

of a graph node) can affect other parts (e.g. the right child or other de-

scendants) which may point into it. This problem is difficult under the

framework of separation logic because the data structures involved cannot

easily fit into the form P ∗ Q: their parts are not usually disjoint. They

attack this problem by proposing a proof rule called Ramify:

Ramify

{L1}C {L2} G1 ` L1 ∗ (L2 −−∗ G2)

{G1}C {G2}

where FreeVar(L2 −−∗ G2) ∩ ModVar(C) = ∅

(2.5)

which actually splits the verification process into two different parts: the

verification of programs as transformations on a simple local specification

({L1}C {L2}) which ignores the global context and the verification of a

ramification part (G1 ` L1 ∗ (L2 −−∗ G2)) which is the result of the changes

on the global state. Generally speaking, proving {L1}C {L2} is easier than

proving {G1}C {G2} directly while proving the ramification part needs

significant effort. The good news is that usually one only needs to prove

the ramification part for a particular data structure once. In the paper they

proved the ramification for spatial graphs and dags (directed acyclic graphs)

so as to reuse them in various proofs. More technical details including the

enhancement of G1 ` L1 ∗ (L2 −−∗ G2) would be explained in §4.2 because

the mechanization work is built on it.
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2.2 Dependent Type Theory

Martin-Löf [1998] introduced dependent types—types that depend on val-

ues in his intuitionistic theory of types, which strengthens the connection

between programming and logic because it can be used to encode the uni-

versal quantifier ∀ and the existential quantifier ∃. In 1934, Haskell Curry

observed that the types of the combinators can be seen as axiom-schemes

for intuitionistic implicational logic. Further investigations showed that

this is not a coincidence: various proofs systems can be interpreted as typed

variants of lambda calculus. This observation, referred to as the Curry–

Howard correspondence, reveals that the two families of formalization—the

proof systems and the models of computation which seem unrelated are in

fact structurally identical. That is to say: a proof is a program, and the

proposition it proves is a type for the program. Dependent types play im-

portant roles because the correspondence of predicate logic which is the

most widely used logic to make assertions in mathematics and program

verification is the dependent type system.

The key concepts in dependent type systems are the dependent prod-

uct type
∏

(x:A)B(x) and the dependent sum type
∑

(x:A)B(x). The former

captures the idea of a function when the argument is of type A and the type

of the codomain varies depending on the value of the argument. The latter

captures the idea of a pair (a, b) of type
∑

(x:A)B(x) where a has type A

and b has type B(a). Under the Curry–Howard correspondence, the type∏
(x:A)B(x) can be seen as a proposition about the universal quantifier:

∀x ∈ A,B(x). A function f of type
∏

(x:A)B(x) can be seen as a construc-

tive proof of this proposition because for every x ∈ A, f(x) whose type is

B(x) is a proof of B(x). Similarly, the type
∑

(x:A)B(x) can be seen as a

proposition about the existential quantifier: ∃x ∈ A,B(x). A pair (a, b)

of type
∑

(x:A)B(x) can be seen as a constructive proof of this proposition
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because it gives a which is an instance of type A and a value b with type

B(a) which can be seen as a proof of a satisfying the predicate B.

The Curry–Howard correspondence implies that propositions in predi-

cate logic can be written as dependent type signatures and proofs of such

propositions can be written as programs. Then a type checker of depen-

dent type programming languages can be used to check the correctness of

a proof. If the type checker is trustable, the correctness of all proofs passed

by the type checker is guaranteed.

2.3 Coq

Coq [Coq Development Team, 2019] is one of several proof assistants which

have been developed to make it possible to construct proofs in dependent

type theories and have them formally checked by computer [Constable

et al., 1986; Magnusson and Nordström, 1994; Pollack, 1994; de Moura

et al., 2015]. The theoretical foundation of Coq is a formal system called

the Calculus of Constructions [Coquand and Huet, 1988] which is a exten-

sion of dependent type theory by adding polymorphism and higher-kinded

type constructors. The theory is developed alongside Coq. So in 1991 it

was extended as Calculus of Inductive Constructions by adding inductive

types and then extended as Calculus of (Co)inductive Constructions by

adding coinductive types.

Besides giving an interactive environment that allows users to develop

proofs interactively, Coq has several advantages over other proof assis-

tants. It is based on a fully-featured higher-order functional programming

language Gallina which can be used to construct complex functions and

propositions. All functions in Coq must terminate, which is often not a

problem. But sometimes extra effort is needed to prove the termination

of a recursive function. Although Coq provides very complex decision pro-
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cedures and rich mechanisms to search possible proofs, the proof terms

produced by Coq would be checked by a standalone proof checker which

is intentionally small to limit the risk of implementation bugs. This fea-

ture greatly enhances the reliability of Coq because the correctness is built

on the trust of a simple type checker rather than a highly complicated

system. Writing out all formal proofs in full detail could be a serious ob-

stacle to practicability and productivity. Coq is only a semi-automated

theorem prover but it provides Ltac, a Turing-complete tactic language

which can by used to write automatic theorem proving tactics and deci-

sion procedures conveniently while the small kernel feature ensures that

users do not need to worry about tricking the system into accepting invalid

proofs. Furthermore, since the programs and proof terms in Coq are in the

same syntactic class, it is possible to write programs that construct proofs

themselves. Such programs that are verified to obey their specifications are

called certified.

As mentioned in §1, the most successful applications of Coq include

the proof of the four-color theorem [Gonthier, 2008], the proof of Feit–

Thompson theorem [Gonthier et al., 2013] and CompCert, a formally veri-

fied optimizing compiler for a subset of the C programming language [Leroy

et al., 2012].

Chlipala [2013] systematically discusses the practical technology of pro-

gram verification in Coq by emphasizing programming with dependent

types and proving with scripted proof automation. He gives quite a lot

of invaluable advice and demonstrations for researchers to exploit the full

potential of Coq in their own research problems. Coq is a very powerful

and complicated system with a very steep learning curve. Even for expe-

rienced users, it is tempting to write proof scripts that manipulate proof

goals directly with no structure to aid readers or ease the maintainability.

Chlipala’s work fulfills the gap between naïve approaches for toy examples
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and sophisticated techniques to utilize Coq productively.

He does not only discusses the traditional topics of dependent typed

programs such as length-indexed lists but also introduces several advanced

concepts such as subset types and well-founded recursion. The latter can

be used to define more general recursive functions which plays a crucial role

in the work of §3. To ensure the termination of all programs, Coq uses a

small set of conservative, syntactic criteria to check termination of recursive

definitions. Those criteria are insufficient to support the encoding of many

natural recursive functions such as merge sort. Well-founded recursion is

a standard technique in Coq that allow users to establish a well-founded

relation to guarantee that there are no infinite chains of nested recursive

calls. It is a workaround that leaves the obligation of proving termination

to the users.

In addition, Chlipala [2013] illustrates how to write tactics effectively

to handle routine proof obligations as a “design pattern” to reliably avoid

the really grungy parts of theorem proving. Consistent use of these custom

tactics as understandable artifacts in proofs makes the whole proof more

readable and greatly improves the proving productivity.

2.4 Applications

2.4.1 Hoare type theory

It is not surprising that both Hoare logic and separation logic can be for-

malized in Coq because they are still in the scope of predicate logic. Hoare

type theory [Nanevski et al., 2008a] incorporates Hoare-style specifications

into types to statically track the side effect. The key concept in this theory

is the Hoare type {P}x : A {Q} specifying computations with precondition

P and postcondition Q which returns a result of type A. This theory was
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implemented as an axiomatic extension to Coq called “Ynot” [Nanevski

et al., 2008b] in a monadic style to include effectful computations, which

can be seen as a generalization of the well-known type-and-effect system

[Gifford and Lucassen, 1986]. Ynot also supports separation logic by defin-

ing a separation monad STsep which allows separation specifications on top

of the original Hoare type.

All primitives such as read, write, new, free are defined on a concrete

memory model. In other words, Ynot embeds an imperative programming

language in Coq and users can use this language to write programs with

Hoare-style specification as their type signature. Coq forces users to prove

that the definitions of functions satisfy their specification.

2.4.2 Separation algebras

Appel et al. [2014] also implement separation logic in Coq but with a quite

different approach. They propose separation algebras as models of separa-

tion logic and indirection theory for constructing step-indexed separation

algebras. As mentioned earlier, the assertion P ∗ Q in separation logic

means that P and Q hold on disjoint subheaps. Recall that the defini-

tion of P ∗ Q in (2.1) includes that entire heap h. Typically heaps like h

are modeled as partial functions [Nanevski et al., 2008b] but Appel et al.

[2014] abstracted h1 ⊕ h2 = h as a three-place relation join which cannot

be simplified as a binary function because h1 ⊕ h2 may not exist if they

overlap.

Instead of giving the definition of join directly, a pure mathematical

structure called separation algebra composed by several laws like commu-

tativity is given and join is claimed the operator of the separation algebra.

More separation related algebras are defined by adding extra axioms into

the separation algebra to provide flexibility. Thus the model of separation
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logic has been split into two layers: a join relation satisfying certain laws

and the separating operator ∗ defined in terms of join. With such a defi-

nition, the inference rules for ∗ can be derived from the laws of separation

algebra.

This definition which does not rely on any particular heap model is

so abstract and general that it can serve as a basis for a wide variety of

logical theories. Theorems built on this definition can directly apply to

any concrete structures satisfying the laws of those algebras. Appel et al.

[2014] developed a library called Mechanized Semantic Library (MSL)

in Coq which contains definitions of those algebras implemented as type

classes. Once a concrete definition such as a partial function is proved as a

instance of a specific type class, all theorems related to the particular type

class can be called directly in the proofs about the definition.

To support the representation and deduction of recursive predicates

which appear frequently in reasoning using separation logic, MSL provides

two mechanisms: covariant recursion (i.e., Tarski’s fixed-point, see Tarski

et al., 1955) and contravariant recursion [Ahmed, 2006]. Both provide a

fixed-point function µ which given F of type A→ A, µF is a fixed point of

F , i.e., F (µF ) = µF . Then to get the effect of a self-referencing predicate

P (x) = . . . x . . . P . . . , one can define

F (p) = λx.(. . . x . . . p . . . ) and P = µF

Then P (x) = (µF )(x) = F (µF )(x) = F (P )(x) = (. . . x . . . P . . . ). The

difference is that when the functor F is covariant, the construction of µ

is easier than when F is contravariant. For covariant F , fixed points are

more easily constructed by the Knaster-Tarski fixed-point theorem [Appel

et al., 2014]. The trick to find fixed points for contravariant F is to consider

a data type as a sequence of accurate approximations taken successively.
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The general formulation of this idea as step-indexing is called indirection

theory which is implemented in MSL [Hobor et al., 2010].
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Chapter 3

A Reusable Library of

Formalized Graph Theory

It is common to adopt terms from a mathematical domain in the specifi-

cation of programs, especially when the concepts in the domain are well

studied and widely used, as in graph theory. Since we focus on graph-

manipulating programs, it is very natural to use the terminology of graph

theory in the specification to describe the behavior of those programs. As a

result, an essential component of our work is a library of formalized graph

theory: a framework which provides the definitions of various concepts

from graph theory such as graph, path, reachability, etc. along with neces-

sary theorems for reasoning about properties of various kinds of graphs in

different programs.

This chapter introduces our general-purpose, reusable library of formal-

ized graph theory. It is designed to be expressive and powerful enough to

adapt a large variety of application scenarios while also having good modu-

larity to make the theorems in the library highly reusable. The first section

is about the formalization and organization of concepts of graph theory,

in the context of type theory. The second section is about the hundreds

of general theorems proved around those concepts in our library. The last
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section is a literature review of other existing graph reasoning libraries.

3.1 Formalization of Key Concepts in Graph

Theory

The starting point of a mathematical theory, formalized or not, is always

the definition of the objects of study in that theory. This section explains

how we formalize graph theory objects such as graph, path, and reachabil-

ity. There are more than 200 definitions of entities, relations, predicates,

and operations in our formalized graph library. It is unnecessary and im-

possible to explain the details of every definition, so we will only show the

overall design principle and several key definitions.

§3.1.1 introduces the design decisions and hierarchical definitions of

the core concept—graphs—in our library. §3.1.2 illustrates the definitions

of two closely related concepts, path and reachability. The latter is the

most widely used concept in our work and relies on the definition of the

former. §3.1.3 to §3.1.5 enumerate several important relations, operations,

and predicates about graphs respectively.

3.1.1 Definitions of graphs

There are two major challenges in formalizing concepts from graph theory.

One is that graph theory is usually based on set theory but our formal-

ization has to be based on type theory. The two underlying theories are

incompatible, and so it is impossible to translate the definitions from text-

books directly. The other challenge is in balancing the dichotomy between

the two objectives of the library. The definitions should be as general as

possible so that we can reuse them in any application. At the same time,

they should also be representative enough when necessary so that we are
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able to prove the unique properties in concrete cases.

There are two obvious options to resolve the inconsistency raised by

the first challenge. One is formalizing set theory in Coq first as the foun-

dation of graph theory, and building a graph theory atop that in a natural

manner. The other is formalizing graph theory directly. We choose the

latter one for the following reasons. First, set theory has a huge amount of

content. Formalizing it in its entirety is a daunting and distracting task.

Second, representing basic concepts and terms of graph theory directly in

type theory is not very difficult. The price of converting the language of

graph theory from set theory to type theory is affordable. Third, adding set

theory as an extra layer between graph theory and type theory would pre-

vent us from taking advantage of Coq’s built-in support for type-related

constructions directly for graphs, which could cause lengthy and tedious

proofs.

Most textbooks about graph theory do not specify a formal foundation

explicitly, but can generally be considered as relying on set theory. A

typical definition [Bondy and Murty, 2008] using set theory is1:

Definition 3.1. A directed graph G is an ordered pair (V,E) consisting of

a set V of vertices, and a set E, disjoint from V , of edges, together with an

incidence function ψG that associates with each edge of G an ordered pair of

(not necessarily distinct) vertices of G. If e is an edge and ψG(e) = (u, v),

then e is said to join u to v. The vertex u is the destination of e, and the

vertex v its source; they are the two ends of e.

Bondy and Murty [2008] actually give two definitions for undirected and

directed graphs respectively. The only difference is that ψG gives unordered

pairs of vertices if G is undirected. We argue that the definition of directed

graph is general because an undirected graph can be seen as a special
1We change some terminology for consistency.
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directed graph by doubling the edges, i.e. an edge e indicating a two-way

relationship between u and v can be replaced by two edges, one from u to

v and the other from v to u. It should also be noted that Definition 3.1

is a very general definition of graph. For instance, it does not treat the

elements of E as 2-element subsets of V , which allows multiple edges from

one vertex to another.

According to Definition 3.1, we can formalize graph in Coq analogously.

As the first step, we assume two abstract types Vertex and Edge of vertices

and edges. Since they are just assumptions or parameters, they can be

instantiated with concrete definitions in further applications. Then we split

the incidence function ψG into two functions src and dst mapping edges to

their sources and destinations. This splitting is just for convenience to refer

to source and destination separately. So far, we have simply translated the

Definition 3.1 directly to Coq. We will see that this is just the beginning

of the formalization because abstract types such as Vertex and Edge lack

some properties that a set has naturally or implicitly.

In set theory, one element can belong to multiple sets, e.g. to a subset

or a superset. Thus, in set theory, when we add or remove vertices and/or

edges, we just need to change the set accordingly to represent the result of

the operation. But in type theory, one term can only belong to one type,

which makes it difficult if not impossible to change the type to represent the

result. When a subset would be used in type theory, a common practice is

to use a predicate function that returns true if the term is in the subset and

returns false if not. So we add two more predicates vvalid and evalid to

classify vertices and edges as valid (in) or not (out). Thanks to these two

predicates, we can instantiate Vertex and Edge as non-dependent types

instead of dependent types and restrict the range of valid vertices and

edges through the two validity predicates at the very beginning. There are

at least three benefits of this setting. One is that we can get superset or
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subset by weakening or strengthening the two predicates. Another is that

simple types can simplify our development because in general definitions

and proofs about dependent types are more complicated. The third benefit

is that we can even present incomplete graphs, e.g. an edge with invalid

ends. For this reason, we decide to name our formalization of graph as

PreGraph. A graph type that can represent missing vertices and edges is

convenient for verifying real programs. For example, consider the difference

of two graphs, G1 − G2. Even if both of these graphs are “well-formed”

to begin with, in the sense that valid nodes have only valid edges and vice

versa, their difference may not be well-formed since there may be dangling

edges pointing to the now-removed vertices of G2.

Besides the subset/superset issue, there is an implicit presumption in

set theory which is not true for types in general: decidable equality. A set

or type X has decidable equality if we can judge whether any two elements

of X are the same or not. In classical mathematics, every set has decidable

equality. We found that it is such a fundamental property that almost

all sensible graph-manipulating algorithms employ it whether or not they

realize it. There is a good reason for this. Unlike trees or lists, a key feature

of graphs is that they can have loops. The algorithm must be able to detect

loops to terminate, which it does by distinguishing processed vertices from

unprocessed ones. Since decidable equality is so important, we have to put

decidability of vertices and edges as additional parameters of a graph. Coq

has a suitable built-in Class called EqDec which indicates the decidability

of equivalence. For any type T and any equivalence relation equiv of T,

EqDec T equiv means the type T has decidable equality with respect to the

equivalence relation equiv. We use this in our final definition of PreGraph:

Definition Ensemble (U: Type) := U -> Prop.

Record PreGraph (Vertex Edge: Type)
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{EV: EqDec Vertex eq} {EE: EqDec Edge eq} := {

vvalid: Ensemble Vertex;

evalid: Ensemble Edge;

src: Edge -> Vertex;

dst: Edge -> Vertex }.

Here the Record construction is a macro in Coq which not just defines

a type PreGraph with four parameters Vertex, Edge, EV, and EE but also

defines four functions which all take a PreGraph as their first argument.

For example, the complete signature of src is PreGraph → Edge → Vertex.

EV and EE represent the decidable equality of Vertex and Edge. As shown in

Figure 3.1, a PreGraph can contain invalid nodes and edges in an arbitrary

configuration. The PreGraph is the bedrock of the whole graph library.

Valid node

Invalid node

Valid edge

Invalid edge

Figure 3.1: A PreGraph with Valid and Invalid Nodes and Edges.

In both theory and programming practice, the bare vertex and edge

setting of a PreGraph provides too little information to accommodate inter-

esting problems or theorems. For example, many problems and theorems

in graph theory are related to various ways of coloring graphs. The famous

four-color theorem is a typical case in which each vertex can be assigned a

color. In fact, graph coloring is a special case of graph labeling, an assign-

ment of labels to vertices and/or edges. In the shortest path problem, the
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distances between adjacent vertices are usually treated as labels of edges.

Similarly, the network flow problem attaches capacities to edges as labels.

To model the graphs in these problems, we define LabeledGraph, a PreGraph

with labels. From the definition below, we can see a LabeledGraph can have

label (vlabel G v) of parametric type DV for arbitrary vertex v in G, label

(elabel G e) of parametric type DE for arbitrary edge e and a label (glabel

G) of parametric type DG for the whole graph G. Another key compo-

nent of LabeledGraph is pg_lg, which is of type PreGraph. That means

LabeledGraph is built on PreGraph. We can always get back a PreGraph by

pg_lg G for a LabeledGraph G.

Record LabeledGraph {DV DE DG: Type} := {

pg_lg: PreGraph;

vlabel: Vertex -> DV;

elabel: Edge -> DE;

glabel: DG }.

As we mentioned before, the balance between generality and specificity is

our second challenge. Until now the two definitions of graph are very uni-

versal, but sometimes in a concrete application we need a particular kind of

graph which has restrictions that exactly fit the scenario. For example, the

data structure used in the classical union-find algorithm—disjoint sets—

can be seen as a special graph in which each vertex has only one out-edge.

Of course, we can add predicates to specify the unique characteristics of

the graph throughout all proofs in each application. At least two draw-

backs make this a poor option. One is that it leads to untidy theorem

statements because the predicates will need to appear in each related the-

orem. The other is that it prevents us from reusing theorems about some

common characteristic such as finiteness easily and systematically because

the predicate is highly specific. A novelty of our library here is that we
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establish a new Record called GeneralGraph which augments LabeledGraph

by binding a predicate about the graph. We call the bound predicate Sound

the soundness condition:

Record GeneralGraph {DV DE DG: Type}

{Sound: @LabeledGraph DV DE DG -> Type} := {

lg_gg: @LabeledGraph DV DE DG;

sound_gg: Sound lg_gg }.

In the definition above, the component lg_gg G represents the wrapped

LabeledGraph and sound_gg G means the graph G satisfies the soundness

condition Sound. This new GeneralGraph shrinks the length of the theorem

statements. Furthermore, we can define several independent soundness

conditions, each of which summarizes one typical feature such as finiteness

or acyclicity, and compose them flexibly into one large predicate for differ-

ent cases. The mechanism of composable soundness condition enables us to

achieve an equilibrium between generality and specificity. On the one hand

we can define several typical soundness conditions and prove many highly

reusable theorems. On the other hand we can combine these soundness

conditions to get a highly specific predicates when necessary to adapt to

different situations. We will discuss more details about this in §3.1.5.

So far, we defined three Records in Coq: PreGraph, LabeledGraph and

GeneralGraph, which form a hierarchical interface of the core concept—

graph—in our library. PreGraph is the fundamental layer for all structure-

related concepts. In fact there are more than 750 functions, predicates and

theorems involving PreGraph in the whole project, including verification of

several programs. LabeledGraph is the intermediate layer which supports

attaching information to vertices, edges and even the whole graph. There

are about 150 functions, predicates and theorems about LabeledGraph.

GeneralGraph is the top layer which provides a concise interface by binding
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soundness conditions to the LabeledGraph. In addition, the soundness con-

ditions are composable, which provides good modularity. In the rest of the

chapter, we will introduce more major concepts and important theorems

proved in the library.

3.1.2 Path and reachability

In addition to the hierarchical interface of graphs, reachability is one of

the most crucial concepts in our library of graph theory. For example, the

predicate reachable is most widely used all over the library files, which is

quite reasonable. No matter what the graph-manipulating program is, it

always needs to retrieve information or change the structure along the path

in a graph, which is associated with reachability. From this perspective,

various algorithms of graphs like DFS, BFS, shortest path, and spanning

tree are all of one kind.

There are several high-level treatments for reachability problems [Tar-

jan, 1981; Dolan, 2013], which describe paths as regular expressions and

reachability as the Kleene star A* of the adjacency matrix A. With such

abstractions, a wide range of problems can be solved by standard tech-

niques. Our library is developed from program verification side. We choose

a low-level approach to formalize related definitions directly, which avoids

formalizing regular algebra theory and matrix theory.

The definition of reachability is based on path, which is a subtle concept

to formalize. According to [Bondy and Murty, 2008]:

Definition 3.2. A path is a simple graph (i.e. no parallel edges) whose

vertices can be arranged in a linear sequence in such a way that two vertices

are adjacent if they are consecutive in the sequence, and are nonadjacent

otherwise.

From this definition, we can formalize a path as an alternating sequence
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of vertices and edges: v0, e0, v1, e1, v2, . . . , vk−1, ek−1, vk because a graph is

composed of vertices and edges. But soon we found this to be redundant.

For any edge e, its source and destination vertices are known, so the triple

vi, ei, vi+1 is unnecessary. We hoped the definition was both general and

concise. It seemed that either a list of vertices or a list of edges would

work. But eventually it turned out that neither of these approaches was

good enough.

We tried several definitions of path. At first, we chose a list of vertices as

the definition, which was fine in most cases until we encountered a multiple-

edge graph. For such a graph, a vertex-list representation of path cannot

tell us which one of the multiple edges is part of the path. Then we defined

a path as a list of edges but this edge-representation has its own flaw: we

cannot represent the empty path for certain vertices naturally. Usually a

path p in a graph should has a starting vertex v1 and an ending vertex v2

(they may be the same) so that we can say v2 is reachable from v1 via p.

The problem is that a vertex is always reachable from itself, thus it needs

an empty path. In a vertex-list representation of path, a singleton list [v]

is ideal to be the empty path of vertex v while an edge-list representation

is inadequate because one cannot get vertex information from an empty

list. To solve this dilemma, we combine the good parts of both candidates

together to get our final definition:

Definition path: Type := (V * list E)%type.

The path is defined as a pair of starting vertex with type V and an edge list of

type list E. The edge list resolves the multi-edge issue and the start vertex

resolves the empty-path issue. Unlike PreGraph, a soundness condition

of path is mandatory: all edges in the edge list of a path must connect

consecutively and the starting vertex of a path must be the same as the

source of the first edge in the edge list. When a pathmeets these conditions,
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we call it a valid_path. The definition of valid_path and related predicates

are listed as follows:

Definition strong_evalid (pg: PreGraph V E) (e: E): Prop :=

evalid pg e /\ vvalid pg (src pg e) /\ vvalid pg (dst pg e).

Fixpoint valid_path’ (g: PreGraph V E) (p: list E): Prop :=

match p with

| nil => True

| n :: nil => strong_evalid g n

| n1 :: ((n2 :: _) as p’) => strong_evalid g n1 /\

dst g n1 = src g n2 /\ valid_path’ g p’

end.

Definition valid_path (g: PreGraph V E) (p: path) :=

match p with

| (v, nil) => vvalid g v

| (v, (e :: _) as p’) => v = src g e /\ valid_path’ g p’

end.

• The first predicate strong_evalid of an edge is an enhanced version

of evalid, which emphasizes not only the validity of the edge but also

the validity of its two ends.

• The second predicate valid_path’ of an edge list is recursively de-

fined, which emphasizes that the destination of the preceding edge is

the same as the source of the succeeding edge besides the strong_evalid

requirement for every edge.

With the two definitions we can define the final predicate valid_path of a

path. When the path p only contains one vertex, it is valid_path if the

vertex is valid. When p contains a vertex v and a non-empty list edge p′,

then p is valid if v is the source of the first edge of p′ and p′ is valid_path’.
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The predicate valid_path is just a basic requirement for a path: the

edges along the path are consecutive. At first glance it is sufficient to

define the reachability between two vertices, which just means there exists

a valid path connecting them. But during the development we found that

sometimes we need to claim that each vertex along the path satisfies a

property P. We can define this generalized version first then define the

original reachability as a special case. So we define two more predicates:

path_prop and good_path first:

Definition path_prop (g: PreGraph V E)

(P: Ensemble V) (p: path): Prop :=

P (fst p) /\ Forall (fun e => P (src g e) /\ P (dst g e))

(snd p).

Definition good_path (g: PreGraph V E)

(P: Ensemble V): (path -> Prop) :=

fun p => valid_path g p /\ path_prop g P p.

The predicate path_prop says that for any path p, the head vertex and

both ends of each edge e of p satisfy the property P. A path p of graph g is

a good_path with respect to property P, if valid_path g p and path_prop

g P p. Then we can define the most general predicate about reachability:

reachable_by_path, which is composed by two predicates in Figure 3.2.

One is good_path and the other is path_ends, which specifies the two ends

of the entire path. Here we omit the definitions of phead and pfoot, which

are functions retrieving first and last vertex of a path respectively. The

definition of phead is trivial and the definition of pfoot is straightforward

by recursion. It should be noted that the last two lines in Figure 3.2 give a

notation to say that g |= p is n1 ~o~> n2 satisfying P means in graph

g, p is a path connecting n1 and n2 with property P for each vertex in p.

From the definition of reachable_by_path, we can define two more spe-
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Definition path_ends (g: PreGraph V E) (p: path)

(n1 n2: V): Prop := phead p = n1 /\ pfoot g p = n2.

Definition reachable_by_path (g: PreGraph V E) (p: path)

(n: V) (P: Ensemble V): Ensemble V :=

fun n’ => path_ends g p n n’ /\ good_path g P p.

Notation ”g ’|=’ p ’is’ n1 ’~o~>’ n2 ’satisfying’ P” :=

(reachable_by_path g p n1 P n2) (at level 1).

Figure 3.2: Definition of reachable_by_path and Its Notation

cial cases: reachable_by and reachable. We also defined a special notation

Definition reachable_by (g: PreGraph V E) (n: V)

(P: Ensemble V): Ensemble V :=

fun n’ => exists p, g |= p is n ~o~> n’ satisfying P.

Notation ” g ’|=’ n1 ’~o~>’ n2 ’satisfying’ P ” :=

(reachable_by g n1 P n2) (at level 1).

Definition reachable (g: PreGraph V E) (n: V): Ensemble V:=

reachable_by g n (fun _ => True).

Figure 3.3: Definition of reachable_by and reachable

g |= n1 ~o~> n2 satisfying P for the predicate reachable_by as a short-

cut to say that in graph g, there is a path from n1 to n2 with property

P for each vertex in this path. When the property P is set to be trivially

True in reachable_by, we get the predicate reachable as a special case of

reachable_by. All of these definitions are shown in Figure 3.3.

