
EMBEDDED COMPUTATIONAL ELEMENTS

IN EXTENSIBLE ROUTERS

SCOTT C. KARLIN

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

JANUARY 2003

c© Copyright by Scott C. Karlin, 2002. All rights reserved.

iii

Abstract

The demand to extend the set of services, such as network address translation, firewalls,

proxies, and virtual private networks, that are supported by Internet-connected devices

represents an opportunity to extend the traditional domain of Internet routers beyond

simple packet forwarding. An important characteristic is the ability for end-users to

install custom services on their routers. Routers with this characteristic are extensible.

Due to their critical position in the Internet topology, routers must be robust—when

presented with unanticipated workloads, they must allocate their resources across the

services they support according to administrator-established policies to ensure that each

service gets the resources it needs.

By their nature, hardware-based routers with physically isolated control and data

planes are robust but not readily extensible without a redesign while software-based

routers may be extensible but are not robust without extensive regression testing; it is

difficult to be simultaneously robust and extensible. The most common approach for

router vendors is to favor robustness, and support new services on a case-by-case basis.

Allowing the end-user to develop and install router services dooms this case-by-case

approach to extensibility.

Emerging hardware in the form of intelligent, multi-port line cards that have their

own embedded processing capabilities, based on either microprocessors or network pro-

cessors, suggests that one can build cost-effective PC-based routers that lie in the design

space between purely hardware- and software-based. However, the increased diversity of

configurations makes both extensibility and robustness challenging. We do not want to

require developers to re-implement services for every possible hardware configuration.

How do we map the desired services onto the hardware to preserve robustness?

iv

In this thesis we demonstrate that one can build a router from PC-based components,

including programmable line cards, that is simultaneously extensible and robust. To show

this, we describe an architecture, called VERA, that supports extensibility through an

explicit interface and robustness through isolation of services; we present techniques to

implement this architecture on a PC-based router; and we characterize and analyze the

problem of mapping the services to the various, heterogeneous processors comprising the

router to preserve robustness.

v

Acknowledgments

This dissertation represents a significant milestone in my life. I would not have reached

this point without the support, guidance, and encouragement of many people along the

way. While I cannot name everyone, I would like to acknowledge a few of them here.

I would like to begin by thanking my committee: Larry Peterson, Doug Clark, Kai

Li, Brian Kernighan, and Randy Wang. As primary readers, Doug and Kai provided

invaluable feedback that helped improve the clarity and focus of my dissertation. I have

been very fortunate to have Larry as my thesis advisor; he has provided me with just the

right mix of patience, encouragement, and feedback for my ideas. Additional thanks to

Doug Clark who, along with Margaret Martonosi, advised me during my first two years

at Princeton while I developed the SurfBoard as part of the Shrimp project led by Kai Li.

Thanks to Melissa Lawson, the graduate coordinator, for helping me negotiate the

academic requirements and keeping me on track. Thanks to Trish Killian who placed

dozens of orders for parts during the fabrication of the SurfBoard. Also, thanks to Jim

Roberts and his technical staff for their support. In particular, I appreciate the time that

Steve Elgersma and Chris Miller spent teaching me many of the finer points of system

and network administration.

I have been privileged to meet and work with many wonderful colleagues including

Andy Bavier, Zuki Gottlieb, Björn Knutsson, Aki Nakao, Patrick Min, Xiaohu Qie, Nadia

Shalaby, Tammo Spalink, Dan Wang, Limin Wang, Mike Wawrzoniak, and Yuanyuan

Zhou. Tammo and Zuki developed much of the IXP1200 microcode used in this dis-

sertation. It was Björn (and then Andy) who convinced me that I should visit Swe-

den someday. I remember fondly the many hours Dan and I spent during our first

semester working through the challenging but throughly rewarding assignments in Bob

Sedgewick’s Analysis of Algorithms class. I would like to thank my past and present

vi

office mates Angelos Bilas, Han Chen, Nitan Garg, Ting Liu, Anastasios Viglas, Lisa

Worthington, and Peter Yianilos for letting me take more than my fair share of the

bookcase space. Thanks also to Princeton undergraduates Jared Kramer, Mike Lindahl,

Alexandra Blasgen, Marla Conley, Natalie Deffenbaugh, and Jennifer Borghi who have

brightened my day (December 14th — give or take) each year since 1998. As an intern

at Sarnoff, it was my pleasure to work with Ron Minnich, Maya Gokhale, John DeGood,

Jim Kaba, and Aaron Marks with whom I had many interesting technical discussions. In

addition, thanks to Jim and Aaron for introducing me to the joys of sushi.

My parents, Vern and Susan, deserve special thanks for encouraging and supporting

me throughout my entire education. Also, thanks to my grandparents and my sister,

Kristin, for their love and support. I would like to thank those who, through their

mentorship and guidance, helped me find my way to Princeton: Frank Short, my first

mentor; Lyn Hardy, my lab manager at TRW; and Ray Toal, my advisor when I was

a Master’s student at Loyola Marymount University. Thanks to my longtime friend Ed

Felten for suggesting that I apply to Princeton.

Finally, this work would not have been possible without the support and patience of

my wife Rosie and our daughter Molly. Rosie made a leap of faith when she agreed to

move from her native Southern California to New Jersey. Once here, our years have been

enriched by the friendship and support of many families including the DiLouie, Ildiz,

Mapelli, McGinley, O’Connell, and Sheehan families. Thank you all.

This work has been supported in part by NSF grant ANI–9906704, DARPA contract

F30602–00–2–0561, and Intel Corporation. During academic year 1999–2000, I was

supported by an Intel Foundation Graduate Fellowship. Portions of this work were

originally published in Karlin and Peterson [32].

vii

To my family, who made this possible:

To my wife, Rosie, for her love and support and the courage to make the journey,

To my daughter, Molly, for the joy she brings to my life, and

To my parents, Vern and Susan, for their support and love.

viii

Contents

Abstract . iii

1 Introduction 1

1.1 IP Routers . 2

1.1.1 Basic Router Functions . 2

1.1.2 Minimal Packet Processing . 4

1.1.3 Traditional Router Implementation 5

1.2 Motivation . 6

1.2.1 Internet Services . 6

1.2.2 Emerging Hardware . 11

1.3 Problem . 14

1.3.1 Key Definitions . 14

1.3.2 Service / Flow / Packet Model 16

1.3.3 Discussion . 17

1.3.4 Related Work . 18

1.4 Thesis Contribution . 21

1.4.1 VERA . 22

1.4.2 Implementation . 24

CONTENTS ix

1.4.3 Mapping . 24

1.4.4 Thesis Outline . 25

2 Architecture 26

2.1 Hardware Abstraction . 26

2.1.1 Hardware Primitives . 27

2.1.2 Processor Hierarchy . 28

2.1.3 Hardware API . 31

2.1.4 Justification . 31

2.2 Router Abstraction . 32

2.2.1 Router Primitives . 32

2.2.2 Classification Hierarchy . 34

2.2.3 Router API . 37

2.2.4 Justification . 38

2.3 Discussion . 40

2.3.1 Forwarding Functions and Extensibility 40

2.3.2 Independent Impact and Robustness 41

3 Implementation 44

3.1 Hardware . 44

3.2 Distributed Router Operating System . 47

3.2.1 Processor Hierarchy Revisited 48

3.2.2 Router Primitive Decomposition and Scheduling 49

3.2.3 Internal Packet Routing . 52

3.2.4 Distributed Queues . 54

3.2.5 Indirect Bandwidth Management 58

x CONTENTS

3.2.6 PCI Switch Implementation . 61

3.2.7 Prototype Implementation . 67

3.2.8 Line card Runtime Environment 75

3.2.9 Microengine Environment . 77

3.3 Evaluation . 78

3.3.1 Performance Characterization — PCI 78

3.3.2 Performance Characterization — Packet Transfer 82

3.3.3 Performance Characterization — VRP 87

3.3.4 Extensibility . 88

3.3.5 Robustness . 89

4 Resource Allocation 92

4.1 Problem Space . 93

4.1.1 Motivating Example . 93

4.1.2 Admission Control and Placement 95

4.2 Hardware Performance Model . 96

4.2.1 Processors . 96

4.2.2 Switches . 97

4.2.3 Ports . 98

4.3 Workload . 99

4.3.1 Service Characterization . 100

4.3.2 Service Classes . 101

4.4 Algorithms . 103

4.4.1 Utilization Vectors . 103

4.4.2 Online Placement Algorithms 107

CONTENTS xi

4.4.3 Offline Placement Algorithms 109

4.5 Experimental Results on IXP1200 EEB 109

4.5.1 IXP1200 Router Parameters . 110

4.5.2 Workload Generation . 111

4.5.3 Fixed Service Distribution . 115

4.5.4 Varying Service Distributions 118

4.6 Experimental Results on PMC694 . 122

4.6.1 PMC694 Router Parameters . 122

4.6.2 Workload Generation . 123

4.6.3 Fixed Service Distribution . 125

4.7 Evaluation . 127

4.7.1 Extensibility and Robustness . 129

5 Conclusions 130

5.1 Research Contribution . 130

5.2 Future Work . 132

A Router Parameter Table Calculations 134

A.1 Common Router Parameters . 135

A.2 IXP1200 EEB Router Parameters . 136

A.3 PMC694 Router Parameters . 140

Bibliography 143

xii

List of Figures

1.1 An Internet Router . 3

1.2 Internet Protocol Header (Selected Fields) 5

1.3 A 4-port Pentium/PowerPC-based Router 13

1.4 An 8-port Pentium/IXP1200-based Router 14

1.5 VERA Hourglass Model . 22

2.1 Hardware Abstraction Graph of Figure 1.3 29

2.2 Hardware Abstraction Graph of Figure 1.4 30

2.3 Classifying, Forwarding, and Scheduling IP Packets 33

2.4 Mapping an Abstract Forwarding Path onto a Switching Path 35

2.5 Classification Hierarchy . 36

2.6 Partial Classifier Acting as a Route Cache 37

2.7 Basic Operations Performed by the createPath Function 39

3.1 Pentium/IXP1200/PowerPC-based Testbed 45

3.2 Block Diagram of an IXP1200 EEB . 46

3.3 Queue Server Operation . 53

3.4 Distributed Queue Implementation Methods 57

3.5 Nested Routers . 58

LIST OF FIGURES xiii

3.6 QoS / Best-Effort Interference on a Shared Switch 59

3.7 Periodic Reporting of Queue States . 60

3.8 VERA’s IXP1200 Toolchain . 68

3.9 Runtime Directory Structure . 69

3.10 Application Directory Structure Template 70

3.11 The vera.o Kernel Module . 74

3.12 Running an Executable Image on the IXP1200 EEB 76

3.13 Three Switching Paths through the Pentium/IXP1200 Hierarchy 90

4.1 Algorithm Performance Varying tiny/small Ratio 119

4.2 Algorithm Performance Varying small/medium Ratio 120

4.3 Algorithm Performance Varying medium/large Ratio 121

xiv

List of Tables

3.1 Pentium/PMC694 PCI Transfer Rates 80

3.2 Pentium/IXP1200 PCI Transfer Rates 81

3.3 Max. IXP1200 EEB Forwarding Rates and Excess Processor Cycles . . . 85

3.4 Est. Port/PMC694 Forwarding Rates and Excess Processor Cycles 86

3.5 Est. PMC694/Pentium Forwarding Rates and Excess Processor Cycles . . 87

4.1 Cycle, Memory and Register Requirements of Example Services 99

4.2 Workload Forwarding Classes . 102

4.3 Router Parameters (Common) . 111

4.4 Router Parameters (IXP1200 EEB) . 112

4.5 Workloads for the IXP1200 EEB Router 114

4.6 Algorithm Performance: IXP1200 EEB Router, 9/45/45/1 Workload . . . 116

4.7 Router Parameters (PMC694) . 123

4.8 Workloads for the PMC694 Router . 124

4.9 Algorithm Performance: PMC694 Router, 9/45/45/1 Workload 126

1

Chapter 1

Introduction

Few research artifacts have made as big an impact on society as the Internet. Both the

number of connected hosts and daily users now number in the millions. As more users get

connected, more people are developing novel ways of using this global resource. Routers

are a key component of the Internet. They tie individual networks together and give the

illusion that all the hosts on all the networks are directly connected. Because routers

are the “glue” which binds the Internet together, they are in a unique position to modify,

redirect, or monitor the data passing through them. In this thesis we demonstrate that we

can build a router from PC-based components, including programmable line cards, that

is simultaneously extensible and robust. To show this, we (1) describe an architecture,

called VERA, that supports extensibility through an explicit interface and robustness

through isolation of services; (2) present techniques to implement this architecture on

a PC-based router; and (3) characterize and analyze the problem of mapping the services

to the various, heterogeneous processors comprising the router to preserve robustness.

2 CHAPTER 1. INTRODUCTION

1.1 IP Routers

The Internet is a packet-based, store-and-forward, computer-to-computer communication

network based on the internet protocol (IP) defined in RFC791 [49]. Rather than creating

a dedicated channel from source to destination, transmitted data is transferred from device

to device. At each device, the data is received, stored, and then forwarded to the next

closest device along a path toward the destination in a technique known as store-and-

forward. To improve the efficiency of the process, transmitted data is broken into fixed-

size chunks call packets which are sent from device to device in a pipelined fashion.

1.1.1 Basic Router Functions

To support packet routing, IP specifies that every network interface have a distinct 32-bit

identifier known as its IP address. Devices with more than one network interface have

more than one address. To send data across the Internet, a host divides the data into

blocks which will form the data portion of the packets. For each block, the host attaches

routing information in the form of an IP header (see Figure 1.2 on page 5) to form an

IP packet. Each packet is then encapsulated into a link-layer packet appropriate for the

network interface (e.g., an Ethernet frame). Finally, the link-layer packet is sent to the

router on the local network.

As depicted in Figure 1.1, an IP router has multiple ports (network interfaces) and

a (general purpose) control processor connected with an internal switch. The complete

specification for an Internet router is found in RFC1812 [2]; the two primary routing

functions are:

Forward Packets: This is the obvious job of a router—moving packets arriving on one

port and sending them out on another port so that the packets eventually reach

1.1. IP ROUTERS 3

P

P

P

P
Control

Processor

Switch

Ports

Figure 1.1: An Internet router consists of multiple ports (connecting to distinct networks),
a control processor, and a switch that connects the components together.

their destination. To forward an incoming packet, the router must examine the

header. By using the destination address as an index into its routing table, the

router can then send the packet to the appropriate next-hop device (either another

router or the destination host) on the network connected to the appropriate output

port. Forwarding packets is considered part of the data plane of a router.

Maintain Routing Table: Because hosts and routers can join or leave the Internet at any

time, routers must become aware of changes that effect their local routing tables.

To support this dynamic aspect of the Internet, routers implement routing protocols

to share connectivity information and maintain routing tables. The two primary

routing algorithms currently in use are OSPF (Open Shortest Path First) [42] and

BGP (Border Gateway Protocol) [53]. While the details and application of these

protocols are beyond the scope of this thesis, the important point is that these

protocols are sufficiently complex that reasonable implementations require the ca-

4 CHAPTER 1. INTRODUCTION

pabilities of the general purpose control processor. Maintaining the routing table is

considered part of the control plane of a router.

One distinction between the data and control planes is that the former must process

packets at line speed, while the latter is expected to receive far fewer packets (e.g.,

whenever routes change or new connections are established). The requirement that the

data plane runs at line speed is based on the need to receive and classify packets as fast

as they arrive, so as to avoid the possibility of priority inversion: i.e., not being able

to receive important packets due to a high arrival rate of less important packets. The

expectation that the control plane sees significantly fewer packets is only an assumption.

It is possible to attack a router by sending it a heavier load of control packets than it is

engineered to accept.

1.1.2 Minimal Packet Processing

All forwarded packets undergo some amount of transformation when they pass through a

router. We refer to the minimum amount of processing (the most common case) as IP-- 1.

Referring to the IP header depicted in Figure 1.2, the minimum amount of processing is to

decrement the time-to-live (TTL) field and recompute the header checksum. Most packets

only require IP-- processing. However, if the packet header has options, is destined for

the router itself (e.g., a routing protocol packet), or is otherwise “exceptional,” the router

performs more processing on that packet than just IP--.

Because an important comparison metric for router manufacturers is the raw forward-

ing rate of packets only requiring IP-- processing (traditionally, the vast majority of pack-

ets), the path that these packets take through the router is often highly optimized. Such

1The “--” in the name refers to the decrement operator of the C programming language and is a play on
the name of the C++ programming language.

1.1. IP ROUTERS 5

0 31

Time to Live

Destination Address

Options

IHL

Header Checksum

Padding

Source Address

Ver Type of Serv Total Length

Identification Flags Fragment Offset

Protocol

Figure 1.2: Selected fields from the Internet Protocol (IP) header. The tick marks denote
bit positions. Only the shaded fields are modified as part of IP-- processing. The options
and padding fields are optional. From RFC791 [49].

an optimized forwarding path is referred to as the fast path. Non-optimized forwarding

paths are referred to as slow paths.

1.1.3 Traditional Router Implementation

One may characterize router architectures by their mapping of control plane and data

plane functions to the underlying hardware. A software-based router is characterized by

a single processor implementing both the data plane and the control plane. All packets in

a software-based router are handled by the processor under software control. The design

architecture is similar to (and often implemented with) a PC. That is, it contains a micro-

processor, a shared bus (implementing the switch), and multiple line cards (implementing

the ports). The actual hardware may be packaged in a desktop PC or as a stand-alone,

custom-engineered device. Contemporary, open-source, operating systems such as Linux

include the necessary software to implement a software based router on a PC.

6 CHAPTER 1. INTRODUCTION

A hardware-based router is characterized by an optimized fast path implementing all

or part of the data plane using custom hardware (e.g., ASICs). The block diagram of

hardware-based routers closely resembles Figure 1.1. The switch may be implemented

as a high-bandwidth cross-bar switch rather than a bus. The line cards perform the

route lookup and IP-- processing in custom hardware. Any portion of the data plane

not implemented in custom hardware is handled by the control processor. Because the

throughput of the custom hardware is significantly faster than the throughput of the

control processor, hardware-based routers often have a large difference in throughput

between the fast path and the slow path. Their overall performance is sensitive to the

number of packets which cannot be handled by the fast path.

When comparing traditional router implementations one finds that software-based

routers are generally less expensive than hardware-based routers. This is because soft-

ware-based routers are often built from commercial off-the-shelf (COTS) components

while hardware-based routers require components that are produced on smaller manufac-

turing scales. In general, hardware-based routers have higher-performance than software-

based routers. However, this comparison is only true under the assumption that the vast

majority of the packets require processing (typically, IP--) that can be handled by the

optimized hardware data path.

1.2 Motivation

1.2.1 Internet Services

When the Internet was relatively small and primarily used by researchers in an open

setting, the primary “service” was a point-to-point connection between two specific hosts

1.2. MOTIVATION 7

allowing users to transfer files and interactively connect to remote hosts. Packets were

treated equally and, other than IP-- processing, independently forwarded without modi-

fication from one specific host to another. While this is still the default behavior for IP

packets, the shift in focus from an open research network to a vehicle for commerce,

banking, telecommuting, and personal communication, along with a tremendous increase

in its size, has led to the development and deployment of new services that require routers

to forward and process packets in a variety of ways. These services include:

Firewalls: These devices are used to block the flow of packets between networks. For

example, when placed at the boundary between a company and the rest of the

Internet, its job might be to block external access to internal services and to block

packets containing sensitive information from reaching destinations outside the

company. This may be as simple as rejecting packets originating from a par-

ticular host to as complex as rejecting all the packets comprising an electronic

mail message containing executable code matching the characteristics of a known

computer virus. One of the benefits of quickly filtering out undesired packets is

that it helps to reduce the effects of a denial-of-service (DoS) attack where devices

under attack waste so much time handling spurious packets that legitimate packets

are not handled in a timely manner. Since routers must examine each packet to

determine its disposition and are already required to discard malformed packets,

they can be easily extended to support a firewall service by including patterns in

the route table for packets that should be explicitly blocked.

Intrusion Detection: By monitoring and analyzing packet traffic patterns and character-

istics, intrusion detection services help determine when systems are under attack

or have been compromised. A router can be a component of an intrusion detection

8 CHAPTER 1. INTRODUCTION

system by passively monitoring the packets it receives and forwards. The router

could perform the analysis itself, or redirect the collected information to a separate

host for offline analysis.

Content Delivery Networks (CDNs): As the Internet became larger (both in the num-

ber of connected hosts and in its global reach), it became inefficient for large

content providers, such as news organizations and multinational companies, to have

a single web server with a single network connection provide content for every user.

Content delivery networks (CDNs) consist of multiple mirrors (servers with a copy

of some master data set) spread around the Internet. Specialized routers intercept

server requests and transparently redirect them to a nearby mirror. This spreads the

load across many devices and reduces the venerability of the service to single-point

failures.

Network Address Translation (NAT): Because there is a limited number2 of IP ad-

dresses available, NAT was developed to allow multiple devices on an internal,

hidden network to appear as a single host (i.e., using a single IP address) on the

Internet. Routers supporting NAT actively modify the source address of outbound

packets and the destination address of inbound packet to maintain the illusion that

the hidden hosts are directly connected to the Internet.

Commerce Servers: To support many simultaneous connections and to provide a mea-

sure of fault tolerance, Internet commerce sites often use a load balancing front-end

router to dynamically direct traffic to the most lightly loaded server from in a set of

2While IP addresses are 32-bits wide giving more than 4 billion possible combinations, many are
reserved by the protocol. In addition, due to the way blocks of addresses are allocated, it is not uncommon
to have localized address space shortages.