From the definition of reachable, we illustrate that a seemingly sim-

ple definition may involve many things. Our reachable includes entities

like PreGraph and path; predicates like path_ends, good_path, valid_path,

and path_prop; and functions like phead and pfoot. This is very common

during the development because formalization always requires unambigu-
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ous and detailed definitions. When writing a long definition in detail, one

would name intermediate constructions as ancillary definitions for simplic-

ity. Sometimes we have no choice but to write more generic definitions like

reachable_by_path because both the generic form and the special form are

used in the development. Sometimes it is just convenient to have a generic

definition because it may be shared as a base definition among multiple

definitions or some theorems need generic functions to have easy and short

proofs. The same situation happens in formal proving of theorems, which

usually leads to several helper lemmas. We will discuss the theorems in the

library in §3.2.

There are more functions and predicates about path. We will only enu-

merate them briefly here because they are not as important as reachable.

We defined a function path_glue to concatenate two paths p1 and p2 when

pfoot of p1 is the same as phead of p2. This condition is abstracted as a

predicate paths_meet. We defined a function epath_to_vpath to convert a

path to a list of vertices. This function is used when we need to argue that

there are no duplicate vertices in a path. The relation Subpath expresses

that a path p1 is contained in another path p2. Another relation In_path

says that a vertex v is on a path p. From these concepts about path, we

proved nearly 80 theorems. Some of them are almost trivial but widely

used in later development. For example, theorem reachable_foot_valid

says that the last vertex of a path is valid. Some of them are about the rela-

tions among these path-derived concepts. For example, valid_path_split

says that if two paths satisfy paths_meet and the path_glue of them is

valid_path, then both of them satisfy valid_path. We did not prove these

lemmas at first, but rather we encountered a need for them when proving

more complex lemmas. In such cases, we tried to prove the most general

forms of the lemmas, thus encouraging the clever reuse of such concepts.

Again, we will discuss some interesting ones about path in §3.2.
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3.1.3 Relations between graphs

The concepts defined previously are far from complete for a mature graph

library. For example, it should be able to express the relations between

the states of a graph before and after the execution of graph-manipulating

programs. In general, the relation is unique for each particular graph-

manipulating algorithm. Besides those concrete, algorithm-specific rela-

tions which will be discussed in §5, here we introduce two generic relations

between two graphs: the subgraph relation and graph isomorphism.

The relation is_partial_graph defined below says that g1 is a subgraph

of g2. The definition is composed by four conjunctions, which are all rea-

sonable and straightforward requirements.

• The first two conjunctions state that if a vertex or an edge is valid in

g1, then it must be valid in g2.

• The remaining two conjunctions ensure that if the two end-vertices of

a valid edge e are valid in g1, then they are still the two end-vertices

of the same e in g2, respectively.

To justify our definition, we proved that is_partial_graph is a reflexive

and transitive relation, capturing that a graph is a subgraph of itself and

that if a graph g1 is a subgraph of g2, g2 is a subgraph of g3, then g1 is a

subgraph of g3.

Definition is_partial_graph (g1 g2: PreGraph V E) :=

(forall v: V, vvalid g1 v -> vvalid g2 v) /\

(forall e: E, evalid g1 e -> evalid g2 e) /\

(forall e: E, evalid g1 e -> vvalid g1 (src g1 e) ->

src g1 e = src g2 e) /\

(forall e: E, evalid g1 e -> vvalid g1 (dst g1 e) ->

dst g1 e = dst g2 e).
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We also proved the following basic fact when path is involved: if g1 is a

subgraph of g2, then any valid path in g1 is also a valid path in g2. This

basic fact is necessary for three other theorems: the reachable_by_path,

reachable_by and reachable are all preserved when switching from g1 to

g2 if g1 is a subgraph of g2. We do not provide subgraph relationship for

LabeledGraph and GeneralGraph so far because empirically we have found

that labels are often changed during the execution of a program and the

soundness condition does not hold for the subgraph.

Graph isomorphism is more complicated than the subgraph relation.

The typical definition [Bondy and Murty, 2008] of graph isomorphism is:

Definition 3.3. In general, two graphs G and H are isomorphic, written

G ∼= H, if there are bijections θ : V (G) → V (H) and φ : E(G) → E(H)

such that ψG(e) = (u, v) if and only if ψH(φ(e)) = (θ(u), θ(v)); such a pair

of mappings is called an isomorphism between G and H.

Recall that ψG defined in Definition 3.1 on page 35 is the incidence

function of a graph G which associates each edge with its own end-vertices.

In our corresponding definition of PreGraph, it is split into two functions

src and dst. According to Definition 3.3, we first define bijection as follows:

Record bijective {A B} (f: A -> B) (invf: B -> A): Prop :=

{ injective: forall x y, f x = f y -> x = y;

surjective: forall x, f (invf x) = x; }.

Unlike the traditional definition, this bijective comes with two functions,

f and its inverse invf. The exposure of the inverse function eases the state-

ment of the symmetric law: if a function f is a bijection, then its inverse

function is also a bijection. This is proved as a lemma bijective_sym:

Lemma bijective_sym: forall {A B} (f: A -> B) (invf: B -> A),

bijective f invf -> bijective invf f.
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Then we define our most generic graph isomorphism predicate in Figure 3.4.

The definition of pregraph_isomorphism_explicit looks long and compli-

Record pregraph_isomorphism_explicit

‘(g: @PreGraph V E EV EE)

‘(g’: @PreGraph V’ E’ EV’ EE’)

(vmap: V -> V’) (vmap’: V’ -> V)

(emap: E -> E’) (emap’: E’ -> E): Prop :=

{ vertex_bij: bijective vmap vmap’;

edge_bij: bijective emap emap’;

vvalid_bij: forall v, vvalid g v -> vvalid g’ (vmap v);

vvalid_bij_inv: forall v’, vvalid g’ v’ ->

vvalid g (vmap’ v’);

evalid_bij: forall e, evalid g e -> evalid g’ (emap e);

evalid_bij_inv: forall e’, evalid g’ e’ ->

evalid g (emap’ e’);

src_bij: forall e, evalid g e ->

vmap (src g e) = src g’ (emap e);

dst_bij: forall e, evalid g e ->

vmap (dst g e) = dst g’ (emap e); }.

Figure 3.4: The Definition of Isomorphism Between PreGraphs

cated but it is actually very intuitive. The first two conditions establish

the type level bijections. The next four properties, from valid_bij to

evalid_bij_inv, establish the bijection between valid vertices and edges.

The last two, src_bij and dst_bij, say that the corresponding vertices

in two graphs are connected in the same way. This is exactly what Def-

inition 3.3 says. The conditions vvalid_bij and vvalid_bij_inv together

are equivalent to forall v, vvalid g v <-> vvalid g’ (vmap v). So are

evalid_bij and evalid_bij_inv. We justify our definition of graph isomor-

phism by proving that it is an equivalence relation. It satisfies the reflexive

law, the symmetric law and the transitive law. Unlike the subgraph re-

lation, we also define the isomorphism between two LabeledGraphs. This

isomorphism is the isomorphism between PreGraphs with additional equiv-
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Record label_preserving_graph_isomorphism_explicit

‘(g: @LabeledGraph V E EV EE DV DE DG)

(g’: @LabeledGraph V E EV EE DV DE DG)

(vmap vmap’: V -> V) (emap emap’: E -> E): Prop :=

{ lp_pregraph_iso:

pregraph_isomorphism_explicit g g’ vmap vmap’ emap emap’;

vlabel_iso: forall v, vvalid g v ->

vlabel g v = vlabel g’ (vmap v);

elabel_iso: forall e, evalid g e ->

elabel g e = elabel g’ (emap e); }.

Figure 3.5: The Definition of Isomorphism Between LabeledGraphs

alence between corresponding labels of vertices and edges. It is less generic

than isomorphism between PreGraphs because in the definition above, the

types of vertices, edges and labels are all the same. It is still reasonable

because when we consider the equivalence between labels, it is more often

about the graphs before and after some modification. The types are not

changed in that case. Of course, we proved that the isomorphism between

LabeledGraphs is an equivalence relation too.

For some applications, pregraph_isomorphism_explicit is cumbersome.

The types of vertices and edges are the same and the bijections between

vertices and edges are simply identity functions. So we defined a simplified

version of isomorphism between PreGraphs in Figure 3.6. This definition is

widely used in the verification of algorithms which do not change the whole

or part of the structure of graphs. We even defined a notation g1 ~=~ g2 as

a shortcut due to its frequent appearance. Moreover, we defined a simpli-

fied version of isomorphism between LabeledGraphs. As usual, we proved

independently that both simplified versions of isomorphism are equivalence

relations.

Definition labeled_graph_equiv (g1 g2: Graph) :=

g1 ~=~ g2 /\ (forall v, vvalid g1 v -> vvalid g2 v ->
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Definition structurally_identical

(g1 g2: PreGraph Vertex Edge): Prop :=

(forall v: Vertex, (vvalid g1 v <-> vvalid g2 v)) /\

(forall e: Edge, (evalid g1 e <-> evalid g2 e)) /\

(forall e: Edge, evalid g1 e -> evalid g2 e ->

src g1 e = src g2 e) /\

(forall e: Edge, evalid g1 e -> evalid g2 e ->

dst g1 e = dst g2 e).

Notation ”g1 ’~=~’ g2” := (structurally_identical g1 g2).

Figure 3.6: Definition of PreGraph Isomorphism

vlabel g1 v = vlabel g2 v) /\

(forall e, evalid g1 e -> evalid g2 e ->

elabel g1 e = elabel g2 e).

3.1.4 Operations of graphs

In computer programming, there is an acronym CRUD which describes the

four basic kinds of operations of persistent storage: create, read, update,

and delete. We can classify our defined operations of graphs in a similar

way. Note that Gallina—the programming language we used to define

entities—is purely functional. So the operations shown here do not modify

the graph in place but return the possibly changed graph.

All operations discussed here are about PreGraph and LabeledGraph. We

do not consider general operations of GeneralGraph because the soundness

condition is about the underlying LabeledGraph. We need to prove that the

modified LabeledGraph still satisfies the soundness condition if we want to

get a modified GeneralGraph. The proof depends on the concrete definition

of the soundness condition. Sometimes the change of the graph breaks the

soundness condition in the intermediate steps of certain algorithms.
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Instead of defining each of these operations from scratch separately, we

defined some generic helper functions first because we found many similar-

ities between vvalid and evalid, src and dst.

Definition addValidFunc {T: Type} (v: T)

(validFunc: Ensemble T): Ensemble T :=

fun n => validFunc n \/ n = v.

Definition removeValidFunc {T: Type} (v: T)

(validFunc: Ensemble T): Ensemble T :=

fun n => validFunc n /\ n <> v.

Definition updateEdgeFunc (edgeFunc: E -> V) (e: E) (v: V):

E -> V := fun n => if equiv_dec e n then v else edgeFunc n.

The three definitions above are all so-called higher-order functions be-

cause they take functions as arguments and return functions applying the

function parameters. From the definition we can see the an element n of

type T satisfies the new predicate generated by addValidFunc if and only

if validFunc n or n equals v. In other words, the addValidFunc returns

an enlarged validity predicate by adding an element v. Also, an element

n satisfies the new predicate generated by removeValidFunc if and only if

it is not v and validFunc n holds. It means that removeValidFunc returns

a shrunk predicate by removing v. The function updateEdgeFunc updates

the edge function edgeFunc, no matter it is src or dst. For any edge n,

if it equals e then the generated function returns the updated vertex v,

otherwise it returns the same vertex returned by edgeFunc.

Create. We defined operations which add a vertex or an edge to an ex-

isting graph as follows. The first line just means Graph is a shortcut of

PreGraph V E.

52



Notation Graph := (PreGraph V E).

Definition pregraph_add_vertex (g: Graph) (v: V): Graph :=

@Build_PreGraph V E EV EE (addValidFunc v (vvalid g))

(evalid g) (src g) (dst g).

Definition pregraph_add_edge (g: Graph) (e: E) (o t: V) :=

@Build_PreGraph V E EV EE (vvalid g)

(addValidFunc e (evalid g))

(updateEdgeFunc (src g) e o) (updateEdgeFunc (dst g) e t).

Definition pregraph_add_whole_edge (g: Graph) (e: E)

(s t: V) := Build_PreGraph _ _ (addValidFunc t (vvalid g))

(addValidFunc e (evalid g))

(updateEdgeFunc (src g) e s) (updateEdgeFunc (dst g) e t).

Adding a single vertex is quite simple: only the vvalid predicate needs

to be changed. When adding a new edge, there are different cases. If

we only need to link two existing vertices, we can use pregraph_add_edge.

It adds a new edge by modify evalid and specifies two end-vertices by

updating src and dst. If the end-vertices of the new edge are also new, one

can use pregraph_add_vertex to add vertices first before adding edges. In

applications, we found that it is more common that the destination vertex

is new. So we provide the function pregraph_add_whole_edge to add a new

edge and its new vertex together. The graph illustrated in Figure 3.1 can

be constructed through operations introduced here.

Read. Some inquiries about the components of graphs are parts of the

definitions of graphs themselves. They are src, dst, vlabel, elabel and etc.

Besides these simple inquiries, there are other kinds of operations which

can also be classified as reading operations, which are actually filters to

retrieve a subgraph from the original graph. Their definitions along with

the helper functions are listed below.
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Definition predicate_vvalid (g: Graph) (p: V -> Prop)

: Ensemble V := fun n => vvalid g n /\ p n.

Definition predicate_evalid (g: Graph) (p: V -> Prop)

: Ensemble E := fun e => evalid g e /\

p (src g e) /\ p (dst g e).

Definition predicate_weak_evalid (g: Graph) (p: V -> Prop)

: Ensemble E := fun e => evalid g e /\ p (src g e).

Definition predicate_subgraph (g: Graph) (p: V -> Prop)

: Graph := Build_PreGraph EV EE (predicate_vvalid g p)

(predicate_evalid g p) (src g) (dst g).

Definition predicate_partialgraph (g: Graph) (p: V -> Prop)

: Graph := Build_PreGraph EV EE (predicate_vvalid g p)

(predicate_weak_evalid g p) (src g) (dst g).

The first three of the definitions above are helper functions which enhance

the validity predicates by requiring additional property p for vertices. Ac-

cording to the definition of predicate_subgraph, the valid vertices in the

returned graph are valid vertices which also satisfy p in the original graph.

Also, the valid edges in the returned graph are valid edges whose both

end-vertices satisfy p in the original graph. The only difference between

predicate_subgraph and predicate_partialgraph is that a valid edge is

also valid in the graph returned by predicate_partialgraph if its source,

not both ends, is valid in the original graph. Both definitions only mod-

ify the validity predicates. Here we specify a mathematical notation ↑ to

denote the concept of predicate_subgraph:

γ ↑ P def
= predicate_subgraph γ P (3.1)

When the functions for PreGraph is defined, it is easy to get their corre-

sponding version for LabeledGraph:
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Definition predicate_sub_labeledgraph (g: Graph)

(p: V -> Prop) :=

Build_LabeledGraph _ _ _ (predicate_subgraph g p)

(vlabel g) (elabel g) (glabel g).

Definition predicate_partial_labeledgraph (g: Graph)

(p: V -> Prop) :=

Build_LabeledGraph _ _ _ (predicate_partialgraph g p)

(vlabel g) (elabel g) (glabel g).

Update. So far our creating and reading operations are only about the

plain structure of a graph, i.e., PreGraph. When considering the update

of graphs, we can change the source or destination of edge and labels of

graphs. When updating labels, we need to deal with LabeledGraph. So we

have the following definitions.

Definition pregraph_gen_dst (g: Graph) (e: E) (t: V) :=

@Build_PreGraph V E EV EE (vvalid g) (evalid g) (src g)

(updateEdgeFunc (dst g) e t).

Definition update_vlabel (vlabel: V -> DV) (x: V) (d: DV) :=

fun v => if equiv_dec x v then d else vlabel v.

Definition update_elabel (elabel: E -> DE) (e0: E) (d: DE) :=

fun e => if equiv_dec e0 e then d else elabel e.

The function pregraph_gen_dst changes the destination of an edge e to t.

The remaining two functions update the labels of a vertex and an edge

respectively. Their definitions are almost the same as updateEdgeFunc,

except for the types of parameters. Then we can define the functions

which modify the labels of a LabeledGraph as follows. Now the notation

Graph represents LabeledGraph. We also use the coercion mechanism of Coq

to omit the conversion from LabeledGraph to PreGraph when necessary.
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With the help of update_vlabel and update_elabel, the definitions are

straightforward.

Notation Graph := (LabeledGraph V E DV DE DG).

Local Coercion pg_lg: LabeledGraph >-> PreGraph.

Definition labeledgraph_vgen (g: Graph) (x: V) (a: DV)

: Graph := Build_LabeledGraph _ _ _ g

(update_vlabel (vlabel g) x a)

(elabel g) (glabel g).

Definition labeledgraph_egen (g: Graph) (e: E) (d: DE)

: Graph := Build_LabeledGraph _ _ _ g (vlabel g)

(update_elabel (elabel g) e d) (glabel g).

Delete. Similarly, we defined operations which remove a vertex or an

edge from an existing graph. They are named pregraph_remove_vertex and

pregraph_remove_edge, which are inverses of our adding operations. We

omit their definitions here because they can be simply defined by replacing

the function addValidFunc with removeValidFunc in their corresponding

adding functions pregraph_add_vertex and pregraph_add_edge.

3.1.5 Predicates specifying graphs

Recall that in our definition of GeneralGraph at §3.1.1, there is a bound

predicate P called the soundness condition to describe the unique property

of the graph involved for each program under investigation. In principle we

can always use the ingredients of the graph theory library to compose the

soundness condition. Moreover, we distilled several representative features

of a graph as independent soundness conditions. They can be composed

flexibly into one large soundness condition in concrete applications. In

other words, typical predicates can be shared among verification of differ-
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ent programs. So that we can reuse the supporting theorems about these

predicates to greatly save effort and time.

A very intuitive predicate about graphs are about their finiteness. The-

oretically, there is no limitation on the vertex or edge type of PreGraph.

These types can have infinite elements, which could lead to a graph with

infinite size2. But the graphs handled by real programs are always finite

because they are stored in some physical storage devices and the capacities

of such devices are finite. It is nearly an implicit property of all graphs

in graph-manipulating programs. Sometimes this property is contained in

some other stronger properties so that the verification does not need the

finiteness explicitly. But sometimes we found that it is crucial to have it

in reasoning. We define it as follows:

Definition Enumerable U (A: Ensemble U) :=

{l: list U | NoDup l /\ forall x, In x l <-> A x}.

Class FiniteGraph (pg: PreGraph V E) := {

finiteV: Enumerable V (vvalid pg);

finiteE: Enumerable E (evalid pg) }.

Enumerable defines a dependent sum type, which is composed by a list of

type U and a proof saying that the list is non-duplicative and an element is in

the list if and only if it satisfies A. Since a list only contains finite number

of elements by definition in Coq, Enumerable U A means the elements of

type U with property A are finite. In the definition of FiniteGraph, the

predicate A is instantiated as the validity predicates about vertices and

edges respectively. So finiteV and finiteE together mean that the valid

vertices and valid edges in a graph pg are all finite. Sometimes, FiniteGraph

is too strong a condition. We also defined a weakened predicate called

LocalFiniteGraph:
2For example, (V=nat, E=nat, vvalid v=True, evalid e=True, src i=i, dst i=i+ 1)

represents a graph with infinite vertices and edges.
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Definition out_edges (pg: PreGraph V E) x: Ensemble E :=

fun e => evalid pg e /\ src pg e = x.

Class LocalFiniteGraph (pg: PreGraph V E) := {

local_enumerable: forall x, Enumerable E (out_edges pg x)}.

The predicate out_edges pg x specifies all edges from vertex x in graph

pg. So the definition of LocalFiniteGraph means every vertex has a finite

number of out edges. It is a weakened version because we proved that a

graph satisfying FiniteGraph also satisfies LocalFiniteGraph.

Another common predicate of graphs comes from the structure with

pointers in C-like programming languages. In a typical implementation of

a linked list, each element is represented as a struct with a pointer pointing

to the next, linked element. The pointer of the last element is a null pointer

to indicate the end of the list. When one uses pointers to represent edges to

other vertices in a graph implementation, the same situation would happen

again: null pointers are needed to show the boundary of a graph. This

property is abstracted as MathGraph.

Definition DecidablePred (A: Type): Type :=

{P: A -> Prop & forall a, {P a} + {~ P a}}.

Class MathGraph (pg: PreGraph V E) (is_null: DecidablePred V)

: Prop := {

weak_valid: V -> Prop := fun p => is_null p \/ vvalid pg p;

valid_graph: forall e, evalid pg e ->

vvalid pg (src pg e) /\ weak_valid (dst pg e);

valid_not_null: forall x, vvalid pg x ->

is_null x -> False }.

Here DecidablePred is a wrapper of a predicate P by emphasizing that

whether P a holds or not for arbitrary a is decidable. The parameter

is_null is such a predicate to judge and state whether a vertex is null
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because we need its decidability in both programs and proofs. A graph sat-

isfying MathGraph must satisfy two conditions. One is valid_graph, which

says that for any valid edge, its source vertex must be valid and its des-

tination vertex must be either valid or null (so-called weak_valid). The

other is valid_not_null, which says that any valid vertex cannot be null.

It captures the attribute of null pointers in practice.

We also defined an uncommon predicate BiGraph to describe one feature

of graphs in our illustrative verification programs: each vertex has at most

two out-edges. We call it binary graph, just like the binary tree.

Class BiGraph (pg: PreGraph V E)

(left_out_edge right_out_edge: V -> E): Prop :=

{ bi_consist: forall x, vvalid pg x ->

left_out_edge x <> right_out_edge x;

only_two_edges: forall x e, vvalid pg x ->

(src pg e = x /\ evalid pg e <->

e = left_out_edge x \/ e = right_out_edge x) }.

Besides the parameter pg which refers to the graph, BiGraph has other two

parameters representing functions that derive the left and right edges for

a given vertex. The two requirements of BiGraph are quite simple. One

is bi_consist, which says the for any valid vertex, its left edge and right

edge are different. The other is only_two_edges. As the name indicates, it

says that for any valid vertex x and any edge e, the source of e is x and e

is valid, if and only if e is one of the two designated edges of e.

Each of the three predicates defined before can serve as the soundness

condition of a GeneralGraph. More importantly, we can combine the three

predicates and other not-yet-defined predicates together to build a larger

predicate to precisely describe the graph needed in a concrete verification.

For example, the soundness condition used in a graph-marking program
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introduced in §5 is defined as follows:

Inductive LR := | L | R.

Class BiMaFin (g: PreGraph addr (addr * LR)) := {

bi: BiGraph g (fun x => (x, L)) (fun x => (x, R));

ma: MathGraph g is_null;

fin: FiniteGraph g }.

In this definition, the edge type is product of the vertex type addr and

an indicator type LR to imply left and right edges. We omit the definition

of decidable predicate is_null because it is basically a function to judge

whether the given pointer is the null pointer.

3.2 Theorems in the Graph Library

The entities, relations, operations, and predicates shown in §3.1 are a small

portion of the many concepts that are important and worth mentioning.

Our library of graph theory contains more than 200 definitions of such

concepts. They together construct the skeleton of the whole library. It is

the theorems around those concepts that make the library valuable. There

are more than 500 theorems which can be seen as the muscles of the library.

These theorems are universal. They do not include the specialized lemmas

which are only used in inferring facts about concrete programs.

§3.2.1 gives a global view of all theorems in the graph library. In §3.2.2,

we put one theorem path_shorten under the microscope. Through the

detailed exposure, we can see how complicated a formal proof could be,

even for an intuitively straightforward theorem. §3.2.3 contains a brief

overview of some other important theorems in the library.
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1: graph/BiGraph.v

2: graph/FiniteGraph.v

3: graph/GraphAsList.v

4: graph/MathGraph.v

5: graph/dag.v

6: graph/graph_gen.v

7: graph/graph_isomorphism.v

8: graph/graph_model.v

9: graph/graph_morphism.v

10: graph/graph_relation.v

11: graph/list_model.v

12: graph/path_lemmas.v

13: graph/reachable_computable.v

14: graph/reachable_ind.v

15: graph/subgraph2.v

16: graph/tree_model.v

17: graph/weak_mark_lemmas.v

Figure 3.7: Overview of the Theorems in the Graph Library
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3.2.1 Overview of the theorems

To some extent, the theorems in our graph library are unstructured since

the various concepts involved in those theorems are organized in a flattened

way. But we can still grasp the big picture through their dependency.

Figure 3.7 on page 61 gives an overview of the theorems of the whole

graph library. All 522 theorems spread in 17 files are represented as line

segments surrounding a circle. The color of a line segment indicates the

file in which the theorem lives. The length of a line segment implies the

size, counted in characters and represented in log scale, of a theorem with

its proof. The curves connecting the line segments reveal the dependency

among the theorems. If a theorem A needs another theorem B in its

proof, there is a curve connecting A and B, where the color of the curve

is the same as the color of A, the caller. So if there are many curves

with many different colors connecting to a certain sector, it means that the

theorems in that file are widely used as the foundation of other theorems.

The file graph/graph_model.v in the lower left part of the circle is such an

example. The files are not arranged chronologically, but alphabetically by

their names, because theorems in the same file are not proved in the same

time. The bar under the circle indicates the percentages of sizes of the files.

Note that the percentages may not be the same as those presented in the

circle because the circle is divided by the number of theorems in each file.

A lot of information can be read from Figure 3.7. For example, there is

a significant concentration of curves among the line segments with the same

color, which means that theorems in the same file are closely related. This

is totally expectable because we usually prove theorems around the similar

concepts in the same file. Sector 12 has the most theorems, which belong

to graph/path_lemmas.v. From the colorful curves nearby we know that these

path-related theorems are widely used. By contrast, the curves connecting
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graph/GraphAsList.v in sector 3 all have the same color as the theorems. This

means the theorems in GraphAsList.v are not supporting lemmas for other

theorems in this library. We can also notice that some theorems are not

connected to any other theorems. This means they do not depend on other

theorems and are not required by any other theorems. But it does not

mean that they are useless. They are just not used by theorems listed

here. They might be called in other theorems outside the graph library.

Each file or sector in Figure 3.7 is composed of the definitions of con-

cepts and related theorems. The three files BiGraph.v, FiniteGraph.v and Math-

Graph.v (sectors 1, 2 and 4) contain the three predicates of graph BiGraph,

FiniteGraph, MathGrah mentioned in §3.1.5 respectively. The two files

GraphAsList.v and list_model.v (sectors 3 and 11) contain special treatment of

list-shaped PreGraphs. In GraphAsList.v we mainly defined conversion func-

tions between a list of vertex-and-edge pairs and a list-shaped PreGraph. We

proved the two functions are inverse functions of each other. In list_model.v

we defined the isomorphism between a list and a list-shaped PreGraph and

proved for any list-shaped graph we can always find a list which is isomor-

phic to the graph. Analogously we have special treatment for tree-shaped

graph in tree_model.v (sector 16) which provides the isomorphism between

a tree and a tree-shaped graph and related theorems. A special kind of

PreGraph—the directed acyclic graph—is specified through the predicate

Dag in dag.v (sector 5). The file graph_gen.v (sector 6) contains functions

of graph mentioned in §3.1.4. Graph isomorphism mentioned in §3.1.3

is defined in graph_isomorphism.v (sector 7). The basic definitions such as

PreGraph, LabeledGraph and GeneralGraph are defined in graph_model.v (sec-

tor 8). The file graph_morphism.v (sector 9) contains definitions of partial and

guarded isomorphisms between graphs. Relations other than isomorphism

are defined in graph_relation.v (sector 10). The file path_lemmas.v (sector

12) contains definitions of path and reachability mentioned in §3.1.2. The
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file reachable_computable.v (sector 13) mainly proved a useful theorem: if a

PreGraph is both a MathGraph and a FiniteGraph, then for any two vertices

a and b, there is a decision procedure to judge whether b is reachable from

a. We will discuss this theorem briefly in §3.2.3. The file reachable_ind.v

(sector 14) is a helper library which provides some relations and lemmas to

help proving reachability-related theorems through induction more easily.

The file subgraph2.v (sector 15) contains predicates like predicate_subgraph

discussed in §3.1.4. The last file, weak_mark_lemmas.v (sector 17) defined an

abstract property named “mark” to represent the common marking oper-

ation in various algorithms and proved several theorems about it. We can

see its application in §5. The 17 files together form our library of formal

graph theory.

Even though there is no hierarchical organization for the theorems in

our graph library, we can still categorize them into two layers according to

whether or not they rely on other theorems. The theorems in the lower

layer do not depend on others. They are basic facts derived directly from

the concepts defined in the library. Usually they are self-evident: we just

need to unfold the definitions, and then it is natural to get the conclusion

we want for those basic facts. For example, the following theorem is a basic

fact about the function pregraph_add_vertex:

Lemma addVertex_add_vvalid: forall (g: PreGraph V E) (v: V),

vvalid (pregraph_add_vertex g v) v.