1.2. MOTIVATION 9

servers (also called a server farm). Additionally, the front-end router could encrypt

sensitive transaction data (e.g., credit card numbers and passwords).

Overlay Networks / Tunneling: Prior to widely available Internet connections, larger

companies wishing to connect multiple locations were forced to create their own

private networks using, for example, leased telephone lines. With the advent of

low-cost, wide-spread Internet service, companies are now able to create virtual

private networks (VPNs) that tie a subset of Internet hosts (those belonging to

the company) together using encrypted tunnels. Routers implementing an overlay

network tunnel packets through the Internet by treating the entire packet (including

its header) as data, encrypting the data, and encapsulating the encrypted data into a

new, larger packet. This “outer” packet is sent over the Internet in the regular way

to another host in the VPN. Upon arrival, the packet is “unwrapped,” decrypted,

and delivered to its destination. Note that the destination may be the host itself or

a locally connected machine. In some cases, the packet is forwarded to another

node in the VPN by re-encrypting and re-encapsulating the packet. A VPN is

an example of an overlay network. While end-hosts often perform the tunneling,

routers are well-placed to make optimizations based on their innate knowledge of

the underlying network topology.

Transcoding Media Gateways: With the proliferation of Internet-connected devices in-

cluding cellular telephones, 2-way pagers, and personal digital assistants (PDAs),

there is a market for efficiently delivering web-based content to these devices. A

transcoding media gateway is a specialized router that converts high-bandwidth or

high-resolution data (e.g., video [11, 19]) to lower-bandwidth (suitable for wire-

less links) or lower-resolution (suitable for handheld displays). Thinning a data

10 CHAPTER 1. INTRODUCTION

stream to match the capabilities of the end device can reduce latency and improve

efficiency in the use of transmission bandwidth.

Quality of Service: While not a service itself, quality of service (QoS) introduces a

range of packet priorities. In a traditional router, packets are independently pro-

cessed in first-in, first-out (FIFO) order on a per port basis and are forwarded using

best effort processing—that is, packets are treated equally and every effort is made

to forward them. It is easy to imagine instances where some packets are more

important than others and require priority processing. A common way of generat-

ing additional revenue from a service (such as providing Internet connectivity) is

through service differentiation. By varying the quality of service, Internet service

providers (ISPs) can charge customers more to have their packets be given priority

potentially increasing the ISP’s revenue.

The result is that routers that can (1) perform more complex decisions than simply

forwarding packets based only on their destination address, (2) perform more complex

packet processing than IP--, and (3) perform service differentiation rather than use best-

effort packet delivery will be able to distinguish themselves in the marketplace. Note

that one might view this situation as a reason to give servers multiple ports and have

them perform more router-like operations. Either way, the point is that there is now

a continuum of devices from the pure router to the pure server. This thesis chooses

the router-centric view by focusing on extensible routers—routers which are designed to

support the end-user installation of new services such as those described above.

For hardware-based routers, additional services mean that fewer packets (e.g., IP--)

can be handled without requiring the resources of the control processor; said another

way, there are more “exceptional” packets. For both software-based and hardware-based

1.2. MOTIVATION 11

routers, these “exceptional” packets require more cycles per packet as the number and

complexity of the Internet services increases. This means that for a fixed architecture,

an increase in the fraction of “exceptional” packets is an increase in the fraction of the

packets will need to be processed by the slow path. The reason packets move to the slow

path is simply that the fast path does not have the capability to process these exceptional

packets—the programmable cycles implementing the service are too far away. The next

section presents emerging hardware that suggest an approach to this problem.

1.2.2 Emerging Hardware

Without even considering advances in networking technology that enable the high-speed

transmission of bits, emerging hardware is influencing the design of routers. At the chip

level, we have seen a steady increase in the speed and capabilities of programmable

devices including microprocessors and field-programmable gate arrays (FPGAs—devices

whose internal logic and interconnections can be quickly re-configured with different

functionality) and the introduction of special purpose, high-speed, fixed-function proces-

sors such as MPEG video encoders/decoders and cryptographic processors.

As the performance of programmable devices increases, there is an opportunity to

replace complex, fixed-function logic and state machines with software running on com-

mercial off-the-shelf microprocessors. This makes sense—the inherent flexibility of

software along with its ability to be changed after (or during) the hardware manufacturing

phase makes it an attractive option for a growing number of devices. Of particular

interest is the introduction of processor-based line cards for PCs because routers based on

PCs [63] have the advantage of leveraging the economies of scale of the PC industry. The

first generation of processor-based line cards simply replace fixed-function logic and, in

12 CHAPTER 1. INTRODUCTION

some cases, provide limited, hard-coded, protocol support (e.g., checksum computation)

to offload some specific computation from the host processor. These line cards are not

intended to run customer software. To minimize production costs, the processor speeds

are carefully engineered to provide the minimum number of cycles needed to meet the

board’s specifications.

The second generation of processor-based line cards use general-purpose micropro-

cessors and have the ability to run end-user software. Examples include a MIPS-based

card from Alteon [1] and the PMC694, a PowerPC-based card from RAMiX [52]. The

number of processing cycles that can be applied to a packet depends on the relative speed

of the processor and the aggregate bandwidth of the ports. The Alteon card (marketed as

a server network card intended to ease the host processor burden by offloading some

low-level protocol processing from coalescing multiple interrupts) has a single, full-

duplex, 1Gbps port and two MIPS processors each running at 88MHz giving a ratio

of 0.09cycles/bit. The PMC694 card (designed to handle all packet processing and give

Internet connectivity to processor boards in industrial and military applications) has two,

full-duplex, 100Mbps ports and a single 266MHz PowerPC processor giving a ratio of

0.7cycles/bit. Based on this metric, the PMC694 can apply approximately eight times as

many processing cycles to each packet as the Alteon card.

Figure 1.3 shows an example 4-port router using two PMC694s in a Pentium-based

PC. While this router configuration has relatively few ports, it has two especially inter-

esting features: (1) a high processor cycle to port bandwidth ratio, and (2) substantial

processing cycles “close” (low-latency) to the ports.

The current third-generation processor-based line cards are based on network proces-

sors. A network processor is a programmable device specialized to handle packets at

high speed. They are characterized by multiple, independent processing elements (often

1.2. MOTIVATION 13

PCI BUS

Pentium III
Motherboard

Filtering
Bridge plus Memory

PowerPC Core

MAC MAC

PCI BUS

Filtering
Bridge plus Memory

PowerPC Core

MAC MAC

PCI BUS

RAMiX PMC694 RAMiX PMC694

Figure 1.3: A PC-based router using PowerPC-based programmable line cards with a
total of four 100Mbps ports.

called engines) and multiple buses allowing packets to move efficiently between network

interfaces and buffer memory. Network processors have been introduced by Vitesse [60],

Intel [27], and IBM [24] among others.

As an example of the kind of hardware configuration that is possible, Figure 1.4

shows an example 8-port router consisting of a Pentium processor, connected by its PCI

bus to an Intel IXP1200 network processor. The IXP1200, in turn, is connected by a

proprietary IX bus to eight 100Mbps Ethernet ports. Internally, the IXP1200 consists of

a StrongARM processor, plus an array of six microengines.

The recent availability of high-performance, multi-port line cards for PC systems

based on programmable (either microprocessor or network processor) devices creates the

problem of creating a router architecture that can support a broad range of configurations.

14 CHAPTER 1. INTRODUCTION

PCI BUS

IX BUS

Octal MAC

StrongARM

Microengines

IXP1200

Internal Bus

Motherboard
Pentium III

Figure 1.4: A PC-based router using an IXP1200-based programmable line card with a
total of eight 100Mbps ports.

1.3 Problem

The problem this thesis addresses is how to build a router using commercially available,

PC-based components that is both extensible and robust.

1.3.1 Key Definitions

Because extensibility and robustness are key elements of our thesis, we define them here.

1.3. PROBLEM 15

Extensibility

An extensible router is one that is programmable by the user, where “user” is defined

as someone other than the original equipment manufacturer. For example, a user might

be the system administrator for an Internet service provider (ISP) or a third-party value-

added reseller (VAR) making custom routers for a niche market. An extensible router

is programmable in the sense that when a packet arrives, user code can operate on the

bytes of the packet. As a router, an extensible router has intrinsic support for processing

packets. Note that it is beyond the scope of this thesis to state how easy or difficult it is to

add new services or precisely how code is structured except how it influences robustness.

Robustness

The definition of robustness assumes that the administrator or user of the router will

want to allocate its resources differently for different classes of packets. Even traditional

routers need this property. For example, routing protocols often use “are-you-alive?”

queries to neighboring routers. If a nearby router does not receive a timely response, it

may assume that the router is inoperative and attempt to route packets around the trouble.

Therefore, even if a router is receiving an unanticipated flood of low-priority packets, we

still want it to process and respond to these high-priority administrative packets.

We want the administrator to allocate the resources to the various services so that

individual services are guaranteed to have enough resources or are prevented from using

too many resources. The administrator makes these allocations based on an anticipated

workload. A robust router is able to follow these allocations for any workload. Note

that a robust router must limit the administrator to making allocations that the router can

guarantee. In summary, robustness has two parts:

16 CHAPTER 1. INTRODUCTION

(1) A robust router must be able to read and classify packets at line speed.

(2) A robust router must honor the processing guarantees it makes.

Note that the classification performed in part (1) need only be as deep as needed to honor

the guarantees it makes in part (2). One guarantee routers typically make is to forward

IP-- packets at line speed.

1.3.2 Service / Flow / Packet Model

Central to the concept of routers providing services is that of a packet flow. A flow is

defined as a set of packets that arrive on a given port and receive the same treatment

by the classifier associated with the input port. A flow is characterized by the triple,

〈input port, forwarder, per-flow state pointer〉. A service is a collection of one or more

related flows. Corresponding to each service is per-service state that can be manipulated

in the same way as per-flow state.

Every packet belongs to a flow; every flow is part of a service. For example, ev-

ery router implements the IP-- service with separate forwarding paths to handle flows

between every pair of ports. As another example, to implement a content distribution

service, a flow might correspond to all packets addressed to TCP port 80, and the for-

warding function might be a redirector that edits the packet header. As a final example, to

implement an adaptive video streaming service, one might define a flow to be all packets

between a particular pair of UDP ports, and the forwarding function might selectively

drop packets (video layers) that exceed the available network capacity [11].

The keys to providing QoS in a router are, first, to track resource commitments and

only admit services that will not overextend any given resource; second, to verify that

services are not exceeding their resource profiles; and third, to ensure that packets that

1.3. PROBLEM 17

are not part of any service, for example, those from a DoS attack, do not consume enough

resources to prevent the router from otherwise meeting its commitments. By separating

flows from services, we can enforce limits and maintain state on both a per-flow and a

per-service basis.

1.3.3 Discussion

As discussed in Section 1.1.3, traditional routers can be characterized as being hardware

based or software based. Faced with goals of robustness and extensibility, both traditional

approaches fall short. Hardware based routers are generally robust. There is a natural sep-

aration of the data plane (implemented in hardware) and the control plane (implemented

in software on a general purpose processor). This separation (or parallelism) allows the

router to classify (and usually forward) most packets without impacting any concurrent

processing occurring in the control processor. But because the data plane is implemented

in hardware, the only way to support extensible router services on a traditional hardware

based router is to implement the services on the control processor. In some cases this may

be feasible; however, the small data path from the switch to the control processor typical

of traditional routers will quickly saturate as more packets require processing that cannot

be done on the hardware data plane.

By their nature, software based routers are better suited to supporting extensions.

However, because the processor must implement both the data plane functions as well as

the control plane functions, the software must be carefully crafted and tested to ensure that

the router is robust. Router vendors need three months or more [12] to perform regression

testing on software based routers when changes are made to the software. Even changes

to the user interface code may impact the forwarding performance of a router.

18 CHAPTER 1. INTRODUCTION

Therefore, traditional hardware-based routers are robust but not extensible while tra-

ditional software-based routers are extensible but not robust; it is difficult to be both at the

same time. The most common approach is to favor robustness, and address extensibility

on a case-by-case basis. That is, the router manufacturer redesigns the hardware or

software as each new service is supported. However, the increased demand for new router

services (cf. Section 1.2.1) dooms the case-by-case approach to extensibility.

In addition, the increased availability of network processors and intelligent line cards

(cf. Section 1.2.2) is a double-edged sword. On the one hand, network processors repre-

sent an opportunity to find a middle-ground between software-based and hardware-based

routers, thereby supporting both extensibility and robustness. On the other hand, there is

the problem of dealing with an increasingly diverse set of hardware configurations. This

makes both extensibility hard (one would hate to have to re-implement services for every

possible hardware configuration) and robustness hard (how does one map the desired

services onto the hardware in such a way that robustness is preserved?). Supporting

extensibility while maintaining robustness is precisely the problem we address in this

thesis. Before outlining our approach in Section 1.4, we discuss related work to put our

contribution in context.

1.3.4 Related Work

Much work has done in the area of router design, but none solves the problem of ex-

tensibility and robustness using commercially-available PC-based components. Many

currently available general-purpose operating systems can be configured to route Inter-

net packets. However, as general-purpose systems, they were not necessarily designed

with packet forwarding in mind. For example, we have measured Linux to be up to

1.3. PROBLEM 19

six times slower forwarding IP-- packets than Scout [51]. More importantly, however,

such general-purpose systems provide no explicit support for adding new forwarders.

Unfortunately, router operating systems in commercial products are closed, and the extent

to which they are extensible is not clear.

Other research efforts recognize the issue of extensibility, but focus on how to struc-

ture software-based routers so they can be easily extended/modified, but without consid-

ering robustness. For example, recent systems like Click [34] and Router Plugins [13]

do support extensibility, but consider neither distributed heterogeneous processing envi-

ronments of a PC with intelligent line cards nor the issue of robustness. Other efforts to

define architectures for active networks [23, 64] also support extensibility, but pay little

attention to either performance or robustness. In contrast, our focus is on how to make a

robust IP router extensible.

The Dynamically Extensible Router (DER) [36] project addresses both extensibility

and high-performance. However, the DER effort is focused on the design of custom

hardware and, therefore, cannot benefit from the economies of scale of the PC industry.

Walton, et al. [63] describe how to make efficient use of the PCI bus on a PC-based

router by exploiting peer-to-peer DMA. We take advantage of the same technique, but

extend their work in several ways. For example, we use intelligent line cards with

much higher processor cycle to port bandwidth ratios than they consider; we assume

the possibility of moving the functions that implement the user-defined services onto the

line cards. We also pay particular attention to how the various resources (bus, CPU) are

scheduled, and the synchronization problems that occur when multiple source devices try

to access the same destination device.

The Suez [8, 50] project is an effort to build a router from a cluster of PCs. It can

be considered a system similar to SHRIMP [5] that is specifically targeted to the task of

20 CHAPTER 1. INTRODUCTION

routing. Because Suez uses single port LANai-based Myrinet cards [6] and all packets

arriving on an interface must traverse the PCI bus, the bottleneck in this system is the PCI

bus. We will show in Chapter 4 that having multiple ports on a card, allowing services to

be installed on the line card, and only sending the header across the bus (when feasible)

reduces the PCI traffic to the point that it is not the bottleneck in the systems we modeled.

The SPINE project at the University of Washington [10, 17] addresses operating

system issues to support intelligent line cards. Like Suez and SHRIMP, they focus on

line cards (in their case, the LANai processor on Myrinet cards) with a single port.

Programmable network cards have been used for a number of purposes over the

years, including to provide access to high-speed links [15, 59, 61], improve handling

of multimedia streams [16], and implement distributed shared memory. All of these prior

efforts have been limited to end hosts (rather than routers), and the line cards support a

single network port.

Recent work by Lepe-Aldama and Garcı́a-Vidal [38, 39] at the Polytechnical Univer-

sity of Catalonia on PC-based software routers directly addresses PCI resource allocation.

However, they only consider a single PC (with a single CPU) using line cards without

processing capability. They also assume the existence of line cards which have an inde-

pendently operating DMA channel per flow. Because routers must support hundreds of

flows, we do not feel that such an assumption is reasonable. As a point of comparison,

the line cards we will consider only have two DMA channels each.

Several recent projects have also focused on the problem of making it easier to extend

router functionality [13, 34, 50], but to date these have been limited to single-processor

Pentium-based implementations. The exception is a recent effort at Washington Univer-

sity to study the feasibility of implementing router extensions in FPGAs [58]. Perhaps

the work closest to our own is an ongoing effort to port the Genesis kernel [7, 35] to

1.4. THESIS CONTRIBUTION 21

the IXP1200. Genesis is designed to support virtual networks by dynamically loading

routelets (similar to our forwarders) onto the IXP1200. The main difference is that our

approach runs all forwarders for a given packet in a single thread, which is critical to our

ability to isolate performance under varying loads.

1.4 Thesis Contribution

As discussed in the previous section, the expanding array of services breaks the case-by-

case approach to supporting these services. We therefore need a router that is designed

to quickly support new services—an extensible router. At the same time, we need the

router to continue to be robust. Finally, the problem such a large space of hardware

configurations creates is one of mapping the functions that implement the services onto

particular processors—and by implication defining the switching path for the packets—

onto a particular hardware configuration. Our approach to this problem is to define a

virtual router architecture. The main contribution of this thesis is to demonstrate that

we can build a router from commercially available, PC-based components (specifically,

multi-port, programmable line cards) that is simultaneously extensible and robust. To

show this, we (1) describe an architecture, called VERA, that is extensible and robust;

(2) present implementation techniques to realize this architecture on a PC-based router;

and (3) characterize and analyze the problem of mapping the functions implementing the

router services to the various, heterogeneous processors comprising the router in a way

to preserve robustness.

22 CHAPTER 1. INTRODUCTION

1.4.1 VERA

Figure 1.5 shows how the VERA framework constrains and abstracts the essence of both

the routing function space and the hardware configuration space. VERA consists of a

router abstraction, a hardware abstraction, and a distributed router operating system. The

router abstraction must be rich enough to support the RFC1812 requirements as well as a

variety of extensions. The hardware abstraction must be rich enough to support a variety

of hardware components. However, it should expose only enough of the hardware details

needed to allow for efficient router implementations. Note that both abstractions must be

well “matched” to one another so that the map between them (i.e., the distributed router

operating system implementation) is efficient and clean. The abstractions must also be

chosen to allow us to model and reason about the system with adequate fidelity without

also getting bogged down by details. Our approach to VERA is guided by three goals:

VERA

Routing
Functions

Configurations
Hardware

Hardware Abstraction

Router Abstraction

Distributed Router
Operating System

(Routing Functions)

(Hardware Configurations)

Figure 1.5: VERA constrains the space of routing function implementations and
hardware exposure to facilitate the mapping between the two.

Extensibility: Our design must export an interface and protocol that allows new func-

tionality to be easily added to the router. It should be easy for a trusted entity

1.4. THESIS CONTRIBUTION 23

(specifically, the end user) to inject new functionality into the router, including

both new control protocols and code that processes each packet forwarded through

the data plane. The challenge in supporting extensibility is defining the interface

by which the control program interacts with the code running in the data plane.

A specific goal is to develop an architecture that is compliant with the router

requirements of RFC1812 including broadcast and multicast.

Robustness: The router should continue to behave correctly regardless of the offered

workload. That is, for every (new) service admitted by the router, the resource

allocation set by the administrator continues to be enforced by the router. For

example, it should not be possible to inject code into the data plane that keeps the

router from processing packets at line speed, and likewise, it should not be possible

for a high packet arrival rate to choke off the delivery of control packets to the

control plane. Our approach is to isolate the interaction among the components so

that an increased load on one component will not impair the performance of another

component. The challenge is to create an architecture with this characteristic.

Efficiency/Performance: In addition to being extensible and robust, we want the ar-

chitecture to support efficient implementations for a given hardware configuration.

For example, by taking advantage of the processor on intelligent line cards, many

packets can be completely processed and forwarded without involving the main

processor at all. By offloading the main processor as much as possible, we leave

extra headroom for user-level extensions. The router should be able to forward

packets at the highest rate the hardware is able to support. The challenge is to

simultaneously manage processing and switching resources across multiple, het-

erogeneous elements within the router.

24 CHAPTER 1. INTRODUCTION

In the development of VERA, we have made a series of design choices that, when

taken together, provide a consistent and coherent framework. Nearly every design choice

represents a trade-off among performance, complexity, and modularity. Because VERA

is designed for implementing extensible IP routers on a heterogeneous processing envi-

ronment based on commercial off-the-shelf hardware, we have made significantly differ-

ent design choices than either a general-purpose operating system or a router operating

system for a single, centralized processor. One of the main contributions of this thesis is

to identify and motivate these design choices.

1.4.2 Implementation

During our implementation of portions of VERA using intelligent line cards in a com-

modity PC, we developed several implementation techniques for PC-based routers. These

are discussed in Chapter 3 and include (1) a Linux device driver for the host processor

which forms much of the hardware abstraction layer, (2) techniques for moving pack-

ets from device to device, and (3) techniques for indirectly managing the shared-bus

resource.

1.4.3 Mapping

VERA is specifically designed to support multiple services with varying resource require-

ments on multi-processor platforms. As a result, a key issue is the mapping of services

to the processors in the system. This placement problem also becomes one of admission

control as we allow the possibility that new services may be dynamically installed on

an extensible router. This thesis contributes an analysis of different placement strategies

over a range of service workloads.