It says that for any vertex v, it is valid in the resulting graph if it is added

to a graph. This conclusion comes from the definition of addValidFunc used

in pregraph_add_vertex: fun n => validFunc n \/ n = v. The right side

of the disjunction becomes v = v when it is applied to v.

Another example is about the function pfoot on path:

Lemma pfoot_head_irrel: forall l (g: PreGraph V E) v1 v2 n,

64



pfoot g (v1, n :: l) = pfoot g (v2, n :: l).

It says that for any path containing at least one edge, the ending vertex

is irrelevant to the starting vertex, which also comes from the definition of

pfoot. It is proved by structural induction on l.

For any concept C in the library, such basic facts about C can be

seen as the inherent properties of C. When there are enough proved facts

surrounding a concept C, they actually form a “theorem interface” of C

so that most proofs of later theorems involving C do not need to drill

down to the definition of C. In a large formal library containing hundreds

of concepts, such “interfaces” are absolutely necessary because they keep

the complexity of proofs manageable. In our development of the graph

library, we intended to prove as many basic facts about a certain concept

as possible, which greatly reduces the burden of proving theorems in the

upper layer.

In contrast to the theorems in lower layer, if a theorem is the collabo-

ration of several complicated concepts, or if it cannot be proved instantly

from the definitions of the concepts involved, it is categorized as the the-

orem in the upper layer. The proofs of the upper layer theorems adopt

the lower layer theorems. They are usually more difficult and interesting

to prove. In the remainder of the section, we will discuss some influential

theorems in the upper layer according to the concepts involved.

3.2.2 Case study: lemma path_shorten

Here we explore a very interesting theorem thoroughly about the concept

path: path_shorten. Through this sample we will give a taste of the the-

orems and proofs in the graph library. We will also show that the formal

proof of a theorem could be rather complicated even when the idea of the

proof is simple and intuitive.
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The theorem path_shorten says that if there is a valid path connecting

n1 to n2 with duplicated vertices, we can always find a strictly shorter

and valid sub-path of the original path, which is still from n1 to n2. It is

formulated as follows:

Lemma path_shorten: forall (g: PreGraph V E) (p: path) n1 n2,

path_ends g p n1 n2 -> valid_path g p ->

Dup (epath_to_vpath g p) ->

exists p’, length (snd p’) < length (snd p) /\

Subpath g p’ p /\

path_ends g p’ n1 n2 /\ valid_path g p’.

Recall that a path is defined as a pair consisting of a starting vertex and

an edge list. That is why we use length (snd p) to express the length of a

path. The definition is also the reason to define a function epath_to_vpath

to retrieve the vertices along a path.

Figure 3.8: Intuition Behind the Lemma path_shorten

As illustrated in Figure 3.8, the lemma path_shorten is quite under-

standable. We can cut the “red” loop from the whole path. The remaining

black path is still valid and it connects the original starting and ending

vertex.

The informal proof of this lemma is also short and intuitive. We first

notice that the vertices of the path p can possibly be split into three seg-
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ments separated by the two duplicated vertices.

a1, a2, . . . , am, d, b1, b2, . . . , bn, d, c1, c2, . . . , cl

where ai, bi, ci and d are all vertices which are connected by consecutive

edges. The numbers m, n and l could be zero. Then we can see that d,

b1, b2, . . ., bn, d form a loop which can be cut from the p. The remaining

vertices:

a1, a2, . . . , am, d, c1, c2, . . . , cl

still form a shortened path without changing the starting and ending ver-

tices. This is the path p’ required in the conclusion.

Unlike the informal proof, the formal proof written in Coq is much

longer, even though the proof idea is the same as the informal one, but

every step needs to be justified via rigorous inference. The more concepts

are involved, the more supporting theorems are needed. As we can tell,

the statement of the path_shorten lemma includes two functions which are

length and epath_to_vpath, and four predicates: path_ends, valid_path,

Dup and Subpath. The proof of this theorem depends on 11 other theorems,

directly or indirectly. The dependency among the 12 theorems is shown in

Figure 3.9.

In the formal proof, the first step relies on the following helper lemma:

Lemma Dup_cyclic: forall l: list A,

Dup l -> exists (a: A) (l1 l2 l3: list A),

l = l1 ++ (a :: l2) ++ a :: l3.

It says exactly that a list l of duplicated elements can be split in to three

segments l1, l2 and l3 joined by a. We do structural induction on l to

prove this lemma. This helper lemma also depends on another basic fact

about Dup:
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2 3 4 567

8 910

11

12

1: path_shorten
2: Dup_cyclic
3: epath_to_vpath_split
4: epath_to_vpath_pfoot
5: pfoot_app_cons
6: valid_path_merge
7: epath_to_vpath_phead
8: Dup_unfold
9: valid_path_cons
10: epath_to_vpath_cons
11: pfoot_head_irrel
12: paths_meet_cons

Figure 3.9: Theorems On Which path_shorten Depends

Lemma Dup_unfold: forall {A} (a: A) (l: list A),

Dup (a :: l) -> In a l \/ Dup l.

The lemma Dup_unfold says that if a list with the head a is duplicated,

then either a is also in the rest of the list l or l has duplicated elements.

The next step is the cutting-vertices procedure. In the informal proof

this step blurs the distinction between a list of vertices and a path. In the

formal proof it needs another lemma twice to construct the sub-path from

the lists of vertices:

Lemma epath_to_vpath_split: forall (g : PreGraph V E) (n : V)

(l1 l2 : list V) (p : path), valid_path g p ->

epath_to_vpath g p = l1 ++ n :: l2 ->

exists p1 p2 : path,

p = p1 +++ p2 /\ valid_path g p1 /\

valid_path g p2 /\ epath_to_vpath g p1 = l1 +:: n /\

epath_to_vpath g p2 = n :: l2.

This lemma says that if there is a vertex n in a path, we can always split

the path into two paths, one ending at n and the other starting at n.

The notation p1 +++ p2 represents the merge function of two paths. This
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lemma builds the connection between a path composed by edges and the

vertices along the path. It is proved by natural induction on l1. From

Figure 3.9 we can see the proof adopts two other lemmas valid_path_cons

and epath_to_vpath_cons in the lower layer:

Lemma valid_path_cons: forall g v e p,

valid_path g (v, e :: p) -> valid_path g (dst g e, p).

Lemma epath_to_vpath_cons: forall g v e p a l,

epath_to_vpath g (v, e :: p) = a :: l ->

epath_to_vpath g (dst g e, p) = l.

After applying Dup_cyclic we get the decomposition of the vertices of

the path p: epath_to_vpath g p = L1 ++ a :: L2 ++ a :: L3. Then we

apply epath_to_vpath_split to decompose p into two paths p1 and p2

satisfying p = p1 +++ p2 and other properties:

epath_to_vpath g p1 = L1 +:: a

epath_to_vpath g p2 = a :: L2 ++ a :: L3

Then we can apply epath_to_vpath_split again to decompose p2 into two

paths p3 and p4 satisfying p2 = p3 +++ p4 and two more properties:

epath_to_vpath g p3 = a :: L2 +:: a

epath_to_vpath g p4 = a :: L3

Now we merge p1 and p4, the new path p1+++p4 is the p’ required by

path_shorten. So far it is just half of the formal proof. The remaining

proof obligation is to prove that p’ satisfies all four conjunctions to com-

plete path_shorten. These steps rely on some other helper lemmas listed

in Figure 3.9. For example, we need valid_path_merge to prove the con-

structed path by merging two paths is valid. In the interest of brevity we

omit the details of these steps.
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In our graph library, the lemma path_shorten is quite typical, i.e. it is

neither the most complicated nor the simplest. The 11 supporting theorems

involved were not all proved during the proving of path_shorten. Most of

them were developed naturally and independently before, when proving

other lemmas that were obliquely related. When we actually started writ-

ing the proof of path_shorten, we found many supporting theorems were

ready. This was thanks to our general library, where we emphasize gen-

eral lemmas over specialized facts, and thanks to our careful organization.

So the intellectual effort of this proof was much lower than proving 12

theorems all at once.

The lemma path_shorten is not only a caller but also a callee. From the

statement we know that it cuts at least one loop of a path with duplicated

vertices. A typical valid path may contain multiple loops. We proved the

following lemma, which calls path_shorten to guarantee that if there is a

path from n1 to n2, there always exists a path without any loops connecting

n1 to n2:

Lemma valid_path_acyclic:

forall (g: PreGraph V E) (p: path) n1 n2,

path_ends g p n1 n2 -> valid_path g p ->

exists p’, Subpath g p’ p /\ path_ends g p’ n1 n2 /\

NoDup (epath_to_vpath g p’) /\ valid_path g p’.

This lemma is proved by induction on the length of the path p. When

the length is zero, the path contains only one vertex so that the lemma is

trivially true. In the induction step, the induction hypothesis is that, for

any path whose length is less than or equal to n, there is a path without

loops. Now the path p has length n+1. If p contains no loops, then p’ is p.

Otherwise, we apply the lemma path_shorten to get a strictly shorter path

p1 from p. Then we can use the induction hypothesis to get the required
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p’ from p1. This lemma is useful in dealing with properties relating to

reachability.

3.2.3 Other influential theorems

In the total 525 theorems proved in our graph library, 180 of them are

basic facts in the lower layer. They do not cite any other theorems. Even

in the remaining 345 theorems, most of them rely on only one or two other

theorems. Figure 3.10 gives the distribution of the 345 theorems according

to the number of theorems they depend on in the graph library. Theorems

in the standard library of Coq are not counted as dependencies.
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Figure 3.10: Theorem Dependencies in the Math Graph Library

There are two histograms in Figure 3.10. The top one is based on

the number of directly supporting theorems and the other is based on all

supporting theorems, directly and indirectly. For example, in Figure 3.9,

the neighbors of node 1, which are nodes 2, 3, 4, 5, 6 and 7, represent the 6
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directly supporting theorems of path_shorten. Other nodes except node 1

itself are indirectly supporting ones because they are not cited in the proof

of path_shorten explicitly.

In general, the more theorems a proof cites, the more complicated the

proof is. From both histograms we can conclude that nearly 70% of the 525

theorems in the graph library are relatively simple: they are either atomic

or only depend on one or two theorems. For the other theorems we think

counting both directly- and indirectly-supporting theorems is a more accu-

rate measurement of their complexity because it reflects the accumulated

effort to achieve the conclusion of a theorem.

It is worth mentioning two interesting theorems with certain complex-

ity in the graph library. The first one is reachable_by_idempotent in sub-

graph2.v.

Lemma reachable_by_idempotent:

forall (g: PreGraph V E) (P: V -> Prop) (n: V),

Same_set (reachable_by g n P)

(reachable_by g n (reachable_by g n P)).

The relation Same_set P Q is just a shortcut of forall x, P x <-> Q x. So

the theorem says that for any vertex n in a graph g and any vertex property

P, the following two statements are equivalent:

1. A vertex v is reachable from n and each vertex in the reaching path

from n to v satisfies P.

2. A vertex v is reachable from n and any vertex m in the reaching path

from n to v is also reachable from n, and each vertex in the reaching

path from n to m satisfies P.

This theorem looks obviously true, but its formal proof is surpris-

ingly complicated. Figure 3.11 gives a dependency graph of this theo-

rem. Each vertex represents a theorem and each directed edge from a
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Figure 3.11: Dependency Graph of reachable_by_idempotent

to b means that theorem a depends on theorem b. The leftmost node is

reachable_by_idempotent. There are 52 vertices in total. From the fig-

ure, it only cites 4 theorems directly. The largest number of dependencies

comes via the red node, which represents the following theorem:

Lemma reachable_partialgraph_reachable_equiv:

forall (g: PreGraph V E) (P: V -> Prop) (n: V),

Included (reachable g n) P ->

Same_set (reachable g n)

(reachable (predicate_partialgraph g P) n).

It says that if reachable g n can be inferred from the property P, then the

property “reachable from n in graph g” is the same as “reachable from n in

a partial graph which only contains nodes satisfying P”.

The other interesting theorem is reachable_by_decidable:

Lemma reachable_by_decidable: forall (G: PreGraph V E)

{is_null: DecidablePred V} {MA: MathGraph G is_null}

{LF: LocalFiniteGraph G} (p : DecidablePred V) x,
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{vvalid G x} + {~ vvalid G x} ->

EnumCovered V (reachable G x) -> ReachDecidable G x p.

The predicates involved in this theorem is listed as follows:

Definition EnumCovered U (A: Ensemble U) :=

{l: list U | NoDup l /\ forall x, A x -> In x l}.

Definition ReachDecidable (g: PreGraph V E)

(x : V) (P : V -> Prop) :=

forall y, Decidable (g |= x ~o~> y satisfying P).

Here EnumCovered is a weakened version of Enumerable: the list provided in

EnumCovered contains all x satisfying A but it may contain other extraneous

elements. So the only information it provides is that the number of ele-

ments satisfying A is finite. The proposition ReachDecidable gx P means

there is a decision procedure to judge whether any vertex y is reachable

from x in g along a path in which each vertex satisfies P. The whole the-

orem reachable_by_decidable says that in a PreGraph G satisfying both

MathGraph and LocalFiniteGraph, for any vertex x, if the vertices reachable

from x are finite, then we can judge whether a certain vertex is reachable

from x.

The proof of this theorem is highly nontrivial but the idea is still simple.

Since G is LocalFiniteGraph, we can always find all neighbors of a certain

vertex v. Since G is MathGraph, we can always remove the null vertices

from those neighbors. The remaining vertices are all valid. According

the two clues here, we wrote a Breadth-First-Search program to find all

vertices reachable from x. Since there are finitely many reachable nodes,

this program must terminate. We proved that the program is correctly

implemented. So the decision procedure just compares the vertex with all

reachable vertices found by the BFS program.

Figure 3.12 gives a dependency graph of this theorem. The topmost

74



Figure 3.12: Dependency Graph of reachable_by_decidable

node represents reachable_by_decidable. It contains 67 supporting theo-

rems beneath it. The red node represents a key theorem in proving it. It

is named finite_reachable_computable’:

Lemma finite_reachable_computable’: forall (G: PreGraph V E)

{is_null: DecidablePred V} {MA: MathGraph G is_null}

{LF: LocalFiniteGraph G} x

(X: EnumCovered V (reachable G x)) l’, vvalid G x ->

l’ = construct_reachable

(length (proj1_sig X), x :: nil, @nil V) ->

reachable_list G x l’ /\ NoDup l’.

Here the function construct_reachable is the BFS program. We use the

technique called well-founded recursion discussed in §2.3 to finish its def-

inition. The predicate reachable_list means the list l’ contains exactly

all the vertices reachable from x, and nothing more. This theorem basically

says that the result l’ produced by the function is the reachable set from
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vertex x. It is indeed a complicated proof because the number of directly

supporting theorems reaches 14 already in Figure 3.12.

3.3 Related Work

Other people have also tried to develop mechanized graph libraries, and

here we provide a literature review.

The most famous graph related theorem which has been mechanically

verified is the four-color theorem: Any planar map can be colored with only

four colors. In 2004, Georges Gonthier formalized a proof of the theorem

[Gonthier, 2008] inside Coq. It is very easy and natural to rephrase the

problem in graph theory: by taking regions as nodes and connecting each

pair of adjacent regions as edges, coloring the map is equivalent to coloring

the graph obtained. However, they used a different kind of combinatorial

structure, known as hypermaps, instead of graphs. Basically, a hypermap

is a type “dart” with several functions mapping dart to dart. The com-

binatorial and geometrical properties are encoded as certain permutation

properties of those functions. It is a substantially different structure from

graph. So their formal library provides little inspiration.

Lars Noschinski built a formalized graph library for the Isabelle/HOL

proof assistant and verified a method of checking Kuratowski subgraphs

used in the LEDA library. It supports general infinite directed graphs with

labeled and parallel arcs [Noschinski, 2015a]. His definition of graph is

similar to our PreGraph except he uses vertex/edge set instead of validity

functions. Besides, Noschinski’s library also covers basic graph related

concepts such as reachable component and spanning tree.

Benedikt Nordhoff and Peter Lammich formalized and proved Dijkstra’s

algorithm in Isabelle [Nordhoff and Lammich, 2012]. Their graph is defined

as vertex and edge sets where the edge is a triple (source, label, destination).

76



They only defined what they needed for the algorithm, and so their work

does not lend itself to reuse.

Working in HOL, Wai Wong expressed a small portion of the conven-

tional graph theory, which is mainly used to model the railway track net-

work and applied in signaling systems [Wong, 1991]. It does not contain

many graph property-related theorems.

Ching-Tsun Chou formalized theory of undirected graphs in HOL that

emphasizes the notion and important properties of trees [Chou, 1994]. He

applied this library to verify a distributed algorithm named PIF (Propaga-

tion of Information with Feedback) [Chou, 1995].

Jean Duprat formalized graph in an inductive way in Coq [Duprat,

2001]. Only some basic properties are proved in it. To our knowledge, no

application is built on it.

In the work of Mitsuharu Yamamoto et al., a formalization of planar

graph is inductively defined in HOL [Yamamoto et al., 1995]. They use it

to prove Euler’s formula as an application. Tetsuo Tamai tackled the same

problem [Tamai, 2000]. But his purpose was just giving a formal specifica-

tion in CafeOBJ, so this graph library only contains formal definitions.

In 1998, Mitsuharu Yamamoto et al. formalized directed graph based

on Wong’s work [Yamamoto et al., 1998]. They proved the correctness of

the abstract A* algorithm based on graph and semi-lattice.

NASA’s graph theory library is written in PVS (Prototype Verification

System) [Butler and Sjogren, 1998]. It is restricted to finite graphs only

and does not support multi-edge graphs. They use the library to prove

Ramsey’s Theorem and Menger’s Theorem.

Gertrud Bauer and Tobias Nipkow inherited the inductive approach

of Mitsuharu Yamamoto et al. for the formalization of planar graph the-

ory. They formally proved the five-color theorem using graph theory and

triangulations [Bauer and Nipkow, 2002].
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In the work of Tobias Nipkow et al., a finite, undirected, planar graph is

formalized as a list of faces and faces as lists of vertices [Nipkow et al., 2006].

That library is mainly used to prove the completeness of the enumeration

of tame graphs. This is the first step of Thomas Hales’ proof of Kepler

Conjecture [Hales et al., 2017].

Tom Ridge also mechanized graphs and trees in Isabelle/HOL [Ridge,

2005]. It is close to Wong’s work [Wong, 1991] with the following difference:

the edges are represented as sets of vertices instead of atomic objects.

In 2015, Lars Noschinski presented a graph library in Isabelle/HOL

to reason about graphs and implemented a verified decision procedure for

combinatorial planarity of graphs [Noschinski, 2015b]. In this thesis, he also

verified checkers for both the planarity and the non-planarity certificates

emitted by the LEDA library. Both the implementation and verification of

the checker are written in the abstract language of AutoCorres.

In 2015, Dubois et al. [2015] proposed a formalization of graphs without

multiple edges. A formally verified auditor was developed to certify the

result of a function that calculates a maximum cardinality matching. The

executable code of the auditor is extracted from Coq directly.

Sergey et al. [2015] proposed a formal framework which is also embedded

in Coq for mechanized verification of full functional correctness of fine-

grained concurrent programs through Hoare-style reasoning. To deal with

the possible interactions between concurrent threads on shared resources,

they employed a state-transition system called concurroid as the base of

their specification model. In one of the examples in the paper, they also

defined a spatial graph as a predicate about the shared heap part of a

concurroid. A graph is described as a bunch of pointers which are connected

through pointing to each other. This definition, which does not rely on a

particular mathematical graph, has advantages in reasoning but also loses

some expressiveness.
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Chapter 4

Spatial Representation and

Inference

The formalization of mathematical graph theory is just the beginning of

the story. Our goal, which sets us apart from many other purely-formal

graph libraries discussed in §3.3, is to verify real graph-manipulating pro-

grams. So the ability to represent a graph in the memory model is a natural

requirement. We discuss our effort and final decision in finding a proper

representation in §4.1. In §4.2 we show our Localize rule, an improvement

of the Ramify rule introduced in §2.1.3. It is a very powerful inference rule

to reason about the global consequences of local actions on data structures

like graphs. We pack the concepts in constructing spatial representations

of graphs, the theorems about this Localize rule, the infrastructure to

adapt to the formal library of separation logic in MSL [Appel et al., 2014],

and some common ramification theorems which are premises of the Lo-

calize rule together to form a library about spatial graphs. We discuss

the concrete organization of this library in §4.3.

It should be noted that our spatial library does not include concrete

settings or theorems for special kinds of graphs in certain programs. But if

a concept or theorem is applicable for multiple programs, we will classify
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it to the spatial library to achieve good modularity.

4.1 Definitions of Spatial Graph Predicates

The function of the spatial representation of a graph is twofold. One is to

precisely describe the data layout in the memory and the other is to build

a bridge connecting the abstract mathematical graph with the concrete

data structure in the memory. A program can be seen as a sequence of

actions on data structures and our verification is a proof of certain propo-

sitions about the consequence of manipulations on mathematical graphs.

There is a gap between actions on data structures and manipulations on

graphs. The spatial representation fills this gap, and so its role is cru-

cial. We use it to reflect manipulations on graphs from actions on data

structures. In §4.1.1 we show that the most obvious recursive definition of

spatial representations, inspired by classical examples in separation logic,

is inadequate. In §4.1.2 we give a flat spatial representation of graphs used

in all our verification projects.

4.1.1 Flaw of recursive definitions

It is not a fresh new idea at all to introduce mathematical entities into spa-

tial representations. In two papers about separation logic [O’Hearn et al.,

2001; O’Hearn, 2012], that both aim to give a more precise specification of

a tree copy program, the spatial representation of a binary tree is defined

recursively as a predicate with an additional parameter, the mathematical

tree τ :

tree(x, τ) def
= (x = 0 ∧ isatom(τ) ∧ emp) ∨(

∃ l, r, τ1, τ2. τ = 〈τ1, τ2〉 ∧

(x 7→ l, r) ∗ tree(l, τ1) ∗ tree(r, τ2)
) (4.1)
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Here x 7→ l, r means x points to two adjacent memory locations which hold

values l and r. It can be seen as a shorthand of x 7→ l ∗ (x+ 1) 7→ r. The

pair l, r can be even extended to arbitrary tuples. In definition (4.1), the

mathematical tree τ is defined as an expression to encode the shape of a

binary tree. It is either an atom or a pair of tree encodings. For example,

〈atom, 〈〈atom, atom〉, atom〉〉 is a valid encoding. We can see that τ describes

the shape precisely. The other parts of (4.1) are self-evident. A tree(x, τ)

is either an emp or (x 7→ l, r) ∗ tree(l, τ1) ∗ tree(r, τ2) where τ1 and τ2 are

the left and right subtrees of τ . If τ1 is atom then a must be null pointer

and tree(l, τ1) must be emp. Otherwise tree(l, τ1) can be further expanded

like tree(x, τ), and so on. Thus the data layout matches τ (the shape of a

tree) exactly. In the verification of a tree copy program, the precondition

is tree(x, τ) and the postcondition is tree(x, τ) ∗ tree(y, τ). The same τ in

the specification indicates that the program creates a exact clone of the

original tree, not an arbitrary shaped tree.

Figure 4.1: A Binary Tree and a Binary Graph

When it turns to graph, things become more complicated. If we restrict

the number of out edges to at most two, we get a special kind of graph

which can be called binary graph, just like binary tree. Figure 4.1 is an

illustration of a binary tree on the left and a binary graph on the right.

From the figure we can clearly figure out the key difference between a tree

and a graph. For a binary tree, its left branch and right branch are disjoint.
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So we can use ∗ to separate them in definition (4.1). But for a typical binary

graph in Figure 4.1, its left branch and right branch are overlapped. So

the separating conjunction is not applicable here if we want to define a

similar recursive predicate. According to Reynolds [2003], Richard Bornat

proposed a new connective ∪∗ called the “relevance conjunction” to address

this situation. Hobor and Villard [2013] exploited this concept further.

They named ∪∗ the overlapping conjunction whose formal definition is:

h |= P ∪∗ Q def
= ∃ h1, h2, h3, h12, h23 s.t. h1 ⊕ h2 = h12 ∧

h2 ⊕ h3 = h23 ∧ h12 ⊕ h3 = h ∧ h12 |= P ∧ h23 |= Q

(4.2)

As illustrated in Figure 4.2, an assertion P ∪∗Q is true of a heap if it can be

split into three disjoint heaplets h1, h2 and h3. The heap joined by first two

heaplets h1 and h2 makes P true and the heap joined by last two heaplets

h2 and h3 makes Q true. In other words, the heaps on which P and Q

holds have an unspecified shared portion.

h1 h2 h3

P
Q

P ∪∗ Q

Figure 4.2: Overlapping Conjunction

With the help of overlapping conjunction ∪∗, it is possible to define the

spatial representation of a graph recursively. Consider the following data

structure written in C. It is used in a graph marking program:

struct Node {int m; struct Node* l; struct Node* r;}; (4.3)

It is the same as the standard binary tree structure. However, the pointers

l and r can point to the same piece of memory. So this data structure

82



can represent a binary graph. In fact, this binary graph also satisfies two

additional graph predicates discussed in §3.1.5: MathGraph and BiGraph.

It satisfies BiGraph because it has exactly two out edges and it satisfies

MathGraph because the pointers l and r could be null. Hobor and Villard

[2013] defined the following spatial predicate (a predicate on some part of

the memory) for this data structure of a binary graph:

graph(x, γ) def
= (x = 0 ∧ emp) ∨(

∃m, l, r, s.t. γ(x) = (m, l, r) ∧

x 7→ m, l, r ∪∗ graph(l, γ) ∪∗ graph(r, γ)
) (4.4)

Here γ is a mathematical graph. Besides the distinction between ∗ and ∪∗,

there are several other differences between definition (4.1) and (4.4). It is

also overloaded to represent a function γ(x), which provides information

(vertex label: m, destinations of left edge: l, and destinations of right edge:

r) for a vertex x in graph γ. Unlike the τ in (4.1), γ used in (4.4) contains

not only the shape information but also the data field stored in each Node.

Another difference is that the recursive part in definition (4.4) such as

graph(l, γ) still has the whole γ as its parameter but tree(l, τ1) only uses the

left branch τ1. This is because a graph is a structure with intrinsic sharing.

It is difficult and unnecessary to use the left and right parts of the graph

as the parameters. The two parts provides no information: they may have

common vertices and edges or even worse, they could be the same. It is

more clear to use γ consistently. Because of this difference, the semantics of

tree(x, τ) and graph(x, γ) are different. The predicate tree(x, τ) is a spatial

representation of the whole tree τ but from the definition graph(x, γ) is just

a spatial representation of the reachable part from vertex x of the graph γ.

Initially we construct a recursive predicate according to definition (4.4)

through Tarski’s fixed-point mechanism mentioned in §2.4.2. However, we
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41 100 0

100 101 102

Figure 4.3: A Self-Pointing Graph

soon found that the result is hard to use. Consider the memory m which

is composed of three heaplets illustrated in Figure 4.3. Clearly we have

m |= 100 7→ 41, 100, 0. It is also clear that this memory represents a one-

vertex cyclic graph, i.e. graph(100, γ̂) where γ̂(100) = (41, 100, 0). In other

words, we should be able to prove m |= graph(100, γ̂) from the hypothesis

m |= 100 7→ 41, 100, 0. We can use backward reasoning to explore this

proof goal.

We will shortly be using so-called “backwards reasoning” and so will

briefly digress to review it here. Ordinarily a forward proof starts from the

hypotheses, performs some manipulations, and reaches the conclusion. But

backward reasoning starts from the conclusion, collects what would imply

the conclusion, attempts to make the goal look more like the hypotheses

or some known results. For example, suppose the hypothesis is A, the

conclusion is C and there are two known theorems: A → B and B ↔ C.

In forward reasoning, we start from A, use A → B to get B first. Then

we use B ↔ C to get the conclusion C. While in backward reasoning, we

start from C. Since we have B ↔ C, we can change the current proof goal

to B. The reason is that if we can prove B, then immediately we can get

C by using B ↔ C. This step can be seen as the backward application of

B ↔ C. Now for the goal B, we can backwardly apply A → B to change

the goal to A. A is the hypothesis, so the proof is complete.

In our case, the current goal is the conclusion m |= graph(100, γ̂). We
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can unfold graph according to definition (4.4). The proof goal becomes

m |= (100 = 0 ∧ emp) ∨
(
∃m, l, r, s.t. γ̂(100) = (a, l, r) ∧

100 7→ a, l, r ∪∗ graph(l, γ̂) ∪∗ graph(r, γ̂)
)
.

For goal like m |= A ∨ B, either m |= A or m |= B could imply it. It is

impossible to prove 100 = 0, so the only choice is the right branch. We

know that γ̂(100) = (41, 100, 0). So the existential variables a, l, r must be

41, 100, 0. So the current proof goal becomes

m |= γ̂(100) = (41, 100, 0) ∧

100 7→ 41, 100, 0 ∪∗ graph(100, γ̂) ∪∗ graph(0, γ̂).