1.4. THESIS CONTRIBUTION 25

1.4.4 Thesis Outline

To demonstrate that one can build a router that is both extensible and robust, we begin by

presenting an architecture (Chapter 2) that is extensible by design and supports robustness

by isolating the user-installed services. Next, through the implementation of key parts of

the architecture (Chapter 3), we show that an implementation on commercial off-the-shelf

hardware can maintain robustness.

Note that the architecture and the implementation are only extensible if the router has

enough available resources to support new services. In Chapter 3, we show two hardware

configurations that have the available resources to be extensible and the isolation to be

robust. Note that the architecture and implementation rely on the fact that the resource

requirements of the services allowed to run on the router do not exceed the capabilities

of the router. To ensure that the router is robust, there is an admission control decision

when a user attempts to install a new service on the router. If the requirements of the

service exceed the available resources of the router, the router cannot guarantee that it

will be robust and the service is not admitted. However, if the service is admitted, there is

an additional decision to place the service on the appropriate processor within the router.

Our approach is to combine these two decisions as part of resource allocation (Chapter 4)

for the router.

In summary, we first argue that our architecture is extensible and robust by design. We

then show that this architecture can be implemented so that extensibility and robustness

are preserved as long as the running system is not oversubscribed. Finally, we describe

and evaluate our resource allocation mechanism that prevents a router from becoming

oversubscribed.

26

Chapter 2

Architecture

A key architectural goal of VERA is to support a variety of user-installed router services

on a range of hardware configurations in a manner that preserves the robustness of the

router. This chapter defines the hardware abstraction and the router abstraction and

provides an initial discussion of some of the issues the abstractions raise.

2.1 Hardware Abstraction

This section describes the hardware abstraction layer for VERA. The object of any

hardware abstraction layer (HAL) is to define an interface between the hardware and the

“device independent” upper level software (typically, an operating system). This allows

us to support a variety of hardware configurations without rewriting the operating system.

Choosing the appropriate level of abstraction is somewhat of an art. We want to choose

the abstraction level so that everything below is part of a consistent and uniform HAL and

nothing above directly accesses the hardware. If we select too high a level of abstraction,

each port to a new hardware configuration will require a major effort. If we select too low

2.1. HARDWARE ABSTRACTION 27

a level of abstraction, we will not be able to take advantage of higher-level capabilities

provided directly by the hardware without breaking through the abstraction layer.

2.1.1 Hardware Primitives

The hardware abstraction layer for VERA can be broken down into three major com-

ponents: processors, ports, and switches. The abstractions for the ports and processors

are fairly standard. The abstraction for the switching elements is more involved and

represents the bulk of the hardware abstraction layer. We describe each of the abstractions

here:

Processors: The hardware abstraction layer groups the actual processors into virtual

processors. Each virtual processor is either a single processor, a symmetric mul-

tiprocessor (SMP), or a tightly coupled set of processing elements such as the

six microengines in an IXP1200 network processor. The relevance is that each

virtual processor is its own scheduling domain with a single thread pool. Also, any

memory local to a processor is consolidated with and managed by that processor.

Ports: A device driver hides the register level details of the port hardware interface and

provides a uniform software interface for upper layers. Even though a given port

may be directly accessible by more than one processor, each port is managed by

a particular processor. This assignment is static. The port interface exports a

scatter/gather capability that can read and write the packet header and data from

separate memory locations. Note that these memory locations must be local to the

processor that manages the port.

Switches: The switching elements are modeled as passive (no processing cycles) and

shared (all devices connected to a switch share a single bandwidth pool). This

28 CHAPTER 2. ARCHITECTURE

also means that we assume that there are no explicit control registers accessible to

the software to schedule data movement through the switch. VERA’s switch ab-

straction provides a distributed queue interface for interprocessor data movement.

Distributed queues span switches; that is, they are queues whose head and tail are

on different processors. This interface is needed by the distributed router operating

system to implement the interprocessor communication and message passing—the

basis for all the data movement within the router.

In addition to the abstractions of the processors, ports, and switches, the hardware

abstraction maintains a static database containing the topology of the system, as well as

the capabilities of the components. This is used in conjunction with the performance

model and resource management schemes discussed in Chapter 4.

While our examples in this thesis are focused on single-PC routers with multiple

intelligent line cards, VERA was also designed to apply to loosely coupled clusters of

personal computers that utilize gigabit Ethernet, InfiniBand, or some other system area

network (SAN) technology [6, 26] as the underlying switching technology. This will be

revisited in Chapter 3.

2.1.2 Processor Hierarchy

Figures 2.1 and 2.2 show the hardware abstraction graph of the systems shown in Fig-

ures 1.3 and 1.4, respectively. The nodes of the graph are the hardware primitives:

processors, ports, and switches. The solid lines connecting the nodes indicate direct

connections where data can flow between primitives. A consequence of our require-

ment that each port be managed by a processor is that all packets arriving on a port

must first take a direct path from the port to the managing processor and that all pack-

2.1. HARDWARE ABSTRACTION 29

Switch
S2

Port
P0

Port
P1

Switch
S0

Processor
C0

Port
P2

Port
P3

Switch
S1

Processor
C1

C2
Processor

100 Mb/s Ports

Sec. PCI Buses

PowerPC

Pri. PCI Bus

Pentium

Figure 2.1: The hardware abstraction graph of Figure 1.3. The solid lines indicate packet
flow paths. The dashed arrows show the processor hierarchy.

ets exiting on a port will ultimately take a direct path from the managing processor to

the port. A switching path is the ordered sequence of hardware primitives traversed

by a packet as it moves through the router. From the hardware abstraction graphs,

one can enumerate the port-to-port switching paths. Representative switching paths

for Figure 2.1 include: P0–S0–C0–S0–P1, P0–S0–C0–S0–S2–C2–S2–S1–C1–

S1–P2, and P0–S0–C0–S0–S2–S1–C1–S1–P2. Representative switching paths for

Figure 2.2 include: P0–S0–C0–S0–P1, P0–S0–C0–S1–C1–S1–C0–S0–P1, and

P0–S0–C0–S1–C1–S2–C2–S2–C1–S1–C0–S0–P1. Note that Figure 2.1 has three

distinct switching elements (rather than one) because each filtering bridge segregates its

secondary PCI bus from the primary PCI bus buses and, thus partitions the bandwidth.

Figure 2.1 also illustrates why we bother to make an assignment of each port to a pro-

cessor; in this system, it is possible to configure the PCI bridge chips so that any of the

processors can access (and therefore control) any of the ports. By not allowing each

30 CHAPTER 2. ARCHITECTURE

C2
Processor

Switch
S2

C1
Processor

Switch
S1

C0
Processor

Switch
S0

Ports
P0−P7

Pentium

PCI Bus

StrongARM

Internal Bus

Microengines

IX Bus

8 x 100 Mb/s Ports

Figure 2.2: The hardware abstraction graph of Figure 1.4. The solid lines indicate packet
flow paths. The dashed arrows show the processor hierarchy. The flow lines on the left
indicate the three possible hardware paths.

processor direct access to every port, we are choosing a simpler, more modular, and more

scalable architecture for one which is potentially faster but more complex.

By ignoring the switches and considering only the processors and ports, we can find

a spanning tree with the master processor at the root and all the ports as leaves. This

spanning tree is called the processor hierarchy. The dashed arrows of Figures 2.1 and 2.2

indicate the edges of the spanning tree defining the processor hierarchy. While not a

requirement, we generally expect that as we move up the hierarchy (away from the ports),

processors will have more general purpose cycles available. Consider, for example,

Figure 2.2. At the lowest level, packets traverse only microengines, while at the highest

level, packets are processed by the Pentium. An intermediate level corresponds to a

2.1. HARDWARE ABSTRACTION 31

StrongARM processor on the IXP1200 chip. At each level of the hierarchy, the packet has

access to some number of cycles, but there is overhead involved in reaching those cycles.

Higher levels (e.g., the Pentium) offer more cycles, but packets also consume resources at

lower levels of the hierarchy to access them. Lower levels (e.g., the microengines) have

enough cycles to perform only certain operations at line speeds.

2.1.3 Hardware API

This section outlines some of the hardware layer API function calls that encapsulate the

distributed queue functionality:

q = allocQueue(endpoint, dir, depth, parms)

This function allocates a distributed queue, q, connected to processor endpoint. The

queue is configured to hold depth entries. The direction parameter, dir, can be set

to either incoming or outgoing. The additional parameters include the switch

reservation.

insert(queue, item)

This function inserts the item on the given queue.

item = remove(queue)

This function removes the item from the given queue.

2.1.4 Justification

Here we describe some of the dimensions of the space and explain what the choices we

made for VERA are reasonable for extensible routers.

32 CHAPTER 2. ARCHITECTURE

Communication Semantics: VERA uses a message passing model (as opposed to a

shared memory model) which more closely models the packet flow in router hard-

ware across a wide variety of devices. A message passing model is better suited

for hardware configurations which include groups of PCs connected via Ethernet-

based switches acting as a single router.

Command Structure: A hierarchical control structure is beneficial for two reasons.

First, a single root processor simplifies the maintenance of routing tables. The

alternative (a distributed control structure) would require a routing protocol to run

within the router (e.g., between the processors in the router) wasting processor

resources. Second, most media access controller (MAC) chips which implement

the ports are designed with the assumption that there will be a single point of

control. Allowing multiple processors access to a single port may not always be

possible.

2.2 Router Abstraction

This section defines the router architecture visible to programmers. The main attributes

of the architecture are that it hides details of the underlying hardware while providing a

framework that supports the services described in Chapter 1.

2.2.1 Router Primitives

The router abstraction layer for VERA consists of three primary primitives: classifiers,

forwarders, and output schedulers. These primitives are connected by queues to form the

2.2. ROUTER ABSTRACTION 33

three-stage pipeline depicted in Figure 2.3 and capture the three main functional aspects

of the router:

Classify: Each input port as an associated classifier that receives packets and sends

them to the appropriate forwarder. Classifiers do not modify packets. To support

multicast and broadcast, classifiers can “clone” packets and send them to multiple

forwarders.

Forward: The forwarder gets packets from its single input queue, applies a forwarding

function to modify the packet, and sends the modified packet to its single output

queue. All transformations of packets in the router occur in forwarders. In addition

to modifying the packet, the forwarder maintains state (later called per-flow state)

that can be consulted and modified by the forwarding function. The classifier

provides the forwarder with a pointer to the (per-flow) state.

Schedule: Each output port has an associated output scheduler that selects one of its

non-empty input queues, and transmits the associated packet. The output scheduler

performs no processing (including link-layer) on the packet. Note that output

schedulers are different than the thread schedulers described in Chapter 3.

Input
Port

Output
Port

C S

F

F

F

Figure 2.3: The classifying, forwarding, and scheduling of IP packets.

34 CHAPTER 2. ARCHITECTURE

A path from an input port, through a classifier, through a forwarder, through an output

scheduler, and out an output port is called an abstract forwarding path. The result of

mapping an abstract forwarding path onto a switching path is called a concrete forward-

ing path. When the distinction is clear from the context, we use the term forwarding

path and drop the “abstract” or “concrete” qualifier. Figure 2.4 illustrates mapping an

abstract forwarding path onto the P0–S0–C0–S0–S2–S1–C1–S1–P2 switching path

of Figure 2.1. At router initialization time, each port has its associated classifier and

scheduler and there is an initial set of pre-established forwarding paths connected to

the classifiers and schedulers. To support QoS flows and extensions, our architecture

allows forwarding paths to be dynamically created and removed by existing forwarders.

In fact, the core architecture supports a generic forwarding infrastructure; even basic IP

functionality is treated as an extension. Section 2.2.3 gives details about this application

programmer interface (API).

2.2.2 Classification Hierarchy

Our router architecture recognizes that packet classification is not a one-step operation.

Instead, we view classification occurring in distinct stages. A simple classification se-

quence might be:

Sanity Check: the first step of classification is to identify packets which must be ignored

or are malformed. Packets that are not identified as malformed are sent to the next

level.

Route Cache: at this level, the packet is quickly compared against a cache to determine

the correct forwarder within the router. Packets not in the cache, as well as packets

that require special processing, are sent to the next level.

2.2. ROUTER ABSTRACTION 35

Concrete Forwarding Path

Switching Path

Abstract Forwarding Path

Input
Port

Output
Port

S
w

itc
h

S2

P
or

t

P0

P
or

t

P2

S
w

itc
h

S1

S
w

itc
h

S0

S
w

itc
h

S0

S
w

itc
h

S1C0 C1

C F S

Distributed Queue

Processor Processor
S

w
itc

h

S2

P
or

t

P0

P
or

t

P2

S
w

itc
h

S1

S
w

itc
h

S0

S
w

itc
h

S0

S
w

itc
h

S1

Processor Processor

C0 C1

C F S

Figure 2.4: Mapping an abstract forwarding path onto a switching path.

Prefix Match: most routers run a prefix matching algorithm that maps packets based on

some number of bits in the IP header, ranging from just the destination IP address

to the source/destination addresses and ports [14, 37, 57, 62].

Full Classification: eventually, packets which have not been classified in early stages

will reach a “mop-up” stage that handles all remaining cases, including application-

level routing. This stage is often implemented with arbitrary C code.

Figure 2.5 shows that the internal structure of a classifier is really a hierarchy of

subclassifiers. Once a packet leaves the classifier C, the packets are fully classified—a

specific forwarder is the target.

36 CHAPTER 2. ARCHITECTURE

C2

C3

C1

C

Input
Port

Updates

U
pd

at
es

U
pd

at
es

T
o

D
is

tin
ct

 F
or

w
ar

de
rs

Figure 2.5: Classification Hierarchy. Classifier C is composed of partial classifiers C1,
C2, and C3. Solid lines indicate packet flow. Dashed lines indicate classification updates
(e.g., route table updates).

For our architecture, we impose the restriction that the outputs from a classifier are

unique. Referring to Figure 2.5, this would mean that an arrow from C1 could not point

to the same forwarder as an arrow from C2, for example.

Although we believe that this hierarchical structure is a fundamental aspect to packet

classification on an IP router [48], the exact form of the hierarchy is often dictated by the

processor hierarchy onto which it is mapped. We return to this issue in Chapter 3.

One additional issue that arises from our experience has to do with managing the

classification hierarchy. It is often the case that a packet can only be classified by an

2.2. ROUTER ABSTRACTION 37

upper level of the hierarchy, meaning that we need to ensure that lower levels do not. For

example, suppose Ci is designed to match layer-4 (i.e., transport layer) patterns and Ci−1

holds a route cache. If we attach a new forwarder to the classifier that specifies a level-4

pattern, we need to update Ci to add the new layer-4 pattern and we also must ensure that

there is a miss in the route cache at Ci−1. The right side of Figure 2.6 shows how a cache

will obscure higher classification levels; any change to the tree will require that the cache

be updated to remain consistent. Invalidating a route cache entry represents the simplest

case of the more general problem of “punching holes” in lower levels of the classifier so

that packets can reach upper levels. Classifiers as a whole support this by only allowing

updates to enter at the topmost level and then passing update information to the lower

levels.

Leaves from tree
copied into cache.

Miss
Cache

Figure 2.6: A partial classifier acting as a route cache. The left side shows a routing
decision tree: internal nodes are decision points, leaves are path selections. The right
side introduces a route cache. Misses must traverse the master tree.

2.2.3 Router API

This section outlines some of the router layer API function calls.

38 CHAPTER 2. ARCHITECTURE

p = createPath(C, C parms, F, F parms, S, S parms, Q parms)

This function creates a new forwarding path, p, by instantiating a forwarder, F, and

attaching it to the existing classifier, C, and scheduler, S through new queues. (Note

that C and S implicitly identify the input and output ports, respectively.) Figure 2.7

illustrates this process with an example. C parms include the demultiplexing key

needed to identify the packets which should be redirected to this path. F parms are

passed to the forwarder, and include the processor reservation (cycles, memory)

required by the forwarder. S parms include the link reservation needed by the

output scheduler. Q parms are used to instantiate the queues that connect the

components and include the switch reservation.

removePath(p, parms)

This function removes the existing forwarding path, p. The additional parame-

ters indicate whether the path should be immediately terminated abandoning any

packets in the queues or whether the path should be gracefully shut down by

disconnecting it from the classifier first and then letting the packets drain out of

the queues.

updateClassifier(C, parms)

This function allows updates (such as new routing tables) to be sent to a classifier.

2.2.4 Justification

While it is difficult to show that this is the “best” or “most correct” choice for a router

abstraction, we will show that our abstraction is reasonable and effective. Clearly, this

abstraction explicitly captures the essence of the routing task: classify, forward, and

2.2. ROUTER ABSTRACTION 39

1C

RSVP

F

S

23

Figure 2.7: The basic operations performed by the createPath function. Here, an RSVP
forwarder (1) instantiates a new forwarder, then (2) attaches to the appropriate output
scheduler, and finally (3) attaches to the appropriate classifier.

schedule packets for output. Gottlieb and Peterson [20] have shown that these three

elements model systems supporting a wide range of applications in their comparative

study of extensible routers.

Based on the fact that the distribution of packet types is far from uniform (e.g.,

forwarded packets are far more common than routing protocol packets), we believe that

a classification hierarchy is fundamental to all routers and not an artifact of VERA. We

characterize the hierarchy by having (1) several, distinct stages and (2) simple stages near

the bottom and complex stages near the top. The alternative to distinct stages is a single

stage implemented as a lookup table. In general, the table would be indexed on all the

bits of the header including any bits which might by IP options. This will yield a table so

large that it could not be implemented. Therefore, any IP classification method will use

a series of stages like those suggested in Section 2.2.2. To efficiently classify packets, it

makes sense to order the stages to minimize the processing time based on the expected

distribution of packet types. Simple, inexpensive tests that are likely to classify large

numbers of packets are placed first (at the bottom); complex, expensive tests are placed

last (at the top). The order in which to best place the stages defines the classification

hierarchy.

40 CHAPTER 2. ARCHITECTURE

Our router abstraction model dictates that every packet pass through a single classifier

(that fully determines the forwarder and output scheduler), a single forwarder (with

one input and one output), and a single output scheduler. Alternatively, one might use

sequences of alternating classifiers, forwarders, and output schedulers. Such sequences,

however, can always be modeled by a single, sufficiently sophisticated classifiers, a

(potentially large) set of forwarders, and a sufficiently sophisticated output scheduler.

2.3 Discussion

Up to this point, we have described the essentially static router and hardware abstractions

of VERA. That is, given a hardware configuration, we choose a static processor hierarchy

and assign each port to a particular processor. Before introducing the dynamic aspects

of thread decomposition, admission control, and function placement in Chapters 3 and 4,

we argue that our architecture is both extensible and robust.

2.3.1 Forwarding Functions and Extensibility

In their comparative study of extensible routers, Gottlieb and Peterson [20] describe

extensible routers as those including an element encapsulating forwarding functions that

allow for arbitrary packet processing. Our architecture is extensible because it explicitly

allows new forwarders to be instantiated on the router.

Note that VERA does not define a particular internal structure for forwarding func-

tions due to the wide range of processor types (microengines to Pentiums) the architecture

allows. Each processor is likely to have its own environment based on software engi-

neering considerations. Examples of how forwarding functions might be implemented

include:

2.3. DISCUSSION 41

Basic block / straight-line code: An implementation using straight-line, fixed-size code

may be appropriate when the per-packet processing must be tightly bounded with-

out the help of a pre-emptive scheduler.

C Functions: A forwarding function may be implemented as a simple C function.

Scout Paths / Click Modules: A forwarding function may be implemented using a se-

quence of C functions as in Scout [41], C++ modules in Click [34], or composi-

tional elements as in Router Plugins [13].

Thread Sequences: A forwarding function may be multithreaded and be implemented

across more than one processor. This may be especially appropriate when special

purpose processors (e.g., encryption) are available within the router.

Regardless of how the forwarding functions are implemented it is because we explic-

itly provide a mechanism to install new forwarding functions that support new services,

we conclude that VERA is extensible. In the next section, we argue that VERA is also

robust.

2.3.2 Independent Impact and Robustness

Recall from the previous chapter that our definition of robustness consists of two parts:

routers (1) must be able to read and classify packets at line speed and (2) must honor the

processing guarantees they make. Because an architecture is not a router, we must modify

the definition of robustness as it applies to an architecture as simply: a router architecture

is robust if it admits a robust implementation. In the next two chapters, we will show that

this is the case. In this section, we introduce independent impact as a key architectural

attribute to support a robust implementation.

42 CHAPTER 2. ARCHITECTURE

The placement algorithms described in Chapter 4 address the problem of assigning

the forwarder code to the processors. Placing the forwarder code associated with a service

on a particular processor or processors defines the forwarding path(s). As packets flow

through the router, they will make an impact on the resources of the router. For example,

they will consume processing cycles and switch bandwidth. A key design requirement for

VERA is to create an environment where the packets comprising a flow have an impact

on the resources of the router that is independent of the impact made by packets of other

flows. We call this attribute independent impact.

We recognize that there will be some interaction between flows. For example, just

having more entries in a task table can slightly increase latency. However, if the inter-

action is constant and small, we can model it as part of the overhead of the operating

system. The main idea is that the impact be “additive” so that we can make the admission

control / placement decision by adding the impact to the current router utilization and

checking that the result does not exceed the capabilities of the router. By isolating flows

and not exceeding the capabilities of the router, we ensure that the router remains robust.

Independent impact is the method we use to ensure that the router can accurately track

and allocate its resources.