For proof goal like m |= A∧B, we need to prove both m |= A and m |= B

to imply it. In our case, we know that γ̂(100) = (41, 100, 0) and it is a

pure proposition. So no matter what m is, m |= γ̂(100) = (41, 100, 0) is

always true. For the other branch, according to definition (4.4) we know

graph(0, γ̂) = emp and we proved P ∪∗ emp = P . So the proof goal becomes

m |= 100 7→ 41, 100, 0 ∪∗ graph(100, γ̂).

Recall the definition of ∪∗ in (4.2). We can unfold ∪∗ to get the new proof

goal as follows:

∃ h1, h2, h3, h12, h23 s.t. h1 ⊕ h2 = h12 ∧ h2 ⊕ h3 = h23 ∧ h12 ⊕ h3 = h ∧

h12 |= 100 7→ 41, 100, 0 ∧ h23 |= graph(100, γ̂).

Obviously 100 7→ 41, 100, 0 and graph(100, γ̂) overlap completely. This

means h1 and h3 are the null heap and h2 is m. In such a situation h12

and h23 are both m and all joining relations with the form p ⊕ q = r are
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satisfied. The remaining current proof goal is

m |= 100 7→ 41, 100, 0 ∧m |= graph(100, γ̂).

For goal like A ∧ B, we need to prove A and B respectively to imply

it. m |= 100 7→ 41, 100, 0 is exactly the hypothesis. So it is done. The

remaining current proof goal is

m |= graph(100, γ̂).

But this is the conclusion we wanted to prove at the very beginning! Each

step of our backward reasoning is solid and looks reasonable. But we have

taken a useless detour and hit a dead end. This is partially because the

expansion of the recursive part does not interact well with ∪∗. If the expan-

sion is about ∗, we could get a strictly smaller sub-heap. Then an induction

on the finite memory would prove what we want. Unfortunately the over-

lapping conjunction ∪∗ does not have the “strictly smaller” property.

In fact we do not know whether it is possible to provem |= graph(100, γ̂)

from m |= 100 7→ 41, 100, 0. However, the difficulty encountered in proving

such an “obvious” entailment suggests that it may not be a good idea to

define spatial predicates for graphs recursively.

4.1.2 Flat representations of graphs

… … … … … … …

Figure 4.4: Graph Vertices in a Heap

Figure 4.4 illustrates how vertices of a binary graph could be distributed
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in a heap. Each vertex could be thought as a struct Node defined in (4.3).

The dark gray parts are data fields and the lights gray parts are pointer

fields. The arrows in the figure show how these vertices are connected.

There are at most two arrows from each node. From the viewpoint of the

heap, the graph is flattened as a series of its individual vertices.

Inspired by Figure 4.4 we could define the spatial representation of

a graph as a list of vertex representations separated by ∗. This is not

a recursive definition and it does not need ∪∗ anymore. This idea is not

original to us. Sergey et al. [2015] have defined graphs in separation logic

in a similar way. The difference is that their definition does not contain a

mathematical graph so its expressiveness is limited.

Before giving a formal definition of the spatial predicate of a graph, we

need to define a more general concept: the iterated separating conjunction

or “big star” over a list:

∗P
{l1,...,ln}

def
= P (l1) ∗ P (l2) ∗ · · · ∗ P (ln). (4.5)

In our spatial library, the big star is formalized and named iter_sepcon:

Fixpoint iter_sepcon (l: list B) (p: B -> A): A :=

match l with

| nil => emp

| x :: xl => p x * iter_sepcon xl p

end.

This is a normal recursive definition over the list l. Since the list always

has a finite length, the expansion will always terminate. In the definition, B

is an arbitrary type without any restriction to achieve the most generality.

By contrast, type A must be an instance of two type classes NatDed and

SepLog defined in MSL. The NatDed contains natural deduction laws and

SepLog contains the notation of ∗, emp, and related laws in separation
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logic. In other words, A must be the type of spatial predicates in separation

logic. The notation * used in iter_sepcon is exactly the familiar separating

conjunction ∗ and the emp is exactly the empty-heap assertion emp.

We further extend the “big star” to arbitrary predicate S, not a list:

∗
S

P
def
= ∃L . (∀x . x inL↔ S(x)) ∧ (NoDup L) ∧∗

L

P (4.6)

The formal definition in Coq is almost the same as (4.6):

Definition pred_sepcon (P: B -> Prop) (p: B -> A): A :=

EX l: list B, !! (forall x, In x l <-> P x) &&

!! NoDup l && iter_sepcon l p.

Here we need to explain the notations used in the definition above. Com-

pared with (4.6), the notation EX should mean the existential quantifier ∃

and && should mean the conjunction ∧. They are different from the stan-

dard keyword exists and notation /\ used in Coq. This is because, in the

formalization of separation logic in MSL, separation logic is provided as a

formal system (or, a logic) to seal the rather intricate underlying model.

To distinguish this formal logic from the meta logic of Coq, MSL provides

a set of new notations such as EX, && and related laws, like “entails” `, a

high-level version of implication → defined in (2.4). In fact, the type of

propositions in meta logic of Coq is Prop but the type of spatial predicates,

A, can be thought of as memory → Prop. In this sense the formalized sepa-

ration logic is a high-order logic. The propositions of type Prop are called

pure. In comparison, the propositions of type A in high-order separation

logic are called spatial. If we want to present a pure proposition P in spa-

tial propositions, we need to use another notation !! to “lift” it to type

A, just like (forall x, In x l <-> P x) and NoDup l in the definition of

pred_sepcon.

Now we are ready to give the spatial representation of a graph via
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a series of vertex representations. The vertex information function γ(x)

appeared in definition (4.4) is quite useful here. For a vertex v in graph γ,

its vertex representation could simply be v 7→ γ(v) if v is also a memory

location. Roughly speaking, we can define the spatial predicate for a binary

graph starting from x as follows:

graph(x, γ) def
= ∗
reachable γ x v

v 7→ γ(v) (4.7)

where reachable is the predicate about reachability defined in Figure 3.3.

Recall that reachable γ x y means vertex y is reachable from x in graph

γ. So graph(x, γ) represents the reachable part of γ from x in memory.

Furthermore, the graph γ here is not necessary a binary graph. For graphs

with unspecified number of out edges, we can define other information

functions γ(x) accordingly. Thus the spatial predicate graph(x, γ) defined

in (4.7) can be a generic definition of spatial representation of graphs which

have a “starting point”.

Our definition of graph(x, γ) is flat, in that we cannot follow the link

structure recursively via any obvious way. However, we successfully proved

a general recursive fold/unfold theorem when x 7→ γ(x) and the mathemat-

ical graph γ have certain necessary properties:

graph(x, γ) a` x 7→ γ(x) ∪∗
(∪∗

n∈neighbors(γ,x)
graph(n, γ)

)
(4.8)

∪∗
l1,l2,...,ln

P
def
= P (l1) ∪∗ P (l2) ∪∗ · · · ∪∗ P (ln) (4.9)

The proof of (4.8) can be split into two directions. The “`” direction

is not very hard, but the “a” direction demands special care. The major

obstacle is that if two vertex predicates x 7→ γ(x) and y 7→ γ(y) are partially

overlapped, i.e. some—but not all–of x’s memory cells are shared with y’s,

then the ∗ on the left hand side of a cannot separate them. To avoid
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such a situation we require that the spatial predicate x 7→ γ(x) be precise

and joinable whose definitions are listed below.

preciseP def
= ∀h, h1, h2 . h1 |= P → h2 |= P → (∃h′1 . h1 ⊕ h′1 = h) →

(∃h′2 . h2 ⊕ h′2 = h) → h1 = h2 (4.10)

joinableP def
= ∀x, y . x 6= y → P (x) ∪∗ P (y) ` P (x) ∗ P (y) (4.11)

The definition of preciseP means that if P is satisfied on a sub-heap, that

sub-heap must be unique. The definition of joinableP means that for dif-

ferent arguments x and y, the spatial predicates P (x) and P (y) do not

interfere at all. In a Java-like memory model this property is always true

because pointers in such a model always point to the root/beginning of an

object. In contrast, in a C-like memory model, this property is not always

satisfied because pointers can point anywhere. In such a model, the joinable

property is most easily enforced by storing graph vertices at addresses that

are multiples of an appropriate size.

However, a graph with a “starting point” like graph(x, γ) is only one

special case of possible graph representations. In real programs, the graph

involved may not be limited to the reachable component of a certain ver-

tex. To handle various possible graph representations in memory, we build

a framework for all such pointwise representations and remain the possi-

bility to support other forms such as an array. It is an intermediate layer

to connect our mathematical graph library discussed in §3 and the sepa-

ration logic library in MSL. It not only provides necessary infrastructure

and interfaces to build customized spatial predicates for different graphs in

various programs but also proves many spatial theorems under the assump-

tions of those interfaces. Once the interfaces are implemented in different

applications, those theorems can be applied directly.

Figure 4.5 illustrates the interfaces in the spatial graph library and the
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Math Graph Library Separation Logic Library

Concepts in Spatial Graph Library

Theorems in Spatial Graph Library

Application

Figure 4.5: Interfaces of the Spatial Graph Library

relations to other libraries. The gadget represents the interfaces and

another gadget represents implementations of certain interfaces. In the

verification of concrete programs, all interfaces must have implementations.

Otherwise the concepts and theorems in the library would have the unim-

plemented interfaces as additional parameters and hypotheses respectively.

We design so many interfaces in the spatial graph library because we want

to make it relatively independent from concrete memory models and par-

ticular definitions of graphs. It is a loosely coupled design. At the same

time, as we can see in Figure 4.5, many interfaces have corresponding im-

plementations in other libraries already. When we use this library, only a

few interfaces need to be implemented for each program. They are about

the unique features of graphs which are hard to estimate and account for

until we embark on a concrete verification. Such a design achieves a good

balance between independence and usability of the spatial graph library.

The interfaces are formulated as a set of layered type classes in Coq, in

the file msl_applications/Graph.v:

Class PointwiseGraph (V E: Type) (GV GE: Type): Type...

Class PointwiseGraphPred (V E GV GE Pred: Type): Type...

Class PointwiseGraphBasicAssum (V E: Type): Type...

Class PointwiseGraphAssum {V E GV GE Pred: Type}

(SGP: PointwiseGraphPred V E GV GE Pred)
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{SGBA: PointwiseGraphBasicAssum V E}: Type...

Class PointwiseGraphAssum_vs {V E GV GE Pred: Type}

(SGP: PointwiseGraphPred V E GV GE Pred)

{SGBA: PointwiseGraphBasicAssum V E}

{SGA: PointwiseGraphAssum SGP}: Type...

Class PointwiseGraphAssum_vn...

Class ...

Correspondingly, the implementations of interfaces are formulated as in-

stances of type classes. In these type classes, the latter ones take for-

mer ones as parameters. The graph information function γ(x) is named

vgamma in PointwiseGraph. The vertex representation v 7→ γ(v) is named

vertex_at in PointwiseGraphPred. The instances of these two classes are

application-dependent. The elements in PointwiseGraphBasicAssum have

instances in the math graph library. The elements in PointwiseGraphAssum

have instances in MSL. Other classes contain spatial properties of vertex

representations, intermediate constructions to help build γ(x), etc.

We can take the binary graph defined through struct Node in (4.3) as

an example to see how to define a spatial predicate of a graph formally

in Coq. Other spatial predicates used in our verification will be discussed

in §5. In Figure 4.5 we can see there are gaps (unimplemented interfaces)

for applications in the mathematical graph library. Our first step is fill-

ing those gaps, i.e. determining the types of vertices, edges, labels and the

soundness condition of a graph. To be more specific, we need to provide

the parameters Vertex, Edge for PreGraph; DV, DE, DG for LabeledGraph; and

Sound for GeneralGraph. Since we will use the spatial predicate in the ver-

ification of C programs, it is better to instantiate the type of vertices as

pointers in C. Here we use pointer_val—the formalized C pointer—defined

in another external library called Verified Software Toolchain (VST) as the

92



type Vertex. VST, which is build upon MSL, provides a program logic

for the C programming language. The higher-order impredicative separa-

tion logic given in VST is proved sound with respect to the operational

semantics of CompCert C. CompCert and VST will be discussed further

in §5. Table 4.1 gives all determined types for the binary graph. The

Vertex Edge DV DE DG Sound
point_val point_val * LR bool unit unit BiMaFin

Table 4.1: Instantiated Types of a Binary Graph

definitions of LR and BiMaFin were introduced in §3.1.5. Any vertex v of

type point_val has two out edges: (v, L) and (v, R). Recall that the type

class BiGraph contained in BiMaFin requires two additional parameters to

derive the only two out edges from a certain vertex. It is the type of edge

that makes the definitions of these two parameters possible. The type unit

of edge labels and global labels can be seen as just a placeholder because

there is no information attached to edges or the whole graph in this case.

Besides the pointers, there is data field m of int in struct Node. Since the

graph is used in a marking algorithm, m has only two possible values: 0 for

“unmarked” and 1 for “marked”. So we use bool for vertex labels.

The second step is define the graph information function γ(x). It is

defined as the following function in Coq:

γ(x)
def
=
(
vlabel γ x, dst γ (x, L), dst γ (x, R)

)
(4.12)

In this definition, dst γ (x, L) and dst γ (x, R) are the destination of x’s left

and right edges respectively. The vlabel γ x is the label of vertex x. This

function returns a triple.

The third and last step is defining the vertex representation x 7→ γ(x).

It is defined as the function trinode in Figure 4.6. This definition em-

ploys data_at π τ v p defined in VST to represent p 7→ v with read/write
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Definition trinode (sh: share) p dlr: mpred :=

match dlr with | (d, l, r) => data_at sh node_type

(Vint (Int.repr (if d then 1 else 0)),

(pointer_val_val l, pointer_val_val r))

(pointer_val_val p)

end.

Figure 4.6: Coq Definition of x 7→ γ(x) for a Binary Graph

permission π. The τ is the type of v. It is used to calculate the size and

memory layout. The parameter sh is the permission π. The mpred is the

type of the spatial predicate in VST. It is an instance of NatDed and SepLog.

Recall that we assumed a type A in the definition of iter_sepcon in our

spatial graph library. When the library is used with VST, A is instantiated

as mpred, just like the situation illustrated in Figure 4.5. The function

pointer_val_val converts the pointer to the generic value type in C. The

node_type actually represent the type struct Node in C. It will discussed

further in §5. The most interesting part is treatment of vertex label d of

type bool. It is encoded into integer C type in the vertex representation.

It should be noted that sometimes the step 2 and 3 can be combined.

Once all three steps are done, we immediately get the spatial predicate

of the binary graph reachable_vertices_at x γ through a series of pre-

defined functions listed below: These four definitions are fixed and many

theorems about them are proved in the spatial graph library. For different

applications with pointwise graph layout, we only need to finish the three

steps before to fill the gaps. Then we get a whole toolkit for the concrete

application for free.
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Definition graph_vcell (g: Graph) (v : V) : Pred :=

vertex_at v (vgamma g v).

Definition vertices_at (P: V -> Prop) (g: Graph): Pred :=

pred_sepcon P (graph_vcell g).

Definition reachable_vertices_at (x : V) (g: Graph): Pred :=

vertices_at (reachable g x) g.

Definition full_vertices_at (g: Graph): Pred :=

vertices_at (vvalid g) g.

Figure 4.7: Generic Definitions for Spatial Representations of a Graph

4.2 Localize Rule and Spatial Inference

After defining the spatial predicates which can accurately describe the

memory layout of graphs, it is convenient to use them in verification of

programs, which is basically an inference based on the change of shapes

of graphs. However, in the mechanized context we found that the Ram-

ify rule in (2.5) is inadequate, especially in handling modified program

variables and existential variables in the postconditions. To conquer the

inadequacy of the Ramify rule, we propose a new inference rule called Lo-

calize rule and develop a notion of localization block that enables modular

reasoning by using this rule in §4.2.1. Furthermore, we show that our Lo-

calize rule and the classic Frame rule are co-derivable. In §4.2.1 we

illustrate that the Localize rule can robustly handle modified local pro-

gram variables through a detailed example. In §4.2.3 we discussed how to

handle existential variables in the postconditions of localization blocks via

the Localize rule. The existential variables occur frequently when using

relations in specifications. The Localize rule and related theorems are

essential in the verification of graph-manipulating programs.

Handling modified program variables is not a new problem. Hobor and

Villard already realized that their Ramify rule is not applicable when
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its side condition is not satisfied, i.e. involving non-free modified program

variables [Hobor and Villard, 2013]. They proposed two solutions. One is

to use variables as resource by adding “variable contexts” to assertions in

Hoare logic [Bornat et al., 2006], which actually introduces extra complica-

tions. The other is making local program transformations which substitute

modified program variables with fresh new variables for once, and then

later substitute them back. Both solutions are sufficient and reasonable in

a pen-and-paper context, but are deficient in a mechanized context. When

we started to verify real programs with the existing toolset, we found that

neither of the two solutions is viable. Most mechanized verification systems

including VST do not use variables as resource, and further do not support

reasoning about program equivalence after local transformations [Beckert

et al., 2007; Distefano and Parkinson, 2008; Bengtson et al., 2012]. We

do not want to reinvent large wheels such as VST and CompCert, which

roughly contain about 840k lines of code. Our new Localize rule respects

these design decisions, and this makes it a more pragmatic solution when

it comes to integration into a large existing toolset.

4.2.1 Localize rule and localization blocks

Here we give our improved inference rule, the Localize rule:

Localize

{L1}C {∃x . L2} G1 ` L1 ∗R R ` ∀x . (L2 −−∗ G2)

{G1}C {∃x .G2}

where FreeVar(R) ∩ ModVar(C) = ∅

(4.13)

The Localize rule can be seen as an enhanced version of the Ramify rule

in (2.5), which connects the “local” effect of a piece of program C, i.e. from

L1 to ∃x . L2, with the “global” consequence, i.e. from G1 to ∃x .G2. The
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major differences from the Ramify rule are the existential variable ∃x in

postconditions and the ramification frame R as an extra level of indirection.

If L2 and G2 do not contain free occurrence of x and we set R = L2 −−∗ G2,

then the Localize rule degenerates to the Ramify rule. If we further let

Gi = Li ∗F (i = 1, 2) for some frame F which is untouched by C, then the

Localize rule further degenerates to the well-known Frame rule.

We formally proved that the Localize rule is sound in our spatial

graph library. Here we give a sketch proof to show that both rules are

co-derivable. There are two directions. We prove one direction first, from

Localize to Frame.

First, by introducing a fresh variable xf , we have the following entail-

ment by the Consequence rule discussed in §2.1.1 of Hoare logic:

{P}C {Q} Q ` ∃xf . Q

{P}C {∃xf . Q}
(4.14)

Secondly, from the definition of−−∗ in (2.2), it is easy to prove the tautology

F ` ∀xf .
(
Q −−∗ (Q ∗ F )

)
for a disjoint frame F . By combining this

tautology with the conclusion of (4.14), we can apply the Localize rule:

{P}C {∃xf . Q} P ∗ F ` P ∗ F F ` ∀xf .
(
Q −−∗ (Q ∗ F )

)
{P ∗ F}C {∃xf . (Q ∗ F )}

(4.15)

Thirdly, we can apply the Consequence rule again:

{P ∗ F}C {∃xf . (Q ∗ F )} ∃xf . (Q ∗ F ) ` Q ∗ F

{P ∗ F}C {Q ∗ F}
(4.16)

Thus, starting from {P}C {Q}, by using the Localize rule, we get the

conclusion of the Frame rule {P ∗F}C {Q∗F}. This finishes the proof of
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the direction from Localize to Frame. The side condition of the Frame

rule, FreeVar(F ) ∩ ModVar(C), is directly inherited from the side condition

required in (4.15) since we set R def
= F there.

To prove the other direction, we need to derive {G1}C {∃x .G2} from

three hypotheses: {L1}C {∃x . L2}, G1 ` L1 ∗ R, and R ` ∀x . (L2 −−∗ G2).

First, we can apply the Frame rule to {L1}C {∃x . L2}:

{L1}C {∃x . L2}

{L1 ∗R}C {(∃x . L2) ∗R}
(4.17)

Secondly, taking a little care with quantifiers, we can prove the tautology

(∃x . L2) ∗
(
∀x . (L2 −−∗ G2)

)
` ∃x .G2 according to (2.3) on page 23. By

combining this tautology together with the hypothesis R ` ∀x . (L2 −−∗ G2),

it is not difficult to make the following entailment:

R ` ∀x . (L2 −−∗ G2) (∃x . L2) ∗
(
∀x . (L2 −−∗ G2)

)
` ∃x .G2

(∃x . L2) ∗R ` ∃x .G2

(4.18)

Thirdly, we can apply the Consequence rule to the premise G1 ` L1 ∗R

and the conclusions of (4.17) and (4.18):

G1 ` L1 ∗R {L1 ∗R}C {(∃x . L2) ∗R} (∃x . L2) ∗R ` ∃x .G2

{G1}C {∃x .G2}

This finishes the proof of the direction from Frame to Localize. The side

condition of the Localize rule, FreeVar(R) ∩ ModVar(C) = ∅, is directly

inherited from the side condition required in (4.17). Since both directions

are proved, we establish the equivalence between the Localize rule and

the Frame rule, which means our Localize rule is sound in any separation

logic. Our feet are solidly planted on the ground.

To better illustrate the application of the Localize rule, we propose a
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1 // {G1}
2 // ↘ {L1}
3 ...; x = f(...); ...
4 // ↙ {∃x . L2}
5 // {∃x .G2}

Figure 4.8: A Typical Localization Block

notion called “localization blocks” appeared as comments before and after a

piece of code C instead of the inference rule in (4.13). A typical localization

block is shown in Figure 4.8. The existential quantifier ∃x in postconditions

is not always necessary since we have ∀P . (P a` ∃x . P ) when P does not

contain free x. We do not really insert {G1},↘ {L1}, etc., into the program

as comments. The localization block in Figure 4.8 just indicates that we are

applying the Localize rule to the Hoare triple {L1}C {∃x . L2} in order to

get {G1}C {∃x .G2}. It gives us an intuition that we are allowed to zoom

in from a larger “global” context {G1} to a smaller “local” one {L1}, and,

after verifying a program C locally and arriving at a local postcondition

{∃x . L2}, to zoom back out to the global context {∃x .G2}. If we want to

save vertical space, the context in Figure 4.8 can be written as {G1} ↘ {L1}

and {∃x .G2} ↙ {∃x . L2}.

Since the Localize rule has three hypotheses, there are two proof

obligations omitted in Figure 4.8 besides verifying {L1}C {∃x . L2}. They

will be discussed in §4.2.2 and §4.2.3 to demonstrate the power of the

Localize rule.

4.2.2 Handling modified program variables

Consider using the Localize rule to verify the code snippet in Figure 4.9:

Since the localization block is overkill for a single assignment, we can

suppose that the elided part in line 2 of the program makes it desirable.
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1 // {x = 5 ∧K} ↘ {x = 5 ∧ L}
2 ...; x = x + 1; ...
3 // {x = 6 ∧N} ↙ {x = 6 ∧M}

Figure 4.9: Verification of a Program Involving Assignment

We further assume that only x is modified in the Figure 4.9, none of K, L,

M , and N contains free x, and the local variable issue is the only problem

pending to be solved. In other words, we have K ` L ∗ (M −−∗ N) and the

Hoare triple {x = 5 ∧ L}...; x = x + 1; ...{x = 6 ∧M} holds.

To finish the whole entailment, i.e. the application of the Localize rule

(4.13) in Figure 4.9, we have to specify a proper R to prove the remaining

two proof obligations: G1 ` L1 ∗R and R ` L2 −−∗ G2. If we set R
def
= L2 −−∗

G2, then the latter obligation is trivial but the program variable x will

appear in all four places in the former entailment:

G1︷ ︸︸ ︷
(x = 5 ∧K) `

L1︷ ︸︸ ︷
(x = 5 ∧ L) ∗

( L2︷ ︸︸ ︷
(x = 6 ∧M) −−∗

G2︷ ︸︸ ︷
(x = 6 ∧N)

)
(4.19)

The side condition of the Localize rule, FreeVar(R) ∩ ModVar(C) = ∅

is not satisfied any more. In this case, since R = L2 −−∗ G2, we have

FreeVar(L2 −−∗ G2) = {x} and x is the modified variable in the code C.

To resolve the issue, we need a little trick to untangle the connection

between x and L2 −−∗ G2. First, we define L̂2(xf )
def
= (xf = 6 ∧M) and

Ĝ2(xf )
def
= (xf = 6 ∧N) where xf is a harmless fresh meta-variable which

replaces the troublesome program variable x in L2 and G2. Next, with this

carefully chose existential quantifier, we can still express the original L2

and isolate the troublesome program variable x. The decorated program is

then transformed into the new form in Figure 4.10.

We can further define L̃2(xf )
def
= (xf = x)∧ L̂2(xf ), i.e. (xf = x)∧ (xf =

6 ∧M) and similarly corresponding G̃2(xf ). Thus line 4 and 5 are exactly

in the form ∃xf . L̃2(xf ) and ∃xf . G̃2(xf ), which are both permitted by
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1 // {x = 5 ∧K} ↘ {x = 5 ∧ L}
2 ...; x = x + 1; ...;
3 // {x = 6 ∧M}
4 // ↙ {∃xf . (xf = x) ∧ (xf = 6 ∧M)}
5 // {∃xf . (xf = x) ∧ (xf = 6 ∧N)}}
6 // {x = 6 ∧N}}

Figure 4.10: Isolate Program Variable via a New Existential Variable

the Localize rule. Reasoning from line 3 to line 4 and from line 5 to

line 6 are trivial. After such a shift, the localization block in Figure 4.10

is still an application of the Localize rule. But this time we can set

R
def
= ∀xf . L̂2(xf ) −−∗ Ĝ2(xf ), i.e. ∀xf . (xf = 6 ∧M) −−∗ (xf = 6 ∧ N).

By construction, R is free from all program variables modified by the code

snippet, so the side condition of Localize is satisfied. Still we only need to

consider the rest two proof obligations, G1 ` L1∗R and R ` ∀x . (L̃2 −−∗ G̃2).

We can unfold the definition of L̃2 and G̃2 of the second one to get this:

(
∀xf . L̂2(xf ) −−∗Ĝ2(xf )

)
`

∀xf .
(
(xf = x) ∧ L̂2(xf )

)
−−∗
(
(xf = x) ∧ Ĝ2(xf )

)
This turns out to be just a verbose tautology which can be proved auto-

matically in Coq.

If we unfold the definition in the first obligation, it would look like:

(x = 5 ∧K) ` (x = 5 ∧ L) ∗
(
∀xf . (xf = 6 ∧M) −−∗ (xf = 6 ∧N)

)

This can be decomposed into a “variable-related” part (x = 5) ` (x =

5)∗
(
∀xf . (xf = 6) −−∗ (xf = 6)

)
, which is also an easily provable tautology,

and a “spatial” part K ` L ∗ (M −−∗ N), which is true by assumption.

With careful engineering, we made such modified-variable tricks fully

automatic in our spatial library. These details are completely hidden to

end-users. They only need to handle the spatial part K ` L ∗ (M −−∗ N)
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which actually captures the key action of the localization block. We call

the entailment of this form ramification entailment and theorems involving

it ramification theorems. Intuitively, K ` L ∗ (M −−∗ N) says that given a

large shapeK that contains a small shape L within it, we can change L into

a new small shape M . This substitution causes the large “global” shape to

become N . To solve these in practice, we observed some common patterns

and proved several generic ramification theorems which are discussed in

§4.3.

4.2.3 Handling existential variables

We have seen that the Localize rule can smoothly handle modified pro-

gram variables. However, there is another important application scenario in

which the Localize rule can play a central role. It is when we cannot pre-

cisely determine the value of a program variable but have to introduce the

existential variable anyway. Consider the localization block in Figure 4.11.

1 // {K} ↘ {L}
2 ...; x = rand();
3 if (is_prime(x)) y = 0; else y = 1; ...;
4 // ↙ {

(
x =? ∧ (y = 1 ∨ y = 0)

)
∗M}

5 // {
(
x =? ∧ (y = 1 ∨ y = 0)

)
∗N}

Figure 4.11: Non-Deterministic Behavior in a Code Snippet

Within the localization block in Figure 4.11 we call the function rand

which generates pseudo-random integers and use the program variable y

as a flag to keep track of whether the generated x is a prime number. We

make necessary assumptions just like §4.2.2 to ensure the program variable

issue with x and y is the only problem.

If we call the postconditions in line 4 and 5 as L2 and G2, then we

have a similar problem as in §4.2.2: the modified program variables x and
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y appeared in L2 and G2, which violates the side condition of Localize.

However, a more obvious and important problem is the question mark

“?” in line 4 and 5. Unlike §4.2.2, we do not know the concrete value

of x this time. In this sense L2 and G2 are not valid propositions at all.

The solution to this problem is the same as when solving the issue of the

modified program variable: introducing existential quantifiers.

We proceed as follows. First, we define L̂2(yf )
def
=
(
(yf = 1∨yf = 0)∗M

)
and Ĝ2(yf )

def
=
(
(yf = 1 ∨ yf = 0) ∗N

)
where yf is a harmless fresh meta-

variable which replaces the program variable y in L2 and G2. Next, we

further define L̃2(xf , yf )
def
= (xf = x ∧ yf = y) ∧ L̂2(yf ), i.e. (xf = x ∧ yf =

y)∧ (yf = 1∨ yf = 0) ∗M and similarly corresponding G̃2(xf , yf )
def
= (xf =

x ∧ yf = y) ∧ Ĝ2(yf ), i.e. (xf = x ∧ yf = y) ∧ (yf = 1 ∨ yf = 0) ∗N where

xf is another harmless fresh meta-variable which represents the unknown

value of the program variable x. Thus line 4 and 5 can be transformed

to the form ∃xf , yf . L̃2(xf , yf ) and ∃xf , yf . G̃2(xf , yf ), which is shown in

Figure 4.12.

1 // {K} ↘ {L}
2 ...; x = rand();
3 if (is_prime(x)) y = 0; else y = 1; ...;
4 // ↙ {∃xf , yf . (xf = x ∧ yf = y) ∧ (yf = 1 ∨ yf = 0) ∗M}
5 // {∃xf , yf . (xf = x ∧ yf = y) ∧ (yf = 1 ∨ yf = 0) ∗N}

Figure 4.12: Introducing Existential Quantifier in Postconditions

As an application of the Localize rule (4.13), we need to find an R

so that K ` L ∗ R and R ` ∀xf , yf .
(
L̃2(xf , yf ) −−∗ G̃2(xf , yf )

)
. This time

we can set R def
= ∀yf . L̂2(yf ) −−∗ Ĝ2(yf ). After unfolding, the first proof

obligation becomes

K ` L ∗ ∀yf .
(
(yf = 1 ∨ yf = 0) ∗M

)
−−∗
(
(yf = 1 ∨ yf = 0) ∗N

)

whose spatial part K ` L ∗ (M −−∗ N) is the assumption and the variable

103



related part emp ` emp ∗
(
∀yf . (yf = 1 ∨ yf = 0) −−∗ (yf = 1 ∨ yf = 0)

)
is

a tautology. For the second proof obligation, we unfold the definitions of

L̃2(xf , yf ) and G̃2(xf , yf ) to get the following:

(
∀yf . L̂2(yf ) −−∗ Ĝ2(yf )

)
` ∀xf , yf .

(
(xf = x ∧ yf = y) ∧ L̂2(yf )

)
−−∗(

(xf = x ∧ yf = y) ∧ Ĝ2(yf )
)
.

This turns out again to be a verbose tautology. Therefore we successfully

verify the localization block in Figure 4.12. In this case, the introduction

of yf is the same trick played in §4.2.2, but the introduction of xf can be

seen as a natural requirement proposed by the non-deterministic nature of

certain programs. Through this example we can see that the Localize

rule can handle it properly.

4.3 Library of Spatial Graph and Inference

In §4.1 we discussed our design decision about the spatial representation

of graphs and take binary graph as an example to show how to formally

define a spatial predicate by implementing the structural interfaces of the

spatial library. The definition of ∗ and various interfaces form the core

component in the spatial graph library. In §4.2 we demonstrate the ef-

fectiveness of our Localize rule which can smoothly handle the modified

program variables and existential quantifiers. The Localize rule is the

crucial inference rule to reason about the spatial properties in verifying

graph-manipulating programs through separation logic. So basically §4.1

explored the core concepts of the spatial library and §4.2 explained the

most critical theorem of the spatial library in great detail. As pointed out

in the beginning of this chapter, the spatial graph library also contains

the infrastructure to adapt the formal library of separation logic and some
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common ramification theorems which can ease the application of the Lo-

calize rule. In the rest of this chapter, we discuss these components from

the whole perspective.

4.3.1 Architecture of the spatial graph library

Theorems in Spatial Graph Library

Definitions including∗∪∗

Extended Logic Layer of Spatial Library

VST’s Step-Indexed Heap Model

Simple Direct Heap Model

VST’s
Separation

Logic
Layer

M
athem

aticalG
raph

Library

Figure 4.13: Architecture of the Spatial Graph Library

Figure 4.13 illustrates the overall architecture of our spatial graph li-

brary and its relations with the mathematical graph library and part of

the Verified Software Toolchain (VST). It can be seen as a more detailed

version of Figure 4.5. The three light green blocks together constitute the

spatial graph library. The two light yellow blocks belong to the VST. The

pink box is our mathematical graph library discussed in §3.

As pointed out in §4.1.2, we intend to have a loosely coupled design. To

be more specific, the relative independence of the spatial graph library is

achieved via logic layers that isolate the concrete heap models and various
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spatial predicates. VST constructs an unusually complex step-indexed heap

model to support an unusually rich program logic [Appel et al., 2014]. But

for representing spatial predicates and inference in separation logic, such a

complex model is not necessary. There is a component called Mechanized

Semantic Library (MSL) in VST which provides a separation logic layer.

Instead of giving definitions of ∗ and −−∗ such as (2.1) and (2.2), MSL gives

a set of logic rules about ∗ and −−∗ without touching the definitions of

them. Figure 4.14 gives several inference rules in separation logic. They are

SepconWand
P ∗Q ` R
P ` Q −−∗ R

WandSepcon
P ` Q −−∗ R
P ∗Q ` R

SepconDerives
P ` P ′ Q ` Q′

P ∗Q ` P ′ ∗Q′

SepconAssoc

(P ∗Q) ∗R a` P ∗ (Q ∗R)

SepconComm

P ∗Q a` Q ∗ P

Figure 4.14: Part of Inference Rules of Separation Logic

actually packed into a Coq class called SepLog provided in MSL. According

to the step-indexed heap model, VST also provides instances of SepLog,

which gives concrete definitions of ∗, −−∗ and proves that these inference

rules holds in their model. This is the only connection between the model

and separation logic in VST. All other separation logic related definitions

depend on the notations (e.g. emp, ∗, −−∗) provided in SepLog and all related

theorems are proved by using the inference rules in SepLog. They are

unaware of the concrete heap models.

Inspired by the logic layer in VST, we also gives our own logic layer to

accommodate the notations of ∪∗, precise, etc. and related inference rules.

We call this the extended logic layer because it relies on the separation

logic layer in VST, i.e. it also employs ∗ and −−∗. Figure 4.15 gives several

inference rules involving ∪∗ and precise. The graph fold/unfold theorem

(4.8) is proved according to these rules. We cannot dig into the model
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PreciseSepcon
preciseP preciseQ

precise (P ∗Q)

DerivesPrecise
P ` Q preciseQ

preciseP

AndOcon
P ∧Q
P ∪∗ Q

SepOcon
P ∗Q
P ∪∗ Q

OconDerives
P ` P ′ Q ` Q′

P ∪∗ Q ` P ′ ∪∗ Q′

PreciseOcon
preciseP preciseQ

precise (P ∪∗ Q)

OconAssoc

(P ∪∗ Q) ∪∗ R a` P ∪∗ (Q ∪∗ R)

OconComm

P ∪∗ Q a` Q ∪∗ P

OconWand

(R −−∗ P ) ∗ (R −−∗ Q) ∗R ` P ∪∗ Q

Figure 4.15: Part of Inference Rules in Extended Logic Layer

level by unfolding the definitions of precise in (4.10) or ∪∗ in (4.2) to prove

it because the logic layer may have multiple models with very different

definitions. In our spatial graph library, the notations of ∪∗ and precise

together with the inference rules partially enumerated in Figure 4.15 are

packed into several Coq classes such as PreciseSepLog and OverlapSepLog.

These classes compose the “Extended Logic Layer of Spatial Library” in

Figure 4.13. To prove the soundness of the inference rules proposed in

PreciseSepLog, OverlapSepLog and other classes in the extended logic layer,

we instantiate each class using basic definitions in VST’s step-indexed heap

model. VST’s separation logic layer and our extended logic layer provide

a good abstraction of ∗, ∪∗, precise, etc. which are necessary for definitions

and theorems discussed in §4.1 and §4.2.

To validate the certain independence of the two logic layers, we even

define another simple direct heap model implementing all interfaces (i.e.

instantiating all classes) in VST’s separation logic layer and our extended

logic layer. In this model, the memory heap is simply defined as a finite

partial map from address to address, where an address is simply defined
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as a natural number. In heap_model_direct/SeparationAlgebra.v we give the

definition of heap and prove that it can be viewed as an instance of the

separation algebra discussed in §2.4.2 with properly-defined join relation.

In heap_model_direct/SeparationLogic.v we prove that the spatial predicates on

this heap definition do satisfy all rules of NatDed, SepLog, PreciseSepLog,

OverlapSepLog and etc. In heap_model_direct/mapsto.v we give the definition

x 7→ v on our heap model and prove that it satisfies some other additional

classes of the extended logic layer. These three files compose the isolated

“Simple Direct Heap Model” in Figure 4.13. But the shape and number

of “stubs” on it indicate that it can entirely replace “VST’s Step-Indexed

Heap Model” as the underlying model. The successful definitions and im-

plementations of interfaces of logic layers prove that the separation logic

layer and our extended logic layer are generic. They do not depend on cer-

tain special features of the underlying model. Thus our spatial predicates

and theorems built on the two logic layers are generic and independent of

concrete heap models.

On top of the “Extended Logic Layers of Spatial Library” is the upper

layer definitions and theorems in the spatial graph library. They include the

iterated separating conjunction ∗, the iterated overlapping conjunction

∪∗ , and the interfaces which help constructing the spatial representations

of graphs discussed in great detail in §4.1.2. We introduce and discuss

theorems of the spatial graph library in §4.3.2.

4.3.2 Theorems in the spatial graph library

Figure 4.16 on page 109 gives an overview of the theorems in the spatial

graph library. All 400 theorems spread over 23 files surround a big circle.

Just like Figure 3.7, the length of a line segment indicates the length of a

theorem in log scale and the connecting curves indicate dependencies.
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1: floyd_ext/closed_lemmas.v

2: floyd_ext/share.v

3: heap_model_direct/SeparationAlgebra.v

4: heap_model_direct/SeparationLogic.v

5: heap_model_direct/mapsto.v

6: msl_application/Graph.v

7: msl_application/GraphBi.v

8: msl_application/Graph_Mark.v

9: msl_ext/alg_seplog.v

10: msl_ext/alg_seplog_direct.v

11: msl_ext/iter_sepcon.v

12: msl_ext/log_normalize.v

13: msl_ext/msl_ext.v

14: msl_ext/overlapping.v

15: msl_ext/overlapping_direct.v

16: msl_ext/precise.v

17: msl_ext/precise_direct.v

18: msl_ext/ramification_lemmas.v

19: msl_ext/sepalg.v

20: msl_ext/seplog.v

21: veric_ext/SeparationLogic.v

22: veric_ext/res_predicates.v

23: veric_ext/seplog.v

Figure 4.16: The Overview of the Theorems in the Spatial Library
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Figure 4.17: Theorem Dependencies in Spatial Graph Library

Compared to Figure 3.7, there are fewer connections in Figure 4.16. The

statistic about the theorems further confirms this impression, although it

is because there are fewer theorems in the spatial graph library than in

the mathematical graph library. Among the 400 theorems, 197 of them

are basic facts which do not cite any other theorem. In the remaining 200

theorems, more than half of them rely on only one or two other theorems.

Figure 4.17 gives the distribution of the rest 203 theorems according to

the extent of reliance. We do not count the theorems outside the spatial

graph library, i.e. the theorems in the standard library of Coq or in the

mathematical graph library. It is interesting to see that in the lower his-

togram of Figure 4.17, the distribution is not as extreme as the upper one.

A greater number of theorems have more than two supporting theorems in

total. This distinction between Figure 4.17 and Figure 3.10 suggests that

the theorems in the spatial graph library are more closely connected than
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theorems in the mathematical graph library.

From now we focus on Figure 4.16, explore each file in the spatial graph

library, and explain some important theorems in it when necessary.

Sector 1 and 2 (floyd_ext/closed_lemmas.v and floyd_ext/share.v) are infras-

tructure to adapt to the VST library. The two theorems in sector 1 handle

the issue of variables and−−∗ automatically for VST since the spatial library

uses−−∗ extensively. In another file floyd_ext/share.v we define two specialized

permission entities which can ease the verification. The permission required

by VST is used in our final spatial representation of vertex trinode dis-

cussed in §4.1.2. In VST, p 7→ v is formalized as data_at π τ v p where π is

the read/write permission. This infrastructure is later used in our verifi-

cation and the theorems are used implicitly as a automatic mechanism, so

there is no explicit reference (curve) to them.

The next three files (sectors 3, 4 and 5) belong to the “Simple Direct

Heap Model” layer of the spatial library, which are discussed in §4.3.1. As

discussed in §2.4.2, separation algebra can be seen as an abstraction layer

between separation logic and underlying concrete model. The theorems

in SeparationAlgebra.v and SeparationLogic.v are instances of VST’s classes of

separation algebra and separation logic respectively. They together claim

that our direct model fulfills all inference rules of separation logic. Part of

the rules are listed in Figure 4.14.

Three files Graph.v, GraphBi.v and Graph_Mark.v under msl_application (sec-

tors 6, 7 and 8) contains definitions and theorems about the spatial rep-

resentation of graphs. Graph.v contains various definitions and interfaces

explained in §4.1. GraphBi.v is a partial implementation of the interfaces

defined in Graph.v, which focuses on the binary graph. Since we verify two

programs about the binary graph which share the same data structure, we

classify this file to the spatial graph library. Graph_Mark.v contains sev-

eral generic spatial theorems about the abstract marking relation among
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graphs. They are also used in verifying two programs, so we also classify

this file to the spatial graph library.

In Graph.v, we prove several generic ramification theorems which are

crucial for further verification. One of them is:

∀v .
(
v 6= x→ v 6= x′ → γ(v) = γ′(v)

)
∧
(
P (v) ∧ v 6= x↔ P ′(v) ∧ v 6= x′

)
vertices_atP γ ` x 7→ γ(x) ∗

(
x′ 7→ γ′(x′) −−∗ vertices_atP ′ γ′

)
(4.20)

The spatial predicate vertices_atP γ is defined in Figure 4.7. The dif-

ferent definitions of the vertex predicate P could derive different spatial

representations of graphs based on vertices_at. This theorem involves

two vertex predicates P , P ′ and two graphs γ, γ′. If they satisfy a rather

complex condition above the line, we have the conclusion below the line.

The condition basically says that the two predicates P , P ′ are almost equiv-

alent and the two graphs γ, γ′ are almost the same, except on vertices x

and x′. The conclusion is exactly the ramification entailment discussed in

the end of §4.2.2, which is the proof obligation of the Localize rule. In

the verification of graph-manipulating programs, when a single vertex of

graph γ is modified, we get a slightly changed new graph γ′. The theorem

(4.20) can be used in this case. Since the P , P ′, γ and γ′ are all generic,

the theorem itself is widely applicable.

When more vertices of a graph are changed, theorem (4.20) is not ap-

plicable any more. But Graph.v provides the following theorem:

∀v .
(
¬L(v) → ¬L′(v) → γ(v) = γ′(v)

)
∧(

G(v) ∧ ¬L(v) ↔ G′(v) ∧ ¬L′(v)
)

vertices_atGγ ` vertices_atLγ ∗(
vertices_atL′ γ′ −−∗ vertices_atG′ γ′

)
(4.21)

where G, G′, L and L′ are all vertex predicates. The condition just says
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that, except the changed part (L and L′), the graphs γ, γ′ are the same

everywhere and the predicates G, G′ are equivalent. The conclusion is

another typical ramification theorem. The graph fold/unfold theorem (4.8)

is also in Graph.v. The theorems in GraphBi.v can be seen as the specialized

version of the theorems in Graph.v for binary graphs.

Sectors 9 and 10 are two files containing the instances ( ) of classes

( ) in the “Extended Logic Layer of Spatial Library”. Every notation in

a class needs to be defined and every property claimed in a class needs

to be proved in a certain model. The concrete definitions and theorems

are contained in sectors 14 to 17. So we can see many curves connecting

them in Figure 4.16. Sectors 14 and 15 contain the definition of ∪∗ and

sectors 16 and 17 contain the definition of precise. Among the six sectors,

the files whose names with suffix “_direct” are based on the simple direct

heap model and the rest are based on the step-indexed heap model. Some

of the theorems in these files are listed in Figure 4.15.

Sector 11 (msl_ext/iter_sepcon.v) contains the definitions of∗ (4.5, 4.6)

and ∪∗ (4.9) and related theorems. The theorems are about the basic

properties of∗ and∪∗ . We list some of them in Figure 4.18. Among these

theorems, the theorem PredSepSep is particularly interesting. It says

that if the spatial predicate P has a certain property about uniqueness (i.e.

P (x)∗P (x) ` ⊥), then from the separating conjunction of∗
M

P and∗
N

P ,

we can infer that the pure logic predicate are disjointed (i.e. an element

x cannot satisfy M and N simultaneously). This theorem enables us to

infer pure logic facts from spatial facts. Since the spatial representations

of graphs adopt∗ in their definitions and the graph fold/unfold theorem

(4.8) involves ∪∗ , it is no surprise that there are a lot of curves growing

from sector 6 (msl_application/Graph.v) to the related theorems in sector 11.

Sector 12 (msl_ext/log_normalize.v) collects many separation logic related

theorems directly derived from the logic layers. The inference rules about
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IterSepApp

∗
L1 +L2

P =∗
L1

P ∗∗
L2

P

IterOconApp

∪∗
L1 +L2

P =∪∗
L1

P ∪∗ ∪∗
L2

P

IterSepComm

∗
L1 +L2

P = ∗
L2 +L1

P

IterSepNil

∗
nil
P = emp

IterOconSep

∗
L

P `∪∗
L

P

IterSepFunc
∀x . P (x) = Q(x)

∗
L

P =∗
L

Q

PredSepJoin
∀x .M(x) → N(x) → ⊥

∗
M

P ∗∗
N

P = ∗
M∧N

P

PredSepSep
∀x . P (x) ∗ P (x) ` ⊥

∗
M

P ∗∗
N

P ` ∀x .M(x) → N(x) → ⊥

Figure 4.18: Basic Facts of iter_sepcon, pred_sepcon and iter_ocon

∗, ∪∗, precise, etc. in VST’s separation logic layer and our extended logic

layer can be seen as a minimum set for reasoning about separation logic

and related concepts. In practice, we find that some other inference rules

not in the minimum set are also quite generic and useful. They can be

proved using existing inference rules. From Figure 4.16 we can see that

there are plenty of them. The curves connecting it and other sectors (5, 6,

11 and 18) show that these theorems are widely used in the spatial graph

library. Some of the theorems are listed in Figure 4.19.

Sectors 13 and 19 (msl_ext/msl_ext.v and msl_ext/sepalg.v) contain certain

low-level components which contain several derived theorems about sepa-

ration algebra. Since separation algebra is independent of concrete heap

models, we can see the theorems are used in theorems relating to both the

direct and the indirect model (overlapping.v and overlapping_direct.v).

Sector 18 (msl_ext/ramification_lemmas.v) contains various ramification the-

orems (i.e. involving the form K ` L ∗ (M −−∗ N)) about iter_sepcon and

pred_sepcon (i.e. ∗) which form the bedrock of the ramification theo-
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PrcsAndLft
preciseP

precise (P ∧Q)

PrcsAndRht
preciseQ

precise (P ∧Q)

PrcsSepAnd
preciseP

(P ∗Q) ∧ (P ∗R) ` P ∗ (Q ∧R)

OconSepTrue

P ∪∗ Q ` P ∗ >

SepWandWandSep

(P −−∗ Q) ∗R ` P −−∗ (Q ∗R)

OconEmp

emp ∪∗ P = P

OconSelf

P ` P ∪∗ P

OconSepCancel

P ∗Q ` P ∪∗ (P ∗Q)

TriSepOcon

P ∗Q ∗R ` (P ∗Q) ∪∗ (Q ∗R)

Figure 4.19: Some Theorems in msl_ext/log_normalize.v

rems in Graph.v such as (4.20) and (4.21), since vertices_at is defined via

pred_sepcon and pred_sepcon is defined via iter_sepcon. Although there

are only four curves in Figure 4.16 from Graph.v to cite the four theorems

in sector 18, it does not mean that other theorems are useless or irrele-

vant. The rest are either supporting theorems or used in other files outside

the spatial graph library. We list some of these ramification theorems as

follows.

∃F .
(
PermutationG (L+ F ) ∧ PermutationG′ (L′ + F ) ∧

∀x . x ∈ F → P (x) = P ′(x)

)
∗
G

P `∗
L

P ∗
(∗

L′
P ′ −−∗∗

G′
P ′
) (4.22)

In the theorem (4.22), G, G′, L, L′, F are lists and P , P ′ are spatial

predicates. The expression L1 + L2 represents the concatenation of two

lists L1 and L2. The relation PermutationL1 L2 means that two lists L1

and L2 are permutations of each other. The premise says that L/L′ is a

sublist of G/G′, the complement of L in G is the same as the complement

of L′ in G′, and P , P ′ are the same on the common complementary list.

The conclusion is our familiar ramification entailment. This is the crucial

theorem in proving (4.20) and (4.21) with similar forms. Theorem (4.22)
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can be generalized with a pure logic predicate as an additional condition:

∃F .

 PermutationG (L+ F ) ∧(
∀a .M(a) → PermutationG′(a) (L′(a) + F )

)
∧

∀a .M(a) → ∀x . x ∈ F → P (x) = P ′(a, x)


∗
G

P `∗
L

P ∗ ∀a .M(a) →
(∗
L′(a)

P ′(a) −−∗ ∗
G′(a)

P ′(a)
) (4.23)

In theorem (4.23), G, L, F are still lists whileG′ and L′ are single-parameter

functions that return lists. Similarly, P is a spatial predicate while P ′ is

a function returning a spatial predicate. Another big difference between

(4.23) and (4.22) is that (4.23) contains a pure logic predicate M . The

application of this theorem is discussed in §5. Although we use the same

symbol ∗ for iter_sepcon and pred_sepcon, theorem (4.22) and (4.23)

are both about iter_sepcon. In ramification_lemmas.v we also provide the

corresponding theorems about pred_sepcon with almost the same forms.

They are listed as theorem (4.24) and (4.25) where G, G′, L, L′, F are

pure logic predicates and Permutation is replaced by a ternary relation

PropJoin defined in (4.26).

∃F .
(
PropJoinLF G ∧ PropJoinL′ F G′ ∧

∀x . F (x) → P (x) = P ′(x)

)
∗
G

P `∗
L

P ∗
(∗

L′
P ′ −−∗∗

G′
P ′
) (4.24)

∃F .

 PropJoinLF G ∧(
∀a .M(a) → PropJoinL′(a)F G′(a)

)
∧

∀a .M(a) → ∀x . F (x) → P (x) = P ′(a, x)


∗
G

P `∗
L

P ∗ ∀a .M(a) →
(∗
L′(a)

P ′(a) −−∗ ∗
G′(a)

P ′(a)
) (4.25)

PropJoinX Y Z
def
=
(
∀a . Z(a) ↔ X(a) ∨ Y (a)

)
∧

(∀a .X(a) → Y (a) → ⊥)
(4.26)

It should be noted that the various theorems proved in ramification_lemmas.v
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also rely on a bunch of theorems about basic facts of the ramification

entailment K ` L ∗ (M −−∗ N) which were first proposed by Hobor and

Villard [2013], formalized by us, and further integrated into VST. Some

RamifSolve
G ` L ∗ F F ∗ L′ ` G′

G ∗ L ∗ (L′ −−∗ G′)

RamifFrame
G ` L ∗ (L′ −−∗ G′)

G ∗ F ` L ∗ (L′ −−∗ G′ ∗ F )

RamifTrans
G `M ∗ (M ′ −−∗ G′) M ` L ∗ (L′ −−∗M ′)

G ` L ∗ (L′ −−∗ G′)

RamifSplit
G1 ` L1 ∗ (L′

1 −−∗ G′
1) G2 ` L2 ∗ (L′

2 −−∗ G′
2)

G1 ∗G2 ` (L1 ∗ L2) ∗ (L′
1 ∗ L′

2 −−∗ G′
1 ∗G′

2)

RamifFramePre
G ` L ∗ (L′ −−∗ G′)

G ` L ∗ (L′ ∗ F −−∗ G′ ∗ F )

RamifFramePost
G ` L ∗ (L′ −−∗ G′)

G ∗ F ` (L ∗ F ) ∗ (L′ −−∗ G′)

Figure 4.20: Some Theorems in the Ramification Library

of them are listed in Figure 4.20. With the help of these theorems, we

can break large ramification entailments into more manageable pieces in a

compositional way.

Sector 20 (msl_ext/seplog.v) contains classes which compose the “Ex-

tended Logic Layer” of the spatial graph library in Figure 4.13.

The remaining three sectors 21, 22 and 23 under directory veric_ext are

infrastructure which glues the VST library and our spatial library. From

Figure 4.16 we can see that many theorems in veric_ext/seplog.v heavily rely

on theorems in sector 9 and 12.

To summarize, we give a brief overview of the files in the spatial graph

library through Figure 4.16 and introduce the theorems in each file and

their relationship among these files. We list several representative theo-

rems in compact, mathematical forms. This concise introduction expands

the explanation of the architecture of the spatial library illustrated in Fig-

ure 4.13. Admittedly the theorems about ∪∗, precise, direct model, etc. are
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not used in our verification of programs so far. They are currently included

mostly for completeness, but do make our library more general. The spatial

graph library together with the mathematical graph library enable us to

prove the full functional correctness of real graph-manipulating programs.

We demonstrate various verification in §5.
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Chapter 5

Verification of

Graph-manipulating Programs

In this chapter we introduce the application of our framework: the veri-

fication of full functional correctness of real C programs. In §5.1 we give

an overall workflow of the verification. In §5.2 we illustrate the verifica-

tion of a graph marking program. In §5.3 we focus on the verification of a

spanning tree program. Unlike graph marking, this algorithm changes the

shape of the graph, which makes the verification more difficult. In §5.4 we

discuss verification of the classic union-find algorithm with two different

data structures: one using pointers and the other using an array. In §5.5

we discuss our flagship application, the verification of a rather complex

generational garbage collector. All these proofs are machine checked in

Coq.

5.1 Workflow of Verification for C Programs

Figure 5.1 illustrates the workflow of the verification for a C function which

manipulates graphs. Besides the mathematical graph library and spatial

graph library that we described in previous sections, the verification (col-
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Figure 5.1: Workflow of Our Verification of C Programs
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ored green) is also built on two external projects (colored pink): the Com-

pCert project from INRIA [Leroy et al., 2012] and VST from Princeton

University [Appel et al., 2014]. The workflow can be described as follows.

We start with a source file written in C, which is then parsed by Com-

pCert’s parser and saved as a Clight file after some type checking and

simplification. The Clight file is a valid Coq file written in Gallina by

translating C expressions and C statements into corresponding Gallina

expressions of pre-defined, inductive types expr and statement. It can be

seen as an intermediate representation of the C program. The translation

is almost identical with respect to the abstract syntax tree. For example,

the C conditional statement if (...) {...} else {...} is translated into

an Sifthenelse ... expression of type statement listed below:

Inductive statement : Type :=

| Sskip : statement

| Sassign : expr -> expr -> statement

| Sset : ident -> expr -> statement

| Scall: option ident -> expr -> list expr -> statement

| Ssequence : statement -> statement -> statement

| Sifthenelse : expr -> statement -> statement -> statement

...

The only difference from C code is that all expressions are pure and as-

signments and function calls are statements, not expressions. In other

words, side effects are pulled out of expressions in Clight. Although it is

not necessary in our verification, the Clight file can be further processed

by a multiple-stage compiler of CompCert and compiled to the executable

machine code.

CompCert claims that the compilation is formally verified, i.e. free from

miscompilation issues. There is a formal proof finished by the CompCert
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team saying that the executable code it produces behaves exactly as speci-

fied by the semantics of the source C program. As part of the proof, Com-

pCert defines the formal semantics (i.e. relation between programs and

their possible behaviors) for the C language and the assembly language

for each of the supported target platforms (PowerPC, ARM, RISC-V and

x86). However, this proof “just” guarantees that the observable behavior

of the C program will be the same as that of the compiled assembly code.

It does not tell one how to characterize the observable behavior of those C

programs.

The Verified Software Toolchain (VST) project from Princeton gives a

solution. It provides Verifiable C, a program logic for the C programming

language. It is a higher-order impredicative separation logic, proved sound

with respect to the operational semantics of CompCert C. In Figure 5.1,

the link between the leftmost CompCert block and the bottom VST

block indicates VST’s adoption of the semantics of C defined in CompCert.

With the help of verifiable C and certain tools in VST, one can give a

specification written in separation logic formula for a C function and prove

that the C function behaves exactly as the specification describes. As a

whole, it is proved that [Appel et al., 2019],

Whatever observable property about a C program you prove

using the Verifiable C program logic, that property will actually

hold on the assembly-language program that comes out of the

C compiler.