For example, to submit a candidate service for installation on the router, the user

(or the user’s agent) provides both a model of the impact on the router for an n-byte

packet as well as the expected packet distribution and packet rate for the service. Where a

forwarder can be instantiated in more than one way (e.g., on different processors or across

multiple processors), the model provides the router impact for the various scenarios. By

maintaining a table of committed resources within the router and comparing this against

the independent impact of a candidate service, the placement decision can determine

where (if anywhere) the code implementing the service can be placed.

2.3. DISCUSSION 43

The resource allocation and admission control techniques in Chapter 4 rely on the fact

that the services have an independent impact on the system. In summary, we argue that

our architecture is extensible by design and robust under the assumption that there exists

a robust implementation. In the following chapters, we show that the implementation is

extensible and robust.

44

Chapter 3

Implementation

This chapter describes the implementation of VERA. Section 3.1 describes our prototype

hardware, Section 3.2 describes the Distributed Router Operating System and implemen-

tation techniques, and Section 3.3 concludes the chapter with an evaluation of how our

prototype hardware implementation is extensible and robust.

3.1 Hardware

Figure 3.1 shows our router development testbed. It consists of a commodity motherboard

connected to two different off-the-shelf line cards using a standard 33MHz, 32bit PCI

bus. The motherboard is an Intel CA810E with a 133MHz system bus, a 733MHz

Pentium III CPU, and populated with 128Mbytes of main memory.

The first line card is a RAMiX PMC694 [52]. It contains a 266MHz PowerPC

processor, two 100Mbps Ethernet ports, and 32Mbytes of memory. The primary PCI

bus (of the motherboard) is isolated from the secondary PCI bus (of the PMC694) with

an Intel 21554 non-transparent PCI-to-PCI bridge. The secondary PCI bus is also 32bits

3.1. HARDWARE 45

PCI BUS

Pentium III
Motherboard

Filtering
Bridge

PowerPC Core
plus Memory

MAC MAC

PCI BUS

Octal MAC

IX BUS

RAMiX PMC694 NIC

IXP1200 Network Processor
plus Memory

Intel IXP1200 EEB

Figure 3.1: Testbed based on a Pentium III motherboard with both a PMC694 line card
and an IXP1200 EEB line card.

and operates at 33MHz. The PMC694 has a two-channel direct memory access (DMA)

engine and queue management hardware registers used to support the Intelligent I/O (I2O)

standard [29].

The second line card is an Intel IXP1200 Ethernet Evaluation Board (EEB) [28]. A

more detailed view of this line card is illustrated in Figure 3.2. The board contains a

200MHz (5ns cycle time)1 IXP1200 network processor, a proprietary IX bus connected

to eight 100Mbps Ethernet ports2, 32Mbytes of SDRAM, and 2Mbytes of SRAM. Like

the PMC694, this board also has a two-channel DMA engine and I2O support registers.

1Actual speed is 199.066MHz.
2The IXP1200 EEB also has two 1Gbps (fiber) Ethernet ports which we do not use.

46 CHAPTER 3. IMPLEMENTATION

IXP1200 Chip

FIFOs

IX
 B

us

E
th

er
ne

t P
or

ts

SDRAM

SRAM

Scratch

StrongARM

engines
6 Micro−

Figure 3.2: Block Diagram of an IXP1200 EEB. The shaded area is the IXP1200 chip.
The PCI interface (not shown) connects to the StrongARM.

IXP1200 Network Processor

The IXP1200 chip contains a general-purpose StrongARM processor core and six special-

purpose microengine cores all running at 200MHz. The chip contains separate interfaces

to SDRAM and SRAM. In addition, there is a 4Kbyte on-chip scratch memory. The

StrongARM has a 4Kbyte instruction cache and an 8Kbyte data cache. Each of the six

microengines supports four hardware contexts for a total of 24 contexts. Not shown in the

figure is a 4Kbyte instruction store associated with each microengine. The StrongARM

is responsible for loading these microengine instruction stores.

The chip also has a pair of FIFOs used to transfer packets to and from the network

ports across the IX bus. These are not true FIFOs in the sense that each has a single input,

a single output, and no address lines; rather, each “FIFO” is an addressable 16slot×

64byte register file. It is up to the programmer to use these register files so that they

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 47

behave as FIFOs. Data is transferred across the IX bus in 64-byte chucks of data called

message packets (MPs). The FIFO is sized to hold 16 MPs. Ethernet frames that are larger

than 64 bytes are broken into smaller MPs by the MACs and transferred sequentially.

Although not explicitly prescribed by the architecture, the most natural use of the

SDRAM is to buffer packets. This is not only a function of size (256Mbyte address

space), but also of speed. The SDRAM is connected to the processor by a 64-bit,

100MHz data path, giving a peak bandwidth of 6.4Gbps. This is sufficient to support the

2×8×100Mbps = 1.6Gbps total send/receive bandwidth of the 100Mbps network ports.

Similarly, SRAM is a natural place to store the routing table, along with any necessary

per-flow state. The SRAM is connected to the processor by a 32-bit, 100MHz data path,

giving a peak bandwidth 3.2Gbps. (We also note that the 4Gbps peak bandwidth of the

64-bit, 66MHz IX bus is sufficient to support the 1.6Gbps bandwidth of the 100Mbps

network ports.)

3.2 Distributed Router Operating System

The distributed router operating system (DROS) is a software layer that runs on each

processor in the router. For high-speed, general purpose processors (such as a Pentium

on a PCI motherboard), this may be a layer on top of a general purpose OS such as Linux.

For processors on line cards, this layer may represent the entire operating environment

(i.e., the DROS layer may run directly on the hardware). As stated in Chapter 1, the

purpose of the DROS is to provide an execution environment for the forwarding functions

and bridge the semantic gap between the high-level router abstraction and the low-level

HAL; the OS implements the createPath call using the data movement and hardware

queue support functions of the HAL. In addition to tying together these core abstractions,

48 CHAPTER 3. IMPLEMENTATION

the OS provides a computation abstraction in the form of a thread API and a memory

abstraction in the form of both a buffer management API and an internal routing header

datatype. As mentioned in Chapter 2, a key design goal for VERA is to partition the

router’s resources so that services have an independent impact on the system. In the

following subsections, we outline the major features and abstractions provided by the

operating system.

3.2.1 Processor Hierarchy Revisited

Recall that the processors are organized into a hierarchy. At router initialization time,

administrative message queues are created from the master processor to each of its child

processors, and so on down the hierarchy. The single, master processor maintains the

master copies of the routing tables and controls the overall operation of the router. Since

each processor operates independently and has its own thread scheduler, the control the

master processor has over the other processors is, by necessity, coarse grained.

The processor hierarchy nicely maps to the classification hierarchy of Figure 2.5.

The first partial classifier, C1, always runs on the processor managing a particular input

port. The last partial classifier, Cn, always runs on the master processor. Intermediate

classification stages can be mapped to either the current processor, or the next processor

up the processor hierarchy. Each classifier exports a single interface. This interface

is exported only on the master processor. Updates to the classifier are made via this

interface and then trickle down the classification hierarchy as needed. This means that

the OS must propagate router abstraction level calls to updateClassifier through the

processor hierarchy to the master processor where they can be fed into the classifier at

the top level.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 49

3.2.2 Router Primitive Decomposition and Scheduling

The need to quickly classify packets is at odds with our desire to be able to look arbitrarily

deep into packets. The compromise VERA makes is to use a per-packet processor-cycle

classification budget. The minimum number of cycles in the budget depends on the line

speed of the queues feeding the processor as well as the processor cycle speed and is set

by the router architect. Within this fixed budget, each packet must be classified enough

to determine its service quality. That is, the router determines which service to charge on

behalf of the packet.

A Case for Separate Threads

Within our router, there is a fundamental tension between (1) supporting arbitrary clas-

sification and forwarding functions, and (2) supporting QoS. Qie, et al. [51] shows that

to support QoS effectively on a uniprocessor software router, one should use separately

scheduled threads for classification, forwarding, and scheduling. In fact, to support QoS,

it is important that classifiers be able to determine the fate of packets at line speed. If

this were not the case, high-priority packets could be delayed or missed while the system

classifies other incoming packets that are eventually determined to be of a low priority.

QoS support is related to robustness. A router that is not robust will not always be

able to uphold its service guarantees and therefore cannot truly support QoS under all

circumstances.

Our design stipulates that output schedulers not modify packets. This allows the

scheduler to make its thread scheduling decision based on the state of the queues going

into and coming from the output scheduler without needing to estimate the amount of pro-

cessing which might need to be performed on the packet. Because no packet processing

50 CHAPTER 3. IMPLEMENTATION

occurs in the classifier or output scheduler, all processing must occur in the forwarder. We

have chosen not to perform link-layer processing in the output scheduler, the forwarder

can perform arbitrary processing at the link layer. The downside is that if there are N

different media types in the router, each processor must be capable of handling all N

link layers. However, we expect N to be small enough (in fact, usually 1) that N ×N

translation will not be an issue.

Thread Scheduling Classes

We divide threads into two classes: statically scheduled and dynamically scheduled.

Statically scheduled threads are not charged to a particular flow or service and use a

fixed share of the processor and run on a fixed schedule that is determined a priori.

For example, classification (to the point of identifying the QoS) is statically scheduled.

Dynamically scheduled threads are charged to a particular flow or service and use a share

of the processor based on a reservation as well as the current state of the router (e.g.,

queue depth).

Specifically, a statically scheduled processor guarantees that it will be able to process

packets arriving at line speed. The consequence is that a statically scheduled processor

knows exactly how many cycles are available for each packet, and admits only functions

whose worst-case behavior fits within this cycle budget. Should packets arrive at a lesser

rate, or some fraction of the per-packet cycle budget be unallocated, the excess cycles are

simply wasted. For example, we choose to statically schedule the IXP1200 microengines

because they must be able to receive-and-forward packets at the aggregate speed of the

connected ports [55].

In contrast, a dynamically scheduled processor accommodates the possibility that

packets may arrive at a far greater rate than it can process them, either because it admits

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 51

functions with large processing costs relative to the worst-case rate at which packets can

arrive, or because it admits functions with variable processing costs. In this case, packets

must be segregated according to the treatment they are to receive (i.e., the function that

is to be applied to them), with each function given a share of the processor’s cycles.

Such processors still require an admission control decision—for example, to ensure that

the average cycle demand of the admitted functions does not exceed the processor’s

capacity—but the dynamic scheduler is able to allocate cycles to different functions

based on the actual workload (packet arrival rate) it is experiencing. A proportional share

scheduler is a likely implementation since it guarantees that the function (flow) receives

at least the cycle rate it requested, and fairly allocates any unused capacity among the

active functions [51].