Our verification is targeting the Clight file. Every C function in the

Clight file is just a big expression of type function in Coq. After importing

the Clight file, we give the specification (i.e. precondition and postcondi-

tion) of each function first. Then we can start the verification with the

help of another component of VST, the Floyd program verification system.
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Floyd provides a set of tactics to enable reasoning in forward style. As

illustrated in Figure 5.1, a function is decomposed into a sequence of state-

ments C1;C2;C3; . . . ;Cn−1;Cn. We inspect these statements step by step.

At each step, we are given a Hoare triple: a description of the current pro-

gram state in the form of a separation logic formula {Pi−1}, the rest of the

statement sequence Ci;Ci+1; . . . ;Cn, and the postcondition {Pn}. In the

beginning, the current program state is the precondition {P0}. For each

statement Ci, we need to apply a tactic defined in Floyd to go through it. In

principle, the tactic can be seen as the application of inference rules such as

in Figure 2.1 and Figure 2.4 but under more delicate semantics. For many

kinds of statements (assignments, return, break, continue), a forward tactic

would automatically choose proper rules and derive the strongest postcon-

dition {Pi} from {Pi−1}. For the loop statement, the forward_loop tactic

needs user to provide the loop invariant and postcondition. Sometimes

due to the complex semantics of C, one may have to transform the current

program state to another form through the entailment, so as to fulfill the

requirement of certain tactics. Sometimes the application of a tactic would

generate multiple proof goals. For example, one subgoal after applying the

forward_loop tactic is proving that the postcondition of the loop body im-

plies the loop invariant. Either the transformation of current program state

or the entailment as subgoal may need theorems derived from or proved in

our spatial graph library and mathematical graph library. That is why we

can see the links among the corresponding blocks in Figure 5.1.

By progressively applying proper tactics and solving potential entail-

ments, every Hoare triple {Pi−1}Ci {Pi} would be proved. The overlapping

of the Hoare triple block in Figure 5.1 implies that the description of the

intermediate state {Pi} must be chosen very carefully. It should be strong

enough to prove the formula that succeeds it but still be weak enough to

be derived from the formula that precedes it. The whole process can be
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seen as a repeated application of the Composition rule in Figure 2.1,

which proves the specification of the whole function: {P0}F {Pn} where

F
def
= C1;C2;C3; . . . ;Cn−1;Cn.

A complete verification workflow starts from a C source program and

ends in the formal proofs of individual C functions. Since the the formal

proof of C functions and the verified compiler in CompCert share the same

semantics of C, we can say that the workflow facilitates the end-to-end

verification of C programs.

5.2 Verification of Graph Mark

In Figure 5.2 we put the code and proof sketch of the classic mark algorithm

that visits and colors every reachable vertex in a heap-represented graph.

The mark program is good to start with because it is complex enough to

require some care to verify while being simple enough that the invariants

are straightforward.

The code in Figure 5.2 is a complete, valid C source program with the

definition of struct Node and function mark. We put the description {P}

of the program state after the comment delimiter //. This mixed style of C

code and program states is an imitation of the actual verification illustrated

in Figure 5.2. We call it a paper-format proof sketch. All descriptions of the

states are extracted from the real Floyd proof in VST, with minor cleanup

to aid the presentation.

The mark function starts from a root vertex x. If x is a null pointer or a

marked node, it returns. Otherwise, it marks x and continues marking its

left and right branches recursively. Our task is to verify its correctness.
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1 struct Node {
2 int m;
3 struct Node * l;
4 struct Node * r;
5 };
6

7 void mark(struct Node * x) {
8 struct Node * l, * r;
9 int root_mark;

10 // {graph(x, γ)}
11 if (x == 0) return;
12 // {graph(x, γ) ∧ ∃m, l, r . γ(x) = (m, l, r)}
13 // {graph(x, γ) ∧ γ(x) = (m, l, r)}
14 // ↘ {x 7→ m, l, r}
15  (5.10) root_mark = x -> m;
16 // ↙ {x 7→ m, l, r ∧m = root_mark}
17 // {graph(x, γ) ∧ γ(x) = (m, l, r) ∧m = root_mark}
18 if (root_mark == 1) return;
19 // {graph(x, γ) ∧ γ(x) = (0, l, r)}
20 // ↘ {x 7→ 0, l, r ∧ γ(x) = (0, l, r)}
21 l = x -> l;
22  (5.11) r = x -> r;
23 x -> m = 1;
24 // ↙ {x 7→ 1, l, r ∧ γ(x) = (0, l, r) ∧ ∃γ′ .mark1(γ, x, γ′)}
25 // {∃γ′ . graph(x, γ′) ∧ γ(x) = (0, l, r) ∧ mark1(γ, x, γ′)}
26 // {graph(x, γ′) ∧ γ(x) = (0, l, r) ∧ mark1(γ, x, γ′)}
27 // ↘ {graph(l, γ′)}
28  (5.12) mark(l);
29 // ↙ {∃γ′′ . graph(l, γ′′) ∧ mark(γ′, l, γ′′)}

30 //

{
∃γ′′ . graph(x, γ′′) ∧ γ(x) = (0, l, r) ∧

mark1(γ, x, γ′) ∧ mark(γ′, l, γ′′)

}
31 // {graph(x, γ′′) ∧ γ(x) = (0, l, r) ∧ mark1(γ, x, γ′) ∧ mark(γ′, l, γ′′)}
32 // ↘ {graph(r, γ′′)}
33  (5.12) mark(r);
34 // ↙ {∃γ′′′ . graph(r, γ′′′) ∧ mark(γ′′, r, γ′′′)}

35 //

{
∃γ′′′ . graph(x, γ′′′) ∧ γ(x) = (0, l, r) ∧

mark1(γ, x, γ′) ∧ mark(γ′, l, γ′′) ∧ mark(γ′′, r, γ′′′)

}
36 } // {∃γ′′′ . graph(x, γ′′′) ∧ mark(γ, x, γ′′′)}

Figure 5.2: Clight Code and Proof Sketch for Graph Mark
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5.2.1 The specification of the mark function

From the proof sketch we can get the specification we certify (lines 10 and

36 in Figure 5.2):

{graph(x, γ)} mark(x) {∃γ′ . graph(x, γ′) ∧ mark(γ, x, γ′)} (5.1)

The specification is for fully functional correctness. It is stated using the

mathematical graph γ, the spatial predicate graph describing how the math-

ematical graph γ is implemented in the heap, and the relation mark about

the graphs before and after the execution of function mark. To understand

this specification, one must know the definitions of these three concepts.

It should be noted that the struct Node defined in line 1–5 in Figure 5.2

is exactly the same as (4.3) discussed on page 82. The mark function runs

on the binary graphs which are discussed in §4.1 as a detailed example

to show how to represent a graph in heap. So it is easy to recall the

definitions of γ and graph. The type of the mathematical graph γ is a

specialized GeneralGraph whose concrete parameters are listed in Table 4.1

on page 93. The spatial predicate graph is defined in (4.7) on page 89. To

see the source code level definition rather than the mathematical form, one

can refer to reachable_vertices_at in Figure 4.7 of page 95. We should

note that the definition of graph only represents in heap those parts of γ

that are reachable from x, i.e. exactly those parts that the mark function

operates on. The definitions of γ(x) and x 7→ γ(x) involved in the definition

of graph can be found in (4.12) and Figure 4.6.

Now we can introduce the definition of the last concept in the speci-

fication (5.1): mark. Before dive into the concrete definitions, we would

like to explain the general principle behind it. It should be noted that the

postcondition is specified relationally, i.e. {∃γ′ . graph(x, γ′)∧mark(γ, x, γ′)}

instead of being specified functionally, i.e. {graph
(
x,mark(γ, x)

)
}. In the
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first case mark is a relation which connects the original graph γ and the

result graph γ′, whereas in the second mark is a function that computes

the result from the original graph γ. We prefer the relational approach

because of its advantages in both theoretical and practical aspects. The-

oretically, relation is a more general concept than function. A particular

relation or function can be seen as a subset of the Cartesian product of

“input” and “output”. But relation has fewer constraints. For example, re-

lations allow “inputs” to have no “outputs” (i.e. be partial) or alternatively

have many outputs (i.e. be non-deterministic). In this sense, a function is

just a special relation. For any function f , we can define a corresponding

relation R: the relation R(x, y) holds if and only if y = f(x). On the

contrary, there is no such direct and simple way to define a function for an

arbitrary relation. Relations are also preferable to functions because they

are more compositional. We take advantage of compositionality by using

mark(γ, x, γ′) ∧ . . . to also specify our “spanning tree” algorithm in §5.3,

which also marks vertices while carrying out its primary tasks.

Practically, it is very difficult to define computational functions in Coq

under certain situations. Writing functions over graphs is such a typical

situation. Coq requires that all functions terminate. In our case, it means

a nontrivial proof obligation over cyclic structures like graphs, which is

overkill. Our verification of function mark is only for partial correctness.

This is because partial correctness is what is guaranteed by the underlying

system (VST). It appears to be challenging to use the step-indexed models

used in VST to verify total correctness [Dockins and Hobor, 2012].

To formally define the relation mark, we first define two relations for a

single vertex. The relation lmarked(γ, v) means that vertex v is marked in
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graph γ and the other lunmarked(γ, v) means that v is unmarked.

lmarked(γ, v) def
= vlabel γ v = True (5.2)

lunmarked(γ, v) def
= vlabel γ v = False (5.3)

Suppose after the execution of function mark, the graph γ becomes γ′.

The function mark will have marked every vertex reachable from x. More

formally we can conclude:

∀v . lmarked(γ′, v) ↔ lmarked(γ, v) ∨

γ|= x ~o~> v satisfying lunmarked(γ)
(5.4)

This is saying that for any vertex v which is marked in γ′, it is either already

marked in γ, or it is reachable from the root vertex x, along an unmarked

path in γ. The definition of the notation γ|= v1 ~o~> v2 satisfying P

can be found in Figure 3.3. Using (5.4) as the specification of the label

part of relation mark is complete because of the double implication ↔.

However the definition of mark is not done yet. We need to point out the

specification of the spatial part. One observation is that the function mark

does not change anything that is unreachable from a unmarked path. In

fact it does not change the shape of the structure at all. But for generality,

let us just consider a formal statement about the unreachable part first.

γ ↑
(
λ v.¬ γ|= x ~o~> v satisfying lunmarked(γ)

)
~=~

γ′ ↑
(
λ v.¬ γ|= x ~o~> v satisfying lunmarked(γ)

) (5.5)

The notation γ ↑ P means part of a graph γ in which every vertex satisfies

P . We discussed its formal definition in (3.1). The notation ~=~, read as

“structurally identical” is defined Figure 3.6. We combine (5.4) and (5.5)
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together to define a relation called weak_mark:

weak_mark(γ, x, γ′) def
=
(
∀v . lmarked(γ′, v) ↔ lmarked(γ, v) ∨

γ|= x ~o~> v satisfying lunmarked(γ)
)
∧(

γ ↑
(
λ v.¬ γ|= x ~o~> v satisfying lunmarked(γ)

)
~=~

γ′ ↑
(
λ v.¬ γ|= x ~o~> v satisfying lunmarked(γ)

))
(5.6)

The definition of weak_mark captures the two key characters of a general

marking procedure. It just says the labels of the reachable part are changed

and the structure of the unreachable part is the same. It is named “weak”

because it does not say anything about the structure of the reachable part,

regardless of whether or not it is changed. So theorems about relation

weak_mark can be used in both scenarios.

For our mark function in Figure 5.2, the reachable part from vertex x

does not change. We could add this fact to define the relation mark but

we did not. Instead we define mark as:

mark(γ, x, γ′) def
= weak_mark(γ, x, γ′) ∧ γ ~=~ γ′ (5.7)

In the definition of relation mark, we simply use γ ~=~ γ′ since function

mark does not change the shape of the graph structure in any way. It makes

(5.7) an accurate definition already, even though there is a little redundancy

because γ ~=~ γ′ implies part of weak_mark, i.e. the part discussed in (5.5).

Here we treat the relation weak_mark as a whole because we want to reuse

the theorems about it directly in our verification of function mark. So far

we fully explain the specification of the mark function. Next we turn to the

proof about the specification.
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5.2.2 The proof of the mark function

Lines 7–36 of Figure 5.2 give the body of the proof sketch. As illustrated

in Figure 5.1, it can be seen as a description of a series of Hoare triples,

i.e. state transitions between C statements. Inside the proof sketch, the

consecutive descriptions of states represent entailments. For example, from

line 12 to line 13, it is just the extraction of existential variables.

The proof sketch in Figure 5.2 omits entailment for simple branches

of some conditional statements for simplicity. For example, line 17 is the

precondition of line 18 while line 19 is just the postcondition of its “else”

branch: the condition does not hold so m = 0. For the “then” branch, m

should be 1 and the whole function returns. Our proof script does handle

this case. Since the code after line 18 would never be executed in this

“then” branch, we must entail the postcondition of mark directly from the

current situation of “then” branch, i.e.

graph(x, γ) ∧ γ(x) = (1, l, r) ` ∃γ′ . graph(x, γ′) ∧ mark(γ, x, γ′) (5.8)

This is not a difficult entailment. The existential quantifier ∃γ′ could only

be chosen as γ. Then the spatial entailment graph(x, γ) ` graph(x, γ) is

trivial. The pure part γ(x) = (1, l, r) → mark(γ, x, γ) is the only entailment

which needs further explanation. According to (5.7), there are two parts in

the definition of mark. One part is γ ~=~ γ, which is obviously true because

~=~ is reflexive. The other part, weak_mark(γ, x, γ) can be further split into

two components according to (5.6). The first, i.e. (5.5), holds again because

of the reflexivity. The other (i.e. the only remaining obligation) is

∀v . lmarked(γ, v) ↔ lmarked(γ, v) ∨

γ|= x ~o~> v satisfying lunmarked(γ)
(5.9)
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Since we have γ(x) = (1, l, r) which means x is marked, the right hand side

of ∨ in (5.9) becomes ⊥: no vertex is reachable from x along an unmarked

path because its beginning has been marked already. Thus (5.9) becomes

∀v . lmarked(γ, v) ↔ lmarked(γ, v) ∨ ⊥ which is a tautology. So we have

finished the simple proof of the entailment (5.8).

Other state transitions proved in our proof script may also involve en-

tailments like (5.8), no matter whether they are omitted in Figure 5.2 or

not. Various entailments depend on various semantics of C statements

(i.e. inference rules like Figure 2.1). Besides lines 17–19 in Figure 5.2,

there are 4 major entailments surrounded by the form {G1} ↘ {L1} and

{G2} ↙ {L2} (lines 13–17, lines 19–25, lines 26–30, and lines 31–35), which

are localization blocks discussed in §4.2.1. We use the  symbol and the

number followed to indicate the theorem number applied in corresponding

blocks.

Now let us inspect the first localization block, lines 13–17 in Figure 5.2.

Line 15, root_mark= x -> m, is just a simple memory load instruction which

does not change any thing in the heap. But we still apply our Localize

rule here. This is because the formal semantics of this load instruction

requires an explicit form x 7→ (. . . ,m, . . . ) in the precondition to ensure

that the pointer x does point to a piece of memory which contains the field

m. Our current spatial state is in line 13: graph(x, γ). It is the Localize

rule that allows us to have the local context x 7→ m, l, r to go through

the load instruction of line 15. As a cost, we have to prove the following

theorem:

vvalid γ x

graph(x, γ) ` x 7→ γ(x) ∗
(
x 7→ γ(x) −−∗ graph(x, γ)

) (5.10)

The theorem (5.10) is the proof obligation of the Localize rule, which can

be easily proved by the theorem (4.20) on page 112. The theorem (5.10)
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can be seen as a special case of (4.20) when two graphs γ, γ′ are the same,

two predicates P , P ′ are the same, and two vertices x, x′ are the same.

The second localization block, lines 19–25, does more things than the

previous one. Besides the two load instructions in lines 21 and 22, more

importantly, line 23 is a memory store instruction which does change the

heap. We still apply the Localize rule here because of the formal seman-

tics of C. But we do not need to apply it for each statement. The statement

C in the Localize rule in (4.13) can be a composition of several state-

ments, just like this block. Under the new local state in line 20, the state

transitions between the three instructions are omitted. They may involve

some pure or spatial entailments, just like the entailments we explained

for the return statement before. The proof obligation of this block is the

theorem (5.11).

∀x0 6= x . γ(x0) = γ′(x0) neighbors(γ, x) = neighbors(γ′, x)

graph(x, γ) ` x 7→ γ(x) ∗
(
x 7→ γ′(x) −−∗ graph(x, γ′)

) (5.11)

There are two premises for (5.11). The first one says that the graph γ and

γ′ are almost the same except vertex x. The second one says even for x,

their neighbors are the same. This means the two graphs γ and γ′ only

differ in the data field part of x. This theorem can also be proved by the

theorem (4.20). It is just another special case when two predicates P , P ′

are the same and two vertices x, x′ are the same.

The third and fourth localization blocks (lines 26–30 and lines 31–35)

are quite similar. They are both the recursive calls of the mark function,

one for the left branch and the other for the right branch of a binary

graph. For a function call, the state should match the precondition of the

function specification. In these two cases, it means we need to extract

the subgraph graph(l, γ′), graph(r, γ′′) from the whole graph graph(x, γ′),
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graph(x, γ′′) respectively. We prove that both blocks can share the same

proof obligation when applying the Localize rule. This is the theorem

(5.12).

n ∈ neighbors(γ, x)

graph(x, γ) ` graph(n, γ) ∗ ∀γ′ .mark(γ, n, γ′) →(
graph(n, γ′) −−∗ graph(x, γ′)

)
(5.12)

The idea of this theorem is the same as (5.11) but this time it is not the

change of a single vertex but a subgraph. The validity of this theorem even

depends on the relation mark. It is actually proved by the theorem (4.25).

So far we have finished the “spatial” proof of the specification of the

mark function. But the verification is still not complete. What we proved

so far can be explained as follows: a heap representation of graph γ, after a

series of C statements, is transformed into a heap representation of graph

γ′′′. From line 35 we can see the relation between γ and γ′′′ is:

∃γ′, γ′′ .mark1(γ, x, γ′) ∧ mark(γ′, l, γ′′) ∧ mark(γ′′, r, γ′′′).

But the relation we expect is in line 36: mark(γ, x, γ′′′). So to finally finish

the fully functional correctness verification of the mark function, we have

to prove the following, pure mathematical theorem:

γ0(x) = (0, l, r) mark1(γ0, x, γ1) mark(γ1, l, γ2) mark(γ2, r, γ3)

mark(γ0, x, γ3)
(5.13)

Before the discussion of the theorem 5.13, let us clarify a possible mis-

understanding about the whole verification of the mark function. In the

beginning the verification, we assume a specification of the mark function

(we can call it Γ), which is necessary to reason about the recursive call

of mark. Two premises mark(γ1, l, γ2) and mark(γ2, r, γ3) of the theorem
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(5.13) come from Γ. When (5.13) is proved, we can claim that we proved

Γ. It seems that we are assuming Γ in order to prove Γ, which is circular

reasoning. But in fact it is sound. VST provides a rather sophisticated

semantic model for the predicates in the heap. We are actually assuming Γ

at approximation level n in order to prove Γ at approximation level n+ 1.

In the soundness proof of VST’s program logic, there is a Löb rule (5.14)

which is applied to ensure that we can assume the specification Γ in the

proof that the function body meets Γ:

▷Γ ` Γ

` Γ

(5.14)

where ▷Γ can be thought as Γ at approximation level n when Γ is thought

as at approximation level n + 1. VST hides these technical details in the

Floyd toolkit. For more information, one could refer to [Appel et al., 2014].

Now we can discuss the final missing piece in the verification of the

mark function—the theorem (5.13). If γ0 is a binary tree, then the theorem

(5.13) is trivial, because the left and right branch of γ0 are disjointed. In

this situation, mark1(γ0, x, γ1) means the root x is marked, mark(γ1, l, γ2)

means the left branch is marked, and mark(γ2, r, γ3)means the right branch

is marked. Then we have mark(γ0, x, γ3): every vertex reachable from the

root is marked.

But for a graph, the situation is more complex because its left and right

branches could overlap. For any vertex v which is reachable from the root

x, there are 3 situations. If it is the root x, then it is marked because we

have mark1(γ0, x, γ1). If it is reachable from l, i.e. in the left branch, then

it is marked because we have mark(γ1, l, γ2). If it is reachable from r, then

there are two cases. Either it is also reachable from l so that it is marked

already, or it is marked because of mark(γ2, r, γ3). This is the basic idea

134



Figure 5.3: Dependency Graph of the Theorem (5.13)

but we must reason rigorously according to the definition of the relation

mark in (5.7). Figure 5.3 illustrates the dependency graph of the theorem

(5.13). There are 68 theorems involved. From the figure we can see that

the red node is the key theorem. This is theorem (5.15), a more general

version of (5.13):

γ0(x) = (0, n1, n2, . . . , nmx) mark1(γ0, x, γ1)

mark(γ1, n1, γ2) mark(γ2, n2, γ3) . . . mark(γmx , nmx , γmx+1)

mark(γ0, x, γmx+1)

(5.15)

In the theorem (5.15), every vertex of the graph γ0 can have several neigh-

bors. The numbers of neighbors of vertices are not necessarily the same.

This theorem says that we can start marking from every neighbor of the

root vertex in turn, then the whole graph (reachable part from root) is

marked. As illustrated in Figure 5.3, the formal proof of this theorem is

rather complicated, involving many supporting theorems.
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5.2.3 Theorems in verifying the mark function

Figure 5.4 on page 137 gives an overview of the theorems in the verification

of marking programs. Unlike Figure 3.7 or Figure 4.16, it contains some

files belonging to libraries that we have discussed previously. For example,

sectors 1, 2, and 3 are classified to the mathematical graph library. Sectors

5, 6, and 8 are classified to the spatial library. These files are included in

Figure 5.4 to reveal their support in verifying graph marking programs.

The proof script which verifies the mark function is in sector 11, the

file named sample_mark/verif_mark_bi.v. All entailments we discussed about

Figure 5.2 are done in this file. From Figure 5.4 we can see that it de-

pends heavily on sector 7, msl_application/GraphBi_Mark.v, which contains all

theorems needed in the verification, like (5.8), (5.10), (5.11), (5.12) and

(5.13) discussed in §5.2.2. We can further observe that sector 7 adopts

sectors 2, 3, 5, 6 and 8. This fact exhibits that the theorems in verifying

the mark function do rely on our mathematical and spatial graph library.

For example, the theorem (5.15) applied to prove (5.13) is in sector 8.

Sector 12 (sample_mark/verif_mark_bi_dag.v) is another proof script which

verifies the same mark function but using a different specification: the graph

in memory is not merely a binary graph but a binary directed acyclic graph

(DAG). At first glance it seems that this is just a special case of the binary

graph so we could reuse the proof. But since we do add new requirement

to the spatial predicate graph for the DAG, the corresponding ramification

theorems like (5.11) and (5.12) do need special effort to prove that the

new requirement is preserved. They are proved in sector 4. The other

entailments are almost the same as a general binary graph. We reuse the

theorem (5.13) in the final pure math entailment. Because this verification

is quite similar to §5.2.2, we omit the decorated program like Figure 5.2

and further detailed explanation.
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1: graph/graph_model.v

2: graph/path_lemmas.v

3: graph/weak_mark_lemmas.v

4: msl_application/DagBi_Mark.v

5: msl_application/Graph.v

6: msl_application/GraphBi.v

7: msl_application/GraphBi_Mark.v

8: msl_application/Graph_Mark.v

9: sample_mark/env_mark_bi.v

10: sample_mark/spatial_graph_bi_mark.v

11: sample_mark/verif_mark_bi.v

12: sample_mark/verif_mark_bi_dag.v

Figure 5.4: Theorems in the Verification of Marking Programs
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Sector 10 (sample_mark/spatial_graph_bi_mark.v) contains implementations

of interfaces to connect the spatial graph library and our verification, as

discussed in Table 4.1. Instances in it are used by sectors 11 and 12. The

implementation in sector 9 connect VST and our verification.

Figure 5.4 even show the connection between the mathematical graph

library and the spatial graph library. There are many curves from sectors

5, 6 to sectors 1 and 2. Recall that the color of the curve is the same as

the color of the caller. We read from this figure to know that the spatial

library does depend on the mathematical graph library.

5.3 Verification of Spanning Tree

In Figure 5.5 we show a simplified proof sketch for a spanning tree program.

Unlike graph marking, the spanning tree program changes the structure of

the graph, leading to a more complicated specification, in both the pure

part and the spatial part. On the other hand, the two programs have

many similarities. For example, they both mark vertices through unmarked

paths. They even share the same data structure Node, which means we can

reuse the definitions of the graph γ, the spatial predicate graph, and the

relation weak_mark.

Just like the mark function, the spanning function starts from a root

vertex x. It assumes that x is valid and unmarked. After marking x, it

inspects the left and right node pointers in turn. If the pointer (referred

as i) is null, it does nothing. Otherwise, there are two situations. If the

pointed node (referred as p) is not marked yet, the function calls itself to i

to get the spanning tree from i. If p is marked, it means p has been visited

before. In other words, there is a path from the root vertex to p other than

the current one. So the function just sets i to null. The pointer i does not

point to p any more. After the function call, there is one and only one way
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to connect every reachable node from the root, which is the definition of a

spanning tree.

5.3.1 The specification of the spanning function

From line 4 and line 37 in Figure 5.5, we can see the specification is:

{graph(x, γ) ∧ γ(x).1 = 0}

spanning(x)

{∃γ3 . vertex_at(reachable γ x, γ3) ∧ span(γ, x, γ3)}

(5.16)

where γ(x).1 = 0 means the first item of the triple is 0. We can see that

the same specification appears in the recursive call of line 24 and 26. In

the precondition, the definitions of γ and graph are the same as specified

in §5.2.1. In the postcondition, according to the definition of vertices_at in

Figure 4.7 and the definitions of reachable in Figure 3.3, we have:

vertices_at(reachable γ x, γ3) = ∗
reachable γ x v

v 7→ γ3(v) (5.17)

Superficially it is a strange choice that we do not use graph(x, γ3) but (5.17)

as the spatial representation in the postcondition. They are the same if:

∀v . reachable γ x v ↔ reachable γ3 x v (5.18)

According to the behavior of the spanning function, for a graph γ and

the resulting spanning tree γ3, the proposition (5.18) holds only when the

reachable part of γ from x is totally unmarked. For the graph from x and

the subgraph from the left child of x, there is no problem. But after the first

recursive call, when the function starts dealing with the right subgraph, the

situation changes. Figure 5.6 gives a typical situation during the execution

of the spanning function. The left graph is the state after marking the
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1 struct Node { int m; struct Node * l; struct Node * r; };
2 // We use R to represent reachable(γ, x)
3 void spanning(struct Node * x) {
4 // {graph(x, γ) ∧ γ(x).1 = 0}
5 struct Node * l, * r; int root_mark;
6 // {graph(x, γ) ∧ ∃l, r . γ(x) = (0, l, r)}
7 // {graph(x, γ) ∧ γ(x) = (0, l, r)}
8 // {vertices_at(reachable(γ, x), γ) ∧ γ(x) = (0, l, r)}
9 // {vertices_at(R, γ) ∧ γ(x) = (0, l, r)}

10 // ↘ {x 7→ 0, l, r ∧ γ(x) = (0, l, r)}
11 l = x -> l; r = x -> r; x -> m = 1;
12 // ↙ {x 7→ 1, l, r ∧ γ(x) = (0, l, r) ∧ ∃γ1 .mark1(γ, x, γ1)}
13 // {∃γ1 . vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧ mark1(γ, x, γ1)}
14 // {vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧ mark1(γ, x, γ1)}
15 if (l) {

16 //

{
vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧

∃m2, l2, r2 . γ1(l) = (m2, l2, r2) ∧ mark1(γ, x, γ1)

}
17 // {vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧ γ1(l) = (m2, l2, r2) ∧ mark1(γ, x, γ1)}
18 // ↘ {l 7→ m2, l2, r2}
19 root_mark = l -> m;
20 // ↙ {l 7→ m2, l2, r2 ∧m2 = root_mark}

21 //

{
vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧ γ1(l) = (m2, l2, r2) ∧

m2 = root_mark ∧ mark1(γ, x, γ1)

}
22 if (root_mark == 0) {
23 // {vertices_at(R, γ1) ∧ γ(x) = (0, l, r) ∧ γ1(l) = (0, l2, r2) ∧ mark1(γ, x, γ1)}
24 // ↘ {graph(l, γ1) ∧ γ1(l) = (0, l2, r2)}
25 spanning(l);
26 // ↙ {∃γ2 . vertices_at(reachable(γ1, l), γ2) ∧ γ1(l) = (0, l2, r2) ∧ span(γ1, l, γ2)}

27 //

{
∃γ2 . vertices_at(R, γ2) ∧ γ(x) = (0, l, r) ∧ γ1(l) = (0, l2, r2) ∧

mark1(γ, x, γ1) ∧ span(γ1, l, γ2)

}
28 } else { x -> l = 0; } }

29 //

{
∃γ2 . vertices_at(R, γ2) ∧ γ(x) = (0, l, r) ∧

mark1(γ, x, γ1) ∧ e_span(γ1, (x, L), γ2)

}
30 //

{
vertices_at(R, γ2) ∧ γ(x) = (0, l, r) ∧
mark1(γ, x, γ1) ∧ e_span(γ1, (x, L), γ2)

}
31 if (r) {
32 root_mark = r -> m;
33 if (root_mark == 0) {
34 spanning(r);
35 } else { x -> r = 0; } }

36 //

{
∃γ3 . vertices_at(R, γ3) ∧ γ(x) = (0, l, r) ∧

mark1(γ, x, γ1) ∧ e_span(γ1, (x, L), γ2) ∧ e_span(γ2, (x,R), γ3)

}
37 } // {∃γ3 . vertices_at(reachable(γ, x), γ3) ∧ span(γ, x, γ3)}

Figure 5.5: Clight Code and Proof Sketch for Spanning Tree
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r r

γ1 γ2 γ3

Figure 5.6: A Binary Graph During spanning

root vertex. The middle one is the state after the first recursive call. The

right one is the final result. The middle one is the most interesting. The

big gray rectangle encloses all vertices reachable from r, i.e. graph(r, γ2).

We can see some of the vertices are marked. So after the second recursive

call, all edges to those marked vertices are removed. Those vertices become

unreachable from r. As we can see, graph(r, γ3) only contains 2 vertices.

Since the specification (5.16) would be used in the second recursive call, if

we adopt graph(r, γ3) in postcondition, we will lose 3 vertices. On the other

hand, (5.17) is quite suitable. It means the vertices in the heap after the

execution of spanning is the same as before. At the same time, the concrete

mapping is different because it is v 7→ γ2(v), not v 7→ γ1(v). So (5.17) fits

in all situations, regardless of whether the graph is partially marked or not.

Now we can turn to the definition of the relation span(γ, x, γ3), which

is more complicated than the relation mark. First, it should contain the

relation weak_mark(γ, x, γ3) defined in (5.6): the reachable part for any

unmarked path is marked and the unreachable part keeps the same. After

the execution, we must get a tree, which is the purpose of the spanning

tree algorithm. Thus we define a predicate is_tree:

is_tree(γ, x) def
= ∀y . reachable γ x y →

∃! p s.t. γ|= p is x ~o~> v satisfying >
(5.19)
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This says graph γ starting from x is a tree, if for any vertex y which is

reachable from x in γ, there exists only one path from x to y. This is

exactly the characteristic of a tree. We cannot say is_tree(γ3, x) because

the unreachable part of γ3 does not change and we do not know its shape.

We can only say the reachable part from x is a tree:

is_tree
(
γ3 ↑

(
λ v . γ|= x ~o~> v satisfying lunmarked(γ)

)
, x
)

(5.20)

The definition of span is not complete yet because is_tree only partially

describes the feature of the shape: it is a tree but it may not be a spanning

tree. At first we thought the following extra condition would be enough:

∀v . γ|= x ~o~> v satisfying lunmarked(γ) → reachable γ3 x v (5.21)

which says that any vertex v reachable from x along an unmarked path

in γ is reachable from x in γ3. But during the proof, we found that it is

insufficient to entail line 37 from line 36. We need one extra condition:

∀a, b . γ|= x ~o~> a satisfying lunmarked(γ) →

¬γ|= x ~o~> b satisfying lunmarked(γ) →

¬reachable γ3 a b

(5.22)

which says if a is reachable from x along an unmarked path in γ but b is

not, then in γ3, b is unreachable from a. If (5.21) can be interpreted as “we

do not remove more edges” then (5.22) can be interpreted as “we do not

add extra edges”.

Finally we can combine weak_mark, (5.20), (5.21), and (5.22) together
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to get the complete definition of the relation span, which is rather long:

span(γ, x, γ′) def
= weak_mark(γ, x, γ′) ∧

(
lunmarked(γ, x) →

is_tree
(
γ′ ↑

(
λ v . γ|= x ~o~> v satisfying lunmarked(γ)

)
, x
)
∧

∀v . γ|= x ~o~> v satisfying lunmarked(γ) → reachable γ′ x v
)
∧(

∀a, b . γ|= x ~o~> a satisfying lunmarked(γ) →

¬γ|= x ~o~> b satisfying lunmarked(γ) → ¬reachable γ′ a b
)

(5.23)

Such a long definition makes our entailment about the mathematical graph

extremely difficult. But it is necessary. We formally proved that if γ, γ3

satisfy span(γ, x, γ′) and γ is totally unmarked, then (5.18) holds. This is

also a side proof about the soundness of the definition in (5.23).

5.3.2 The proof of the spanning function

Since the explanation of the proof script about the mark function in §5.2.2

is very comprehensive, we will omit similar details when explaining other

proof scripts. From a higher perspective of view, the entailment of the

state transition is just routine work. Although sometimes it is difficult

to prove that the current state satisfies certain conditions required by the

complicated semantics of C language, it can always be proved with patience

once the right postcondition is determined. In other words, it is more

important to know what to prove than simply to attack the proof blindly.

Figure 5.5 is a simplified proof sketch of the spanning function. We

omit the description of states between line 31 and line 35 because they

are similar to the specifications between line 15 and line 28. Most state

transitions from line 4 to line 37 in Figure 5.5 are similar to the proof of

mark except line 28 and line 35, which cuts edges in a graph.

We define a relation gremove_edge γ1 e γ2 to represent the relation be-
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tween the initial graph γ1 and the resulting graph γ2 after cutting an edge

e in γ1 as follows.

Definition gremove_edge (g1: PreGraph Vertex Edge) (e0: Edge)

(g2: PreGraph Vertex Edge) :=

(forall v : Vertex, (vvalid g1 v <-> vvalid g2 v)) /\

(forall e : Edge, e <> e0 -> (evalid g1 e <-> evalid g2 e)) /\

(forall e : Edge, e <> e0 -> evalid g1 e -> evalid g2 e ->

src g1 e = src g2 e) /\

(forall e : Edge, e <> e0 -> evalid g1 e -> evalid g2 e ->

dst g1 e = dst g2 e) /\

((~ evalid g2 e0) \/ (~ vvalid g2 (dst g2 e0) /\

src g1 e0 = src g2 e0 /\ evalid g2 e0)).

This definition is quite easy to understand. It is just a conjunctive propo-

sition of 5 conjuncts. The first four say that other parts of g2 except the

edge e0 remain the same. The last conjunct gives two possibilities: either

e0 is invalid in the resulting g2 or the destination of e0 is invalid in g2. We

adopt the following notation:

cut(γ1, e, γ2)
def
= gremove_edge γ1 e γ2 (5.24)

So after line 28, we have two possibilities for the relation between γ1 and γ2:

γ2 is either the resulting graph after the execution of the spanning function

or the result of cutting an edge. We describe such a relation as e_span:

e_span(γ1, e, γ2)
def
=


cut(γ1, e, γ2) vlabel γ1 (dst γ1 e) = 1

span(γ1, dst γ1 e, γ2) vlabel γ1 (dst γ1 e) = 0

(5.25)

which says if the destination of edge e is marked, then the relation is cut,

otherwise it is span. With the definition of e_span, we unify the description
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of states after the conditional statement. Just like the ramification theo-

rems (5.11) and (5.12) in the verification of mark, the ramification theorems

of spanning can also be proved easily by applying theorems in the spatial

library. We also omit them. When the spatial entailment is done in line

36, the entailment from line 36 to line 37 is the only crucial one left. The

spatial part of line 36 to line 37 are the same. So it is a pure entailment:

γ(x) = (0, l, r)

mark1(γ, x, γ1) e_span(γ1, (x, L), γ2) e_span(γ2, (x,R), γ3)

span(γ, x, γ3)
(5.26)

Recall the long definition of span in (5.23), the proof of (5.26) is extremely

difficult. Since each e_span contains two cases, we need to discuss four

cases in proving (5.26). The strength of span is also important because

e_span is span under certain conditions. If the conclusion span is too

strong, it is hard to prove. If the premise span is too weak, it is insufficient

to get the conclusion. As we can see before, we modified our definition

once (5.22) to get a proper definition of span. The whole proof script for

theorem (5.26) contains more than 1700 lines of code.

5.3.3 Theorems in verifying the spanning function

Figure 5.7 on page 146 gives an overview of the theorems in the verification

of the spanning tree program. Just like Figure 5.4, it contains various files

from the mathematical and spatial graph libraries (sector 1–6) to show

their support in the verification of the spanning function.

Sector 7 (data_structure/spatial_graph_dispose_bi.v) contains many theorems

needed in verifying the spanning function, including the ramification theo-

rems and the pure entailment (5.26).

Sector 8 (data_structure/spatial_graph_unaligned_bi_VST.v) implements vari-
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1: graph/graph_model.v

2: graph/path_lemmas.v

3: graph/weak_mark_lemmas.v

4: msl_application/Graph.v

5: msl_application/GraphBi.v

6: msl_application/GraphBi_Mark.v

7: data_structure/spatial_graph_dispose_bi.v

8: data_structure/spatial_graph_unaligned_bi_VST.v

9: graph/spanning_tree.v

10: sample_mark/verif_dispose_bi.v

Figure 5.7: Theorems in the Verification of Spanning Tree Program
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ous interfaces to connect VST, the spatial library and our verification.

Sector 9 (graph/spanning_tree.v) contains the definitions of is_tree (5.19),

span (5.23), e_span (5.25), etc. and various theorems about these concepts.

Although the theorem (5.26) is presented in sector 7, but its proof is very

short because a series of supporting theorems in proving it are finished in

sector 9. Sector 9 has more than 60 theorems. From Figure 5.7 we can see

that these theorems depend extensively on sector 2 for the theorems about

path and reachability. Sector 3 (graph/weak_mark_lemmas.v) which is used in

the verification of the mark function, is also reused in the pure entailment

about spanning tree.

Sector 10 (sample_mark/verif_dispose_bi.v) is the proof script which ver-

ifies the spanning function. From Figure 5.7 we can see that it depends

on sectors 4–7. Sector 5 (msl_application/GraphBi.v) is about binary graph.

Sector 6 (msl_application/GraphBi_Mark.v) is about spatial inference of graph

marking. They are not as general as sector 4 (msl_application/Graph.v) but

they are both used in the verification of mark and spanning.

5.4 Verification of Union-Find

The verification of the graph marking and spanning tree programs demon-

strates the ability of our framework established by the mathematical and

spatial graph libraries. To further show that our framework is not lim-

ited to the binary graph, we decide to verify a classical algorithm—the

union-find algorithm [Cormen et al., 2009].

This is not the first formal verification of the union-find algorithm. For

example, Charguéraud and Pottier [2015, 2019] verify the correctness and

the worst-case amortized asymptotic complexity of an OCaml implemen-

tation of Union-Find twice via different complexity analysis techniques.

They extend the tool CFML which implements separation logic for OCaml
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to support time credits, which is further developed and used to verify a

cycle-detection algorithm [Guéneau et al., 2019].

We do not verify the time complexity of union-find. But we do verify

several variants of the algorithm, including different specifications (com-

prehensive and slim ones), different data structures (pointer and array),

and even different control flows (recursion and loop).

The union-find algorithm is proposed to perform two operations on a

collection of disjoint sets efficiently. One is finding the unique set that

contains a given element. The other is uniting two sets. Figure 5.8 gives

c

h e

b

f

d

g

Figure 5.8: The Disjoint-Set Data Structure

an example of the data structure adopted by the algorithm. Each vertex

v representing an element has one and only one edge pointing to another

vertex called the parent of v. The vertex pointing to itself is the representa-

tive/root of a set. Figure 5.8 illustrates two disjoint sets. One is represented

by c and the other is by f. It can be modeled as a graph with several con-

nected components. Given an element, the find function traces the edges

until it reaches the root. Two vertices belong to the same set if and only

they have the same root. During the tracing progress, it may change the

structure of the graph to make tracing easier next time. Given two elements

which are not necessarily the representatives, the unionS function (which is

named to avoid conflicts with the C keyword union) employs find to find

the roots of the two elements respectively. And then it redirects the parent

of one root to the other to form a bigger set. Compared to find, the unionS
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function is relatively straightforward. It just calls find twice and redirects

one edge. So its verification should be easier than find.

5.4.1 The definition of γ and graph

Before turning to the concrete specifications of the two functions find and

unionS, we need to specify the type of mathematical graph γ and the spatial

predicate graph first.

Unlike mark and spanning, γ—the underlying graph model of the union-

find algorithm—is no longer a binary graph. We introduce a new predicate

of graph called LstGraph to model the unique property of the data structure

used in the union-find algorithm:

Class LstGraph (pg: PreGraph Vertex Edge)

(out_edge: Vertex -> Edge): Prop := {

only_one_edge: forall x e, vvalid pg x ->

(src pg e = x /\ evalid pg e <-> e = out_edge x);

no_loop_path: forall x p,

pg |= p is x ~o~> x satisfying (fun _ => True) ->

p = (x, nil) }.

The LstGraph takes a function out_edge to map a vertex to its only out

edge. As its name indicates, the component only_one_edge says that, for

any valid vertex, there is one and only one valid edge from it. The other

component no_loop_path captures the acyclic property of the graph. But

from Figure 5.8 we can see that no_loop_path holds for every vertex x

except for the roots. The roots do have self-pointing loops. However, after

a careful analysis, we find that the self-pointing edge of a root is only used

to identify the end of a path. It is totally possible to have a graph model

with null pointers as ends of paths, as long as the corresponding spatial

representation has self-pointing edges for roots. The conversion from a null
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pointer to a self pointing vertex could be easily done in the definition of

the vertex information function γ(x).

Besides enabling no_loop_path established for every valid vertex, an-

other benefit of using null pointers to identify ends of paths is that we can

add MathGraph as part of the soundness condition of γ. Thus, a lot of the-

orems about MathGraph could be reused. In fact, we define a compositional

graph predicate LiMaFin as the soundness condition for the graph model γ

of the union-find algorithm.

Class LiMaFin (g: PreGraph V E) := {

li: LstGraph g out_edge;

ma: MathGraph g isNullDec;

fin: FiniteGraph g }.

Table 5.1 gives all determined types for the γ used in the verification of

union-find except the type for Vertex. We defer the instantiation of Vertex

Vertex Edge DV DE DG Sound
V V * unit nat unit unit LiMaFin

Table 5.1: Instantiated Types of Graph Model of Union-Find

because it does not affect the inference about the pure facts of γ and we

need the theorems to be general enough to be used in the verification of the

union-find algorithms with two different data structures. Since each vertex

only has one out edge, we specify Edge type almost identical to Vertex so

as to have a one-to-one correspondence.

The two data structures refer to the definitions of the vertex in C. One

is line 1 of the proof sketch in Figure 5.9 which uses pointers to link vertices.

The other is line 1 of the proof sketch in Figure 5.11 which uses integers

to link vertices. The type of Vertex—V—is pointer_val in the former case

and integer Z in the latter case. Both data structures contain a rank field

which is used in the unionS function. So we specify the type of vertex
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label as natural number nat in Table 5.1. Then we can define the vertex

information function γ(v):

γ(v)
def
=

(
vlabel γ v, if dst γ (out_edge v) = 0 then v

else dst γ (out_edge v)

)
(5.27)

Here the if...then...else... statement plays the trick we mentioned be-

fore to covert a null-pointer-ending graph to a self-reference-ending graph.

1 struct Node { unsigned int rank; struct Node * parent; }
2 // {graph(γ) ∧ vvalid γ x}
3 struct Node* find(struct Node* x) {
4 struct Node *p;
5 // {graph(γ) ∧ vvalid γ x ∧ ∃r, pa . γ(x) = (r, pa) ∧ vvalid γ pa}
6 // ↘ {x 7→ r, pa ∧ vvalid γ x ∧ γ(x) = (r, pa) ∧ vvalid γ pa}
7 p = x -> parent;
8 // ↙ {x 7→ r, pa ∧ p = pa ∧ vvalid γ x ∧ γ(x) = (r, pa) ∧ vvalid γ pa}
9 // {graph(γ) ∧ p = pa ∧ vvalid γ x ∧ γ(x) = (r, pa) ∧ vvalid γ pa}

10 if (p != x) {
11 // {graph(γ) ∧ p = pa ∧ pa 6= x ∧ vvalid γ x ∧ γ(x) = (r, pa) ∧ vvalid γ pa}
12 p = find(p);

13 //

{
∃γ′, rt . graph(γ′) ∧ p = rt ∧ pa 6= x ∧ vvalid γ x ∧
uf_equiv(γ, γ′) ∧ uf_root(γ′, pa, rt) ∧ γ(x) = (r, pa)

}
14 // ↘

{
x 7→ r, pa ∧ p = rt ∧ pa 6= x ∧ uf_equiv(γ, γ′) ∧
uf_root(γ′, pa, rt) ∧ vvalid γ x ∧ γ(x) = (r, pa)

}
15 x -> parent = p;

16 // ↙
{

x 7→ r, rt ∧ p = rt ∧ pa 6= x ∧ uf_equiv(γ, γ′) ∧
uf_root(γ′, pa, rt) ∧ vvalid γ x ∧ γ(x) = (r, pa)

}
17 // {∃γ′′ . graph(γ′′) ∧ uf_equiv(γ, γ′′) ∧ uf_root(γ′′, x, rt) ∧ p = rt}
18 } return p;
19 } // {∃γ′′, rt . graph(γ′′) ∧ uf_equiv(γ, γ′′) ∧ uf_root(γ′′, x, rt) ∧ ret = rt}

Figure 5.9: Clight Code and Proof Sketch of find

From Figure 5.8 it is easy see that the definition (4.7) of the spatial

predicate graph which is the reachable part from a certain vertex is not

suitable anymore. We could only get a path if we use (4.7). Considering

the unionS function which joins two sets, we need a spatial predicate to

represent the whole collection of sets, i.e. the whole graph.

The data structure used in Figure 5.9 is still a collection of pointers.
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We could use the full_vertices_at in Figure 4.7 to define graph. Its math-

ematical form is in (5.28).

graph(γ) def
= ∗
vvalid γ v

v 7→ γ(v) (5.28)

The data structure used in Figure 5.10 is totally different. The parame-

ter of the unionS function reveals that the spatial representation of a graph

should be an array. It is defined in (5.29)

graph(γ, x) def
= ∃n .

((
∀v . 0 ≤ v < n↔ vvalid γ v

)
∧(

n ≤ MaxInt/8
)
∧ array_at

(
x, [γ(0), γ(1), γ(2), . . . , γ(n)]

)) (5.29)

where x is not the root vertex of a graph but the address of the graph array.

The spatial predicate array_at is defined in VST which represents a mapping

from an address to an array. The condition n ≤ MaxInt/8 is required by

the restriction of index arithmetic in C code.

We should note that the parameter isNullDec of MathGraph is also af-

fected by chosen data structure. In the pointer version it is defined to

compare with the null pointer. But in the array version, we define it to

decide whether the parameter is less than zero.

5.4.2 The specification of find and unionS

The Figure 5.9 and Figure 5.11 give the simplified proof sketches of the

find function. Their specifications look like the same:

{graph(γ) ∧ vvalid γ x}

find(x)

{∃γ′′, rt . graph(γ′′) ∧ uf_equiv(γ, γ′′) ∧ uf_root(γ′′, x, rt) ∧ ret = rt}

(5.30)
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1 void unionS(struct Node* x, struct Node* y) {
2 // {graph(γ) ∧ vvalid γ x ∧ vvalid γ y)}
3 struct Node *xRt, *yRt; int xRank, yRank;
4 xRt = find(x);
5 // {∃γ′, t. graph(γ′) ∧ uf_equiv(γ, γ′) ∧ uf_root(γ′, x, t) ∧ xRt = t}
6 // {graph(γ1) ∧ vvalid γ1 y ∧ uf_equiv(γ, γ1) ∧ uf_root(γ1, x, xRt)}
7 yRt = find(y);
8 // {∃γ′, t. graph(γ′) ∧ uf_equiv(γ1, γ′) ∧ uf_root(γ′, y, t) ∧ yRt = t}
9 // {graph(γ2) ∧ uf_equiv(γ1, γ2) ∧ uf_root(γ2, x, yRt)}

10 if (xRt == yRt) { return; }
11 // {graph(γ2) ∧ uf_union(γ, x, y, γ2)}
12 // {∃γ′. graph(γ′) ∧ uf_union(γ, x, y, γ′)}
13 xRank = xRt -> rank; yRank = yRt -> rank;
14 if (xRank < yRank) { xRt -> parent = yRt;
15 // {γ3 = redir_prnt(γ2, xRt, yRt) ∧ graph(γ3)) ∧ uf_union(γ, x, y, γ3)}
16 } else if (xRank > yRank) { yRt -> parent = xRt;
17 // {γ3 = redir_prnt(γ2, yRt, xRt) ∧ graph(γ3)) ∧ uf_union(γ, x, y, γ3)}
18 } else {yRt -> parent = xRt; xRt -> rank = xRank + 1;}};
19 // {γ3 = redir_prnt(γ2, yRt, xRt) ∧ graph(γ3)) ∧ uf_union(γ, x, y, γ3)}
20 // {∃γ′. graph(γ′) ∧ uf_union(γ, x, y, γ′)}

Figure 5.10: Clight Code and Proof Sketch of unionS

They do share the same relation uf_equiv and uf_root. The only differ-

ence is the spatial predicate graph. This specification says that after the

execution of find, the graph γ becomes γ′′. The graphs γ and γ′′ are sort

of equivalent and the root of the given vertex x is the return value rt. Here

ret means the return value. The definitions of the relation uf_root and

uf_equiv are listed below:

uf_root(γ, x, t) def
= reachable γ x t ∧ ∀y . reachable γ t y → y = t (5.31)

uf_equiv(γ1, γ2)
def
= (∀x . vvalid γ1 x↔ vvalid γ2 x) ∧

∀x, r1, r2 . uf_root(γ1, x, r1) →

uf_root(γ2, x, r2) → r1 = r2 (5.32)

The relation uf_root says that a vertex t is the root of x in γ if t is reachable

from x in γ and, for any other vertex y which is reachable from t, y must be

t. It is a rational definition because the root vertex cannot point to other
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vertices. The relation uf_equiv says that γ1 and γ2 may have different

structures but for any vertex x, the roots of x in γ1 and γ2 are the same.

The specification of the function unionS in Figure 5.10 is listed below:

{graph(γ) ∧ vvalid γ x ∧ vvalid γ y)}

unionS(x, y)

{∃γ′ . graph(γ′) ∧ uf_union(γ, x, y, γ′)}

(5.33)

which says after the execution of unionS, graph γ becomes γ′. The graphs

γ and γ′ satisfy a relation uf_union, which is rather complicated:

s ⊂ γ
def
= s = ∅ ∨ ∃r . r ∈ s ∧

(
∀v . v ∈ s↔ uf_root(γ, v, r)

)
(5.34)

uf_union(γ1, v1, v2, γ2)
def
=
(
∀s1, s2 . v1 ∈ s1 → v2 ∈ s2 →

s1 ⊂ γ1 → s2 ⊂ γ1 → s1 ∪ s2 ⊂ γ2

)
∧(

∀s . s 6= s1 → s 6= s2 → s ⊂ γ1 → s ⊂ γ2

)
∧(

∀s . s ⊂ γ2 → s = (s1 ∪ s2) ∨ s ⊂ γ1

)
(5.35)

We first define a notation s ⊂ γ to represent a statement: a set s contains

exactly all those vertices whose roots are the same in the graph γ. Next we

can explain the definition of the relation uf_union. The definition (5.35)

is a long conjunction. The first conjunct says that if v1 belongs to set s1,

v2 belongs to set s2, and we have both s1 ⊂ γ1 and s2 ⊂ γ1 , then after the

execution of unionS, both sets are united together, i.e. s1 ∪ s2 ⊂ γ2. The

second conjunct says that other sets except s1 and s2 remain the same.

The third conjunct says that there are no new sets in γ2.

The definition (5.34) formalizes the concept “disjoint sets in a graph”.

The 3 conjuncts in the definition (5.35) employ (5.34) to formalize the

concept “uniting two disjoint sets”.
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1 struct subset { int parent; int rank; };
2 int find(struct subset s[], int i) {
3 // {graph(γ, s) ∧ vvalid γ i}
4 int p0 = 0;
5 int p = s[i].parent;
6 if (p != i) {
7 p0 = find(s, p);
8 // {∃γ′, t . graph(γ′, s) ∧ uf_equiv(γ, γ′) ∧ uf_root(γ′, p, t) ∧ p0 = t}
9 // {graph(γ1, s) ∧ uf_equiv(γ, γ1) ∧ uf_root(γ1, p, p0)}

10 p = p0;
11 s[i].parent = p; }

12 //

{
γ2 = redir_prnt(γ1, i, p) ∧ graph(γ2, s)) ∧
uf_equiv(γ, γ2) ∧ uf_root(γ, i, p)

}
13 return p; }
14 // {∃γ′, t . graph(γ′, s) ∧ uf_equiv(γ, γ′) ∧ uf_root(γ′, x, t) ∧ ret = t}

Figure 5.11: Clight Code and Proof Sketch of find (array version)

5.4.3 The proof of find and unionS

The verification of the find function is rather straightforward once we have

the right definitions of relations. In the pointer version proof sketch of find

in Figure 5.9, we mark the localization block as before via ↘ and ↙. The

ramification entailments of them are just applications of theorems such as

(4.20) and (4.25). The spatial entailments are done in these theorems. We

just need to prove the spatial predicates in concrete verification do satisfy

the premises of those theorems. In the array version proof sketch of find

in Figure 5.11, the whole graph is stored in an array. The spatial predicate

graph is defined in (5.29). We can refer to a vertex by the index of the array.

Because of this definition, we do not use any ramification entailment in the

spatial part of the proof. We can prove the facts about arrays directly.

However, both versions of verification of the find function share the same

pure fact entailments because they share the same pure relations.

The only thing we do not mention is the function redir_prnt(γ, x, y)

which returns a new graph by changing the parent of vertex x to y in

graph γ. Intuitively it is quite easy but the real definition is too complex

155



to be listed here, because the graph we are manipulating must obey the

rules defined by LiMaFin. So the definition of redir_prnt contains proofs

about preservation of LiMaFin. We cannot find it in Figure 5.9, but it is

used in the proof. The existential quantifier in line 17 hides a redir_prnt.

It is used in all our proofs to represent the result after redirection. The

function redir_prnt uses dependent types just because we bind property

LiMaFin in GeneralGraph. If we use LabeledGraph instead, dependent types

is not necessary, although we still need to prove LiMaFin at some point.

The proof of unionS is much easier than find because it is not recursive.

The major difficulty is proving the following pure fact:

uf_root(γ, x, rx) uf_root(γ, y, ry) rx 6= ry

uf_union
(
γ, x, y, redir_prnt(γ, rx, ry)

) (5.36)

5.4.4 Theorems in the verification of Union-Find

Figure 5.12 on page 157 gives an overview of the theorems in the verifica-

tion of several variants of the union-find algorithm. Unlike Figure 5.4 or

Figure 5.7, it does not contain files in math or spatial graph libraries.

Sector 1 (graph/LstGraph.v) contains the definition of LstGraph and basic

facts about it.

Sector 2 (graph/UnionFind.v) contains the definitions of uf_root, uf_equiv,

uf_union and etc. These relations are based on PreGraph. Sector 2 also

contains theorems directly about these relations. In Figure 5.12 we can see

that this file is widely cited by other proof scripts.

Sector 3 (msl_application/ArrayGraph.v) contains spatial predicates to rep-

resent graphs in arrays. The definition (5.29) is in this file. So there is no

surprise to see it is used in sector 14, the proof script to verify the array

version of the union-find algorithm.

Sector 4 (msl_application/GList.v) contains theorems about representing
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1: graph/LstGraph.v
2: graph/UnionFind.v
3: msl_application/ArrayGraph.v
4: msl_application/GList.v
5: msl_application/GList_UnionFind.v
6: msl_application/UnionFindGraph.v

7: sample_mark/env_unionfind.v
8: sample_mark/env_unionfind_arr.v
9: sample_mark/env_unionfind_iter.v
10: sample_mark/spatial_array_graph.v
11: sample_mark/spatial_graph_glist.v
12: sample_mark/spatial_graph_uf_iter.v

13: sample_mark/verif_unionfind.v
14: sample_mark/verif_unionfind_arr.v
15: sample_mark/verif_unionfind_iter.v
16: sample_mark/verif_unionfind_iter_rank.v
17: sample_mark/verif_unionfind_rank.v
18: sample_mark/verif_unionfind_slim.v

Figure 5.12: Theorems in the Verification of Union-Find Program
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graphs in a series of pointers. It is a specialization of Graph.v, just like

GraphBi.v for binary graphs.

Sector 5 (msl_application/GList_UnionFind.v) contains the ramification the-

orems used in the verification of union-find.

Sector 6 (msl_application/UnionFindGraph.v) contains definitions and theo-

rems independent of spatial representations. The vertex information func-

tion (5.27) is defined in this file. It also contains all pure theorems such as

(5.36). This is the most widely used file in the verification of union-find.

There are intensive curves to it in Figure 5.12.

Sectors 7–12 contains various implementations to interfaces which are

necessary to connect VST, the spatial library and our verification.

Sectors 13-18 are proof scripts verifying 6 variants of the union-find

algorithm. Figure 5.9 and Figure 5.10 are about verif_unionfind_slim.v. Fig-

ure 5.11 is about verif_unionfind_arr.v.

Proof scripts with suffix rank (sector 16, 17) add one more requirement in

the post condition of the find function: the rank field of the data structure

is not changed. At first we introduced rank into the verification because

we attempted to prove the necessary amortization bounds. But soon we

ran into an overflow issue: it was impossible to prove that the rank would

not exceed max_int because the CompCert memory model does not place

a bound on the total number of allocations. Informally, this overflow is

impossible in practice because no computer has 2264 bytes of memory, which

would be required to create enough nodes and union them together to create

such an overflow, but Coq remains unconvinced.

Proof scripts whose names contain iter (sectors 15 and 16) verify the find

function which uses loops instead of recursions. The ramification theorems

are the same. By choosing the right loop invariant, only small modification

of existing pure theorems is required.

Sector 13 (verif_unionfind.v) uses a stronger relation findS to replace the
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uf_equiv in the specification of the find function. This affects the pure

theorems. Both the premise and conclusion are enhanced. Later we find

that uf_equiv is strong enough and sufficient to describe the behavior.

The specification of the unionS functions are all the same.

5.5 Verification of a Garbage Collector

Anand et al. [2017] are developing CertiCoq, a compiler which translates

programs written in Gallina—the specification language of Coq—to C code.

Then CompCert will compile the C code to machine code. Gallina assumes

infinite heap memory whereas C has a more realistic finite heap. CertiCoq

supports Gallina’s assumption via memory management at the C level. In

particular, the C code generated by CertiCoq contains calls to a garbage

collector (GC), also written in C. CertiCoq aims to be end-to-end certified,

so the GC must also be certified.

Unlike our previous examples, the GC is a realistic program having a

concrete working scenario, with sophisticated implementations. Its scale

and complexity present a huge verification challenge. For example, the

objects manipulated by the GC may have different number of fields and

the fields may be boxed or unboxed and must be disambiguated at runtime.

After a detailed and thoughtful consideration, we figured out how to model

the verification via our framework. After a great engineering effort which

lasted eight months, we finally finished the verification by proving the graph

isomorphism between the states before and after the garbage collection.

The statistics in Table 6.1 show that the verification of GC is a huge

project, which contains more than 230 definitions and more than 700 the-

orems. It is almost as large as the sum of the math and spatial graph

libraries. Since the verification contains so many details, we cannot and do

not explain every aspect of it. Instead, in the following sections, we will
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briefly introduce the program, explain how to abstract the data structure

in GC as a graph in general, describe the principle in designing the speci-

fications of functions, propose steps to accomplish the graph isomorphism,

provide both the local and global views of the verification, and report some

bugs we found in the original C code during the verification.

5.5.1 The algorithm of GC

The program we aim to verify (i.e. GC) is a generational copying garbage

collector. The heap is divided into several disjoint spaces called generations.

GC always starts from the first generation. It examines the objects in a

generation to see if they are accessible from a root set. If they are, they

would be copied to the next generation. When all such objects are copied,

the original generation will be cleaned. The collection from one generation

to another employs Cheney’s algorithm [Cheney, 1970]. This collection

may trigger the collection of the second generation into the third, etc.

size color tag byte value[0] value[1] … value[n-1]

32-bit header body

22 2 8 32 bits 32 bits 32 bits

Figure 5.13: A Single Block, the Basic Unit in GC

Figure 5.13 illustrates the basic unit manipulated by GC. It is called

a block, which has two parts. One is a 32-bit header and the other is an

array with variable size. The header records the size n of the body. The

data stored in each slot of the array is either an unboxed integer data value

or a pointer. GC follows the convention from OCaml’s garbage collector

to disambiguate the two: all integers must be odd and all pointers must

be even-aligned [Hickey et al., 2014]. Pointers may point to other blocks

or data structures outside the GC’s purview. If they point to other blocks,
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they always point to the value[0] slot of those blocks.

1

2

Stage 1

2

1

Stage 2

1

2

Stage 3

Figure 5.14: The forward Procedure in GC

The “examine and copy” procedure is carried by the forward function,

which accepts a pointer p to a block, a “from” generation f , and a “to”

generation t as parameters. This function plays a dual role in such a pro-

cedure. Both are illustrated in Figure 5.14. The stage 1 is the initial state

which has two generations. In the left generation there are two blocks,

block 1 and block 2. The dark gray boxes represent the headers of blocks

and the light gray boxes represent the bodies. We can see the second field

of block 1 points to block 2. Now suppose the pointer p is in the root set

and it points to block 1. The forward functions checks that block 1 is in

generation f . So block 1 is copied to the next free position in generation t,

the right one. Meanwhile, forward will mark the original block 1 and leave

the address of the copied block in the first field of the original one. The

state becomes stage 2. The header of the original block 1 is red and there

is a dashed arrow pointing to the copied block 1. The p in the root set will

be modified. Note that modifying p in the root set does not change the
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graph. This is one role of the forward function. It “forwards” the block 1.

Since the copied block 1 is exactly the same as the original, its second

field also points to block 2 in the left generation. To forward the field of

a block, we need to call forward again. This time the parameter p is the

second field of the copied block 1. The forward function will trace p and do

the same thing: copy, mark block 2 and modify its first field. After that,

it will change p to point to the copied block 2, as shown in stage 3. This

time modifying p changes the graph.

In both case, if forward finds that a block is marked, it will not copy it

again but just change the pointer p to the new copied block. Recall that

the copied block’s address has been placed in the first field of the marked

block.

The forward_roots function accepts a root set l, a “from” generation f

and a “to” generation t as parameters. For every pointer in l which points

to a block in generation g, the block will be forwarded and the pointer will

point to the new position.

The do_scan function accepts a “from” generation f , a “to” generation

t, and a position s in generation t. It will scan and forward every field

across blocks from s. If the field is not a pointer or does not point to

generation f , forward would do nothing. We should note that the scan

and forward operation may create new fields. So do_scan will loop until all

fields are scanned and no new fields are created.

The do_generation function combines forward_roots and do_scan to-

gether. It stores the first free position s in generation t. Then it calls

forward_roots first to forward blocks pointed by the root set. Next it

calls do_scan from the position s. The do_generation function clears the

generation f in the end.

Finally the garbage_collect puts do_generation in a while loop to trig-

ger the “cascade” collection when the free space is less than half of the
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capacity of the “to” generation.

This is the algorithm of GC. Through a series of function calls, most

tasks are carried out by the forward function.

5.5.2 The definitions of γ and graph

Figure 5.14 gives an impression about the memory layout of the blocks.

They are classified according to their generations and put sequentially in

each generation. If we treat each generation as a whole, then generations

are distributed discontinuously. Our challenge is figuring out what the

types of LabeledGraph’s Vertex, Edge, DV etc. should be, so that we can

define proper spatial predicates to describe the data structure used in GC.

To abstract the data structure used in GC as a graph, blocks must be

abstracted into vertices and pointers to other blocks must be abstracted

into edges to other vertices. We decide to abstract the vith block of the

vgth generation into a vertex (vg, vi), i.e. a pair of natural numbers. The

information stored in a block except pointers to other blocks is packed into

a big record type raw_vertex_block as the label of a vertex. If the jth

field of a vertex/block (vg, vi) is a pointer to other blocks, then there is an

edge (vg, vi, j) from (vg, vi). The destination is stored in the dst function

of PreGraph. To construct a block from an abstract vertex (vg, vi), the only

missing information is the starting address of the vgth generation. The

information of each generation including the starting address and number of

vertices is packed into another record type graph_info as the global label of

the graph. Table 5.2 gives all determined types needed for a LabeledGraph

γ used in GC.

Vertex Edge DV DE DG
nat * nat nat * nat * nat raw_vertex_block unit graph_info

Table 5.2: Instantiated Types of a Graph in GC
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Unlike the verification of mark, spanning, find and unionS, the γ here is

not a GeneralGraph because we do not provide the soundness condition so

far. The soundness condition is absolutely necessary in our fully functional

correctness verification later. But here we decide to use LabeledGraph in-

stead of GeneralGraph as the type of the mathematical graph γ in spatial

predicates and specifications of GC.

This big decision is made because of the complexity of GC. All previ-

ous verification is about algorithms performed by one single function. It

is reasonable to emphasize that the soundness is preserved after the ex-

ecution of the function. However, the GC algorithm described in §5.5.1

is a composition of several functions. The preserved soundness condition

for the top level function may not be preserved for low level function. For

example, before and after the whole algorithm (garbage_collect), no ver-

tex/block is marked “copied”. But as illustrated in Figure 5.14, it is very

common to have marked vertices before and after forward. If we put “no

marked vertices” in the soundness condition, the forward function breaks

it. If we do not put it in the soundness condition, then the verification of

garbage_collect cannot guarantee there is no copied vertex. This dilemma

forces us to remove the soundness condition. After all, the soundness con-

dition is just a pure property. For GC, it does not affect the definition of

spatial predicates. We can put “no marked vertices” to the specification

of garbage_collect only. In other words, different functions in GC could

have different requirements of γ in their specifications. There is no need to

bind a non-universal soundness condition to γ in this case.

Now we can define the spatial predicate graph to describe the whole
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data structure:

graph(γ) def
= ∗

i∈[0,1,...,numgen(γ)]

(
∗

j∈[0,1,...,numv(γ,i)]
vrep(γ, (i, j))

)
(5.37)

vrep(γ, v) def
= (vaddr(γ, v)− 4) 7→ header(γ, v) ∗

vaddr(γ, v) 7→ fields(γ, v)
(5.38)

The whole graph representation graph(γ) is a two-fold “big star”. It

is an iterated separation conjunction of generation representations. Each

generation representation is an iterated separation conjunction of vertex

representations. A vertex representation vrep(γ, v) is a separation con-

junction of two components. One is a 4-byte header and the other is an

array of vertex-dependent size. The functions header(γ, v) and fields(γ, v)

compose the header and fields representations of v respectively. Because of

the complexity we omit their concrete definitions. The function vaddr(γ, v)

calculates the address of first field of v in γ. Its definition is given in (5.39).

vaddr
(
γ, (i, j)

)
def
= start(γ, i) + 4×

j−1∑
k=1

vsize
(
γ, (i, k)

)
+ 4 (5.39)

The function start(γ, i) retrieves the starting address of the ith generation

in γ from the global label. The function vsize(γ, v) gives the size of a vertex

v, i.e. number of fields + 1. The extra 1 is for the header. So the function

vaddr sum up the sizes of all vertices before (i, j) in generation i. The total

size times 4 is the offset from the starting address. With the offset of all

vertices before and its own header (the extra 4 in (5.39)), we finally get the

address of vertex (i, j) in the heap.

5.5.3 The specifications of GC

Defining specifications for those functions used in GC is another big chal-

lenge. In previous verification, we just needed to formalize our intuition
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about what the function does as a relation about states before and after

the execution. Then we put the spatial predicates and the relation to-

gether as the specification. Sometimes this specification just works, like

the graph mark program and union-find. Sometimes, we need a careful

consideration (even through trial-and-error method) to modify the original

specification to go through the verification, like the spanning tree program.

We should note that these specifications only reflect our understanding of

the programs. A successful verification means the behavior of the program

fulfills the specification. It does not mean the specification is a complete

description of a program’s behavior.

We tried to use the same method in defining the specifications in GC.

For the top level function garbage_collect, the intuition tell us the isomor-

phism between two LabeledGraphs is a proper relation as the specification.

But for the workhorse forward, the intuition cannot help us too much.

From its code in Figure 5.17, it can check, copy, mark, and redirect the pa-

rameter pointer. It can just check and redirect. It also can just check and

do nothing at all. What makes it even worse is that its two-fold roles dis-

cussed in §5.5.1 when it does all these things. Its role depends on whether

the parameter pointer is in the root set or is just a pointer in the field.

Different roles correspond to different actions on the graph even for the

same piece of code. Such complicated behavior cannot be abstracted into

a simple, elegant relation.

Our solution is to define an inductive relation forward_relation which

captures the exact behavior of the forward function.

Figure 5.15 gives a peek of the definition of forward_relation. Every

role, every execution path of forward has a corresponding constructor in

forward_relation. The type forward_t is an optional type. It could be

an element in the root set or an edge of the graph. We use this type to

disambiguate the role of forward. Let us inspect some of the constructors.
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Inductive forward_relation (from to: nat):
nat -> forward_t -> LGraph -> LGraph -> Prop :=

| fr_z: forall depth z g,
forward_relation from to depth (inl (inl (inl z))) g g

| fr_v_not_in: forall depth v g, vgeneration v <> from ->
forward_relation from to depth (inl (inr v)) g g

| fr_v_in_forwarded: forall depth v g,
vgeneration v = from -> (vlabel g v).(raw_mark) = true ->
forward_relation from to depth (inl (inr v)) g g

| fr_v_in_not_forwarded_O: forall v g,
vgeneration v = from -> (vlabel g v).(raw_mark) = false ->
forward_relation from to O (inl (inr v)) g

(lgraph_copy_v g v to)
| ...

Figure 5.15: Part of the Inductive Relation forward_relation

The constructor fr_z means for an integer element z in the root set, we

have forward_relation ... g g, which means forward does nothing. The

execution path for constructor fr_v_in_forwarded is when the vertex el-

ement is in the “from” generation but it is marked, the forward function

will redirect element in the root set to the copied one. But this redirec-

tion does not change the graph. We again have forward_relation ... g g.

When the vertex is not marked, it will be copied, marked and modified.

We define a function lgraph_copy_v to represents the changes to the graph.

So we have forward_relation ... g (lgraph_copy_v g v to) in the next

constructor.

By converting every step into a premise and translating every modifi-

cation about the data structure to a function which returns the modified

underlying model, we get an accurate description of one execution path.

By combining them together, we can define a verbose but exact relation.

More importantly, if the specification s of low level function f is defined

in this way, s can be reused in the specification of a function g which calls

f . For example, we can define the relation about graphs for forward_roots

in Figure 5.16. The relation forward_relation is used in fr_loop. In the
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Inductive fr_loop (from to: nat) (fi: fun_info):
list nat -> roots_t -> LGraph -> roots_t -> LGraph -> Prop :=

| frl_nil: forall g roots, fr_loop from to fi nil roots g roots g
| frl_cons: forall g1 g2 g3 i il r1 r3,

forward_relation from to O
(root2forward (Znth (Z.of_nat i) r1)) g1 g2 ->
fr_loop from to fi il
(upd_roots from to (inl (Z.of_nat i)) g1 r1 fi) g2 r3 g3 ->
fr_loop from to fi (i :: il) r1 g1 r3 g3.

Definition fr_relation from to fi r1 g1 r2 g2 :=
fr_loop from to fi (nat_inc_list (length r1)) r1 g1 r2 g2.

Figure 5.16: Relation for forward_roots

constructor frl_cons, fr_loop itself appears in the premise. This makes

fr_loop a real inductive definition. The relation involving recursions and

loops can be easily defined using such inductive relations.

We adopt this method in defining specifications for all functions in GC,

even for the highest-level garbage_collect function. The postconditions

(including the inductive relations) in such accurate specifications can be

seen as strongest postconditions. So we just need to derive the properties

indicating functional correctness we want from the postconditions. Then

the Consequence rule in Figure 2.1 will establish the successful verifica-

tion of the functional correctness of those programs.

One big advantage of this methodology is that we only need to perform

the spatial inference once. The specifications are sort of mechanical. We

do not need guess one and modify it through trial and error, as we did

in verifying spanning tree. The pure functions and relations used in the

specifications only reflect the spatial modification. From this perspective,

the methodology separates the spatial inference and the high-level, human-

understandable correctness. As far as we know, this method is quite new.

The idea comes from the discussion with Qinxiang Cao. He also used this

techinque in the verification of the KMP algorithm1.

1It is an unpublished work.
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5.5.4 The proofs of GC

As pointed out in §5.5.3, the inductive relations used in the specifications

split the proofs of GC into 2 categories. One is the spatial proofs involving

VST saying the C programs meet the verbose specifications. The other is

the pure mathematical proof saying we can derive the functional correctness

from the verbose specification.

The Figure 5.17 on page 170 gives a simplified proof sketch of the

forward function for one of its roles, in this case the pointer p is the nth

field of a vertex. The proof sketch is listed here to show how complicated

the verification of a real program could be. The description of states is so

complicated and verbose that we have to define some shortcuts such as ϕ1,

ϕ14 and ϕ26, to make the specification shorter. Our proof script discusses

the two roles of forward in the very beginning. So it verifies forward twice

for its different roles. The proof script of forward has more than 1300 lines.

We use the relation gc_graph_iso defined in Figure 5.18 to represent the

graph isomorphism between graphs before and after the garbage collection.

The roots1 and roots2 are root sets. The relation gc_graph_iso fo-

cuses on the reachable subgraphs from the root sets. It says the reachable

subgraphs are isomorphic. Figure 3.5 on page 50 gives the definition of

label_preserving_graph_isomorphism_explicit.

The proof saying that the graphs before and after garbage collection

satisfy gc_graph_iso can be split into several stages. We define two more

relations gc_graph_semi_iso and gc_graph_quasi_iso to help. We first

prove that forward preserves gc_graph_semi_iso, so as forward_roots and

do_scan. Then we prove the graphs before and after running forward_roots

and do_scan continuously satisfy gc_graph_quasi_iso. At last we prove

do_generation, which is a composition of forward_roots, do_scan and clear

operation of generations, satisfies gc_graph_iso. As a while loop of the
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1 //


∀γ, finf, tinf, from, to, v, n . graph(γ) ∗ finf(finf) ∗ tinf(tinf) ∧
compat(γ, finf, tinf, from, to) ∧
s = start(γ, from) ∧ l = s+ gensz(γ, from) ∧
n = naddr(tinf, to) ∧ p = vaddr(γ, v) + n

 def
= ϕ1

2 void forward (value *s, *l, **n, *p) {
3 value *v; value va = *p;
4 if(Is_block(va)) {// is ptr
5 v = (value *)((void *)va);
6 if(Is_from(s, l, v)) {// in from

7 //
{
ϕ1 ∧ ∃e, v′ . lab(γ, v)[n] = e ∧ dst(γ, e) = v′ ∧ v = vaddr(γ, v′)

} def
= ϕ7

8 // ↘
{

∃flds′, hdr′ . flds′ = lab(γ, v′) ∧ v′ 7→ flds′ ∧ hdr′ = flds′[−1]
} def
= ϕ8

9 header_t hd = Hd_val(v);
10 // ↙

{
ϕ8 ∧ hd = val(hdr′)

}
11 //

{
ϕ7 ∧ hd = val(hdr′)

}
12 if(hd == 0) {// already forwarded
13 //

{
ϕ7 ∧ hd = 0

}
14 // ↘

{
∃f, f ′ . v 7→ f ∗ v′ 7→ f ′ ∧ f = lab(γ, v) ∧
f ′ = lab(γ, v′) ∧ f ′[0] = vaddr(γ, copy(γ, v′)) ∧ p = &f [n]

}
def
= ϕ14

15 *p = Field(v,0);
16 // ↙

{
ϕ14 ∧ f [n] := f ′[0]

}
17 //

{
ϕ30 ∧ ∃γ′ . graph(γ′) ∧ γ′ = upd_edge(γ, e, copy(γ, v′)) ∧
fwd_postcondition(γ, γ′, tinf, finf, from, to, v, n)

}
18 } else {// not yet forwarded

19 //
{
ϕ7 ∧ hd 6= 0

} def
= ϕ20

20 int i; int sz; value *new;
21 sz = size(hd); new = *n+1; *n = new+sz;

22 //

{
ϕ20 ∧ sz = blocksize(hd) ∧
new = start(γ, to) + used(γ, to) + 1 ∧ n = new+ sz

}
def
= ϕ22

23 Hd_val(new) = hd;
24 for(i = 0; i < sz; i++)
25 Field(new, i) = Field(v, i);

26 //


ϕ22 ∧ ∃γ′, v′′, tinf′ . graph(γ′) ∗ tinf(tinf′) ∧
v′′ = new_cp_v(γ, to) ∧ γ′ = copy_vertex(γ, to, v′, v′′) ∧
compat(γ′, finf, tinf′, from, to)

 def
= ϕ26

27 Hd_val(v) = 0;
28 Field(v, 0) = (value)((void *)new);

29 //
{
ϕ26 ∧ val(hdr′) = 0 ∧ flds′[0] = copy(γ, v′)

} def
= ϕ29

30 // ↘
{

∃flds . v 7→ flds ∧ flds = lab(γ′, v)
} def
= ϕ30

31 *p = (value)((void *)new);
32 // ↙

{
ϕ30 ∧ flds[0] := vaddr(γ, v′′)

}
33 //

{
ϕ29 ∧ ∃γ′′ . graph(γ′′) ∧ γ′′ = upd_edge(γ′, e, v′′) ∧
compat(γ′′, finf, tinf′, from, to)

}
34 }}}} //

{
fwd_postcondition(γ′, γ′′, tinf′, finf, from, to, v, n)

}
Figure 5.17: Clight Code and Proof Sketch for forward
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Definition gc_graph_iso (g1: LGraph) (roots1: roots_t)

(g2: LGraph) (roots2: roots_t): Prop :=

let vertices1 := filter_sum_right roots1 in

let vertices2 := filter_sum_right roots2 in

let sub_g1 := reachable_sub_labeledgraph g1 vertices1 in

let sub_g2 := reachable_sub_labeledgraph g2 vertices2 in

exists vmap12 vmap21 emap12 emap21,

roots2 = map (root_map vmap12) roots1 /\

label_preserving_graph_isomorphism_explicit

sub_g1 sub_g2 vmap12 vmap21 emap12 emap21.

Figure 5.18: The Definition of Graph Isomorphism Used in GC

function do_generation, garbage_collect also satisfies gc_graph_iso.

5.5.5 Theorems in the verification of GC

Figure 5.19 on page 172 gives an overview of the theorems in the verification

of GC. Their relations are rather simple.

Sector 1 (CertiGC/GCGraph.v) contains all pure theorems used in the spa-

tial verification of GC, i.e. verifying the functions satisfy the inductive

relations. There are 432 of them.

Sector 2 (CertiGC/gc_correct.v) contains all pure theorems in proving the

final graph isomorphism. There are 155 of them. We can see they only de-

pend on GCGraph.v. It is totally expectable that none of other files depends

on gc_correct.v because it just contains theorems to establish the graph iso-

morphism. It is our ultimate goal in the verification of GC. No other targets

should depend on it.

Sector 3 (CertiGC/spatial_gcgraph.v) contains all spatial theorems in veri-

fying GC, including ramification theorems. There are 91 in total.

Sectors 4–14 are proof scripts of all functions in GC. From Figure 5.19,

it is very clear that most of them depends on sector 1 and 3, pure and

spatial supporting theorems.
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1: CertiGC/GCGraph.v

2: CertiGC/gc_correct.v

3: CertiGC/spatial_gcgraph.v

4: CertiGC/verif_Is_block.v

5: CertiGC/verif_conversion.v

6: CertiGC/verif_create_heap.v

7: CertiGC/verif_create_space.v

8: CertiGC/verif_do_generation.v

9: CertiGC/verif_do_scan.v

10: CertiGC/verif_forward.v

11: CertiGC/verif_forward_roots.v

12: CertiGC/verif_garbage_collect.v

13: CertiGC/verif_make_tinfo.v

14: CertiGC/verif_resume.v

Figure 5.19: Theorems in the Verification of the GC Program
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We could note that one segment in sector 10 is extremely long. The

length of a segment represents the length of the proof in log scale. This

extremely long theorem is the verification of forward. We prove it in two

rounds for its two-fold roles.

5.5.6 Bugs we found during the proof

We discovered and fixed two bugs in the source code during our verification.

The first was a performance bug we discovered when developing the key

invariants. The original GC code executed Cheney’s algorithm too conser-

vatively, scanning the entire to generation for backward pointers into from.

We showed that scanning a subset of to suffices. Performance doubled.

The second bug was an overflow when subtracting two pointers to cal-

culate the size of a space, as below. Pointers start and limit point to the

beginning and end of the ith space of the heap h.

int w = h->spaces[i].limit - h->spaces[i].start;

This subtraction is defined in C and Clight, but will overflow if the differ-

ence equals or exceeds 231. We adjusted the size of the largest generation

to avoid this overflow.

5.5.7 Comparison with other verification of GC

As we mentioned in §1.5, Varming and Birkedal [2008] gave a formal proof

of Cheney’s copying collector written in a simple, self-defined language with

procedures. They defined the invariants of Cheney’s algorithm in their

Isabelle/HOLCF implementation of higher-order separation logic. Instead

of proving graph isomorphism, they proved a similar property called heap

isomorphism. Compared to our 14000 lines of verification, their verification

of GC has 7500 lines. We believe that the additional complexity of our
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verification comes from the more complicated implementation and sematics

of the C programming language.

Schism/cmr [Pizlo et al., 2010] is a certified concurrent collector built

in a Java VM that services multi-core architectures with weak memory

consistency. Its mark-sweep collector kernel against a relaxed memory

model is formally verified by [Gammie et al., 2015] in the Isabelle/HOL

proof assistant. The code they verified is specified in a simple and intuitive

programming language Cimp. So it is based on a detailed abstract model.

McCreight et al. [2007, 2010] introduced GCminor, which is a certified

translation step added to CompCert’s compilation from Clight to assembly.

GCminor makes explicit the specific invariants that the garbage collector

relies upon, thus minimising errors due to the violation of invariants be-

tween the garbage collector and the mutator. Their framework eases the

burden in the verification of GC written in GCminor.

Hawblitzel and Petrank [2009] annotated x86 code for two GCs for the

Bartok C# compiler, and then used Boogie verification generator and the

Z3 automated theorem prover to verify their correctness automatically.

The closest piece of work to our certified GC is probably the excellent

certified GC for the CakeML project [Sandberg Ericsson et al., 2019], since

both integrate a certified GC into a certified compiler for a functional lan-

guage. Starting from an algorithm-level modelling and verification of a GC

in HOL4 theorem prover, they implemented the GC in several intermedi-

ate languages which the CakeML compiler goes through. Then they proved

that the GC correctly mimics the operations performed by the algorithm-

level implementation. After that, the GC is treated as just another part of

the program to be compiled by CakeML. The largest difference, however,

is that we present an integrated graph framework suitable for reasoning

about many graph algorithms, of which our GC is merely the flagship. In

contrast, they focus much more narrowly on the problem of certified GCs.
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Chapter 6

Conclusion and Future Work

In this thesis we explore problems during the mechanized verification of

graph-manipulating programs. We develop a framework which provides

various constructions to formalize graph-related concepts. The framework

also contains a whole set of theorems which facilitate reasoning about

graph-manipulating programs. Since we focus on the end-to-end verifi-

cation of real C code, we integrate our framework into the VST toolset.

Then we apply our techniques in the verification of several classical graph

algorithms written in C. All these works are written and machine-checked

in Coq. Table 6.1 shows some statistics about our code base.

Component Files Size (in lines) Definitions Theorems
Common Utilities 10 3,578 44 289

Math Graph Library 20 10,585 216 581
Spatial Graph Library 3 2,328 59 110
Integration into VST 11 2,783 17 172

Marking 6 775 9 20
Spanning Tree 5 2,723 17 92
Union-Find 18 3,193 107 135

Garbage Collector 16 13,858 235 712
Total Development 89 39,823 704 2,111

Table 6.1: Statistics for Our Code Base

We have the following main contributions.

• We propose the Localize rule which generalizes the Ramify rule
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to handle modified program variables and existential quantifiers in

postconditions more smoothly.

• We develop a general and modular framework for defining and reason-

ing about mathematical graphs. It is expressive and powerful enough

to adapt various requirements of graphs in different applications.

• We develop a general and modular spatial library for reasoning about

graphs in the heap. It contains a large portion of ramification entail-

ments which ease the burden of spatial deduction.

• By connecting mathematical graphs to spatial graphs in the heap via

separation logic, we demonstrate the mechanical verification of sev-

eral nontrivial graph-manipulating algorithms written in C, including

graph mark, spanning tree, union-find and a garbage collector.

In the future we plan to improve the pure reasoning of graphs and sim-

ilar data structures. Currently the reasoning of pure mathematical fact is

rather painful. We hope that automation can improve the current situa-

tion. The graphs used in all our finished verification share the same feature:

edges in those graphs carry no information other than connectivity. We

plan to verify the Dijkstra’s algorithm which has length information in

edges, so as to make our demonstrations more complete and promising.

The third potential direction is integrating our framework to some other

toolkit that uses a different heap model and pursues automation, such as

HIP/SLEEK [Chin et al., 2010].
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