After new forwarder threads are instantiated, they must be scheduled along with all

the other classifier, forwarder, and output scheduler threads. Because our architecture

supports a heterogeneous distributed processing model, the OS must provide support for

scheduling computations across the entire router. In Chapter 2 we defined a scheduling

domain as a tightly bound set of processors (usually, a single processor) running a single

thread scheduler. Because the amount of processing required on each packet is small,

we have chosen not to have a single, fine-grained scheduler for all the processors of

the router. Instead, each processor runs a completely independent scheduler. The master

scheduler (running on the master processor) provides only coarse grain adjustments to the

schedules for each scheduling domain to guide their independent scheduling decisions.

Section 3.2.9 describes a statically scheduled environment for the microengines of

the IXP1200 network processor. The input threads have enough extra processing cycles

in their budget to perform non-trivial packet modifications. In this case, we can combine

classification and forwarding into a single thread.

52 CHAPTER 3. IMPLEMENTATION

3.2.3 Internal Packet Routing

It is well known that routers should internally copy data as little as possible. Our architec-

ture helps reduce the amount of data copying by sending an internal routing header (IRH)

(rather than the entire packet) from processor to processor. This internal routing header

contains the initial bytes of the packet plus an ordered scatter/gather list of pointers to

blocks containing the data of the packet. A reference count is associated with each block;

the OS uses this count to determine when a block can be recycled. (The classifier changes

the reference count from its nominal value of one when a multicast or broadcast packet is

detected; the reference count is set to the number of destinations.)

An interesting property of IP routers is that in most cases only the header need be

modified by the forwarder; the body/payload of the packet remains unchanged. When

activated by the thread scheduler, a forwarder first reads the next internal routing header

from its input queue, fetches any (remote) packet data it needs and then performs the

computation. After processing the packet, the forwarder sends the updated internal rout-

ing header to its output queue (which is connected to the appropriate output scheduler).

It is the responsibility of the queue API to make sure all the packet data is local to the

output scheduler before the internal routing header is placed on the queue. Because the

classification hierarchy and the forwarder on the invoked path may not have needed the

entire packet to complete the classification and requisite forwarding function, the packet

may be scattered in several blocks across several processors. Anytime a thread moves

a block, the thread must also update the internal routing header to reflect the new block

location. When the internal routing header reaches the output scheduler’s processor, the

data must copied to local memory before the internal routing header can be placed on the

output scheduler’s inbound queue. Figure 3.3 illustrates the sequence.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 53

1. The forwarder, F , sends an IRH to the output scheduler, S.

2. The queue server (QS), preprocesses the IRH to determine the location of the

packet data.

3. The QS uses the HAL data movement primitives to fetch the packet data.

4. The QS modifies the IRH to indicate that the data is now local and places it on the

input queue where it is visible to S.

5. S reads the IRH from the queue.

6. S directs the data from local memory to the device queue.

F S

QS

S
w

itc
h

Data

Memory

Data

Memory

2,4

3

5

6

1
IRH

Figure 3.3: This shows the steps performed by the OS when an internal routing header
(IRH) is sent from a forwarder, F , on one processor to an output scheduler, S, on another
processor. (See text.)

Until now we have discussed the issues with moving the data through the router.

Eventually, these buffers must be recycled when the packet data is no longer needed. The

54 CHAPTER 3. IMPLEMENTATION

HAL data movement commands are really data copying commands. It is the responsi-

bility of the OS to manage the buffers. When we wish to move a buffer referenced by

an IRH, we send a release message to the source processor. The processor decrements

the reference count associated with the block(s) and reuses any whose count has reached

zero.

3.2.4 Distributed Queues

Queues are the mechanism for moving packets from thread to thread. In general, the

threads are on different processors, and thus, the queue will span a switch. As defined in

Chapter 2, these are called distributed queues. Because every packet will pass through at

least one queue on its path through the router, we must take special care to ensure efficient

implementations on the target hardware. In implementing distributed queues we consider

the following aspects:

Data Movement: This basically means to move packet references through queues rather

than the actual packet data. For non-distributed queues (i.e., between threads on

the same processor), this is the natural implementation. For distributed queues, the

overhead involved in copying or sending data from one processor to another is high

enough that it often makes sense to go ahead and send some of the data. (This is

part of the rationale behind the IRH.) Another consideration is that the pointers

within the IRH must have meaning to the processor that uses them.

Data Structure Overhead: Because the router must support thousands of flows, the

OS must efficiently implement queues and, because many flows will be dynamic,

efficiently create and destroy queues.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 55

Hardware Support: In some cases (including our prototype system), the underlying

hardware has capabilities we can leverage to implement queues directly. Unless

the hardware can directly support thousands of queues, VERA uses the hardware

queue support to multiplex a larger number of virtual queues on top of the hardware

queues. When a virtual queue is established, it is given an identification key.

Each queue element is tagged with the key of the destination virtual queue. A

demultiplexing step occurs on the receiving end to assign the incoming item to the

correct queue (cf. Figure 3.5 on page 58).

With a shared memory system such as the PCI bus, we have several implementation

options available. These are discussed below. To support a large and varying number of

queues efficiently, we will settle on Method 4. Figure 3.4 gives a visual interpretation of

the following methods:

Method 1: Separate queue from each processor for each flow. The problem with this

approach is that it requires many queues. Any efficient implementation will require

that the queues use a fixed-sized, pre-allocated block of memory. A large number

of queues can lead to inefficient use of memory. In addition, having the scheduler

check a large number of queues will introduce additional processor overhead.

Method 2: Separate queue from each processor for each QoS level. By pushing the

multiplexing of the flows at a given QoS level back to the sending processor, we can

reduce the number of input queues to one per processor for each QoS level. This

leaves us with the problem that the output scheduler should choose packets from

the set of queues for a given QoS level on a first-come first-served basis. (Note that

this is also a problem with the previous method.) To support this choice requires

that the sending processor attach a global timestamp to each packet. Supporting a

56 CHAPTER 3. IMPLEMENTATION

global timestamp would introduce potentially unacceptable overhead. In addition,

it is not clear that multiplexing flows at the same QoS level would sufficiently

reduce the number of input queues.

Method 3: Separate queue for each QoS level. By using a separate queue for each

QoS level and letting the sending processors contend for the queues, we eliminate

the need for a global timestamp. The problem we introduce is that the processors

must contend for a semaphore for each queue to be able to insert an item. Without

special hardware support, implementing a multiple writer queue over the a would

require the processors to acquire and release semaphores using software techniques

(for example, spinning on remote memory locations [21]). As in Method 2, it is

not clear that multiplexing flows at the same QoS level would sufficiently reduce

the number of input queues.

Method 4: Single queue. This method has the advantage that global timestamps are not

needed and there is a single input queue independent of the number of QoS levels.

As in Method 3, processors must contend for access to the queue.

By electing Method 4, each processor uses a single input queue and each packet

that is moved from one processor to another must be re-examined to some extent by

the receiving processor’s queue server thread (acting as a classifier). In addition, the

sending processor will need to make a scheduling decision to determine when the packet

can be moved across the switch. In effect, each individual processor acts as a mini-

router: classifying packets from each of its attached switches, applying some (possibly

null) function to these packets, and scheduling the packets for output. As depicted in

Figure 3.5, this happens on every switch that a packet traverses. Generally, only one of the

processors hosts the forwarding function. The other processors use a null (pass-through)

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 57

f5 (QoS2)

f3 (QoS2)

f2 (QoS1)

f1 (QoS1)

P1

P2

f6 (QoS2)

f4 (QoS1)

Method 1

P1

P2
QoS2 (f5,f6)

QoS1 (f4)

QoS2 (f3)

QoS1 (f1,f2)

Method 2

P2

P1
QoS1

QoS2

Method 3

P2

P1
QoS1

QoS2

Method 4

S S

S SC

Figure 3.4: Distributed Queue Implementation Methods. P1 and P2 indicate processors
which are on the opposite side of the switch (gray vertical line). Flows are indicated by
fn. Quality-of-service levels are indicated by QoSn. S indicates the output scheduler. C
indicates a classifier/demultiplexer.

forwarder. Note that the internal mux/demux stages as well as the null forwarders are

hidden from the application developer. While it may appear that we are simply pushing

the Internet routing problem onto the processors in our router, this is not the case. Unlike

the Internet, we have a central authority (the master processor) that has global knowledge

of the routing table and it pushes pre-processed forwarding tables to each processor.

58 CHAPTER 3. IMPLEMENTATION

C

F

F

F

SC

F

F

F

S

Internal Mux/Demux

Switch ProcessorProcessor

Figure 3.5: Nested Routers. In practice, each processor in the router must classify,
forward, and schedule packets. (The internal mux/demux is hidden from the application
developer.)

3.2.5 Indirect Bandwidth Management

Given finite memory, all routers will have at least one choke point (i.e., potential bot-

tleneck). For example, if all the packets arriving on two ports are routed to a third

port (whose bandwidth is less than the sum of the two ports), then some packets must

eventually be dropped at or before the point where the packets merge. Buffering will

help to avoid packet loss if the average rates match. This is the foundation of statistical

multiplexing. Preventing choke points on shared resources spanning scheduling domains

from becoming bottlenecks represents an interesting design challenge. Figure 3.6 depicts

a four-port router using a shared switch with two established packet flows. Note that the

switching paths for the two flows contain a common switch but do not contain a common

processor. Without some form of coordination between the line cards, the best effort

(BE) flow could use so much of the switch bandwidth that it prevents the QoS flow from

meeting its guarantees. (In the case of a PCI bus, the bus arbiter uses a fair algorithm to

decide which of a set of requesting bus masters will own the bus.) To support both BE and

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 59

QoS flows, VERA superimposes an indirect bandwidth management technique on top of

shared, decentralized switches. This allows the bus to be shared in a non-fair way (e.g.,

giving a QoS flow priority over a BE flow). Carefully managing the internal switching

resource and preventing flows from interfering with one another is an important part of

maintaining the property of independent impact which, in turn, is an important part of

robustness (cf. Section 2.3.2).

Linecard A
QoS
Flow

BE
Flow

Linecard B

Shared Bandwidth Switch
(e.g., PCI)

Linecard C

Linecard D

Root Processor
(e.g., Pentium)

Port B

Port A Port C

Port D

Figure 3.6: QoS / Best-Effort Interference on a Shared Switch. A QoS flow between two
ports can be adversely affected by a best-effort (BE) flow between two other ports on
the same shared switch. A throttling mechanism coordinated by the root processor gives
each line card a share of the switch resource.

Two methods of indirectly managing the bandwidth include token passing among

the bus masters and a centralized controller on the root processor. In either case, the

management only applies to packet traffic. The underlying hardware allows any processor

to arbitrate for the resource at any time to send administrative messages. This overhead

60 CHAPTER 3. IMPLEMENTATION

traffic should be accounted for when determining the budget allocated to the following

techniques:

Token Passing: This technique passes a token from processor to processor. When a

processor holds a token, it is entitled to use the shared switch for some amount of

time before passing the token on to the next processor in the cycle.

Periodic Reporting: With this technique, depicted in Figure 3.7, each processor period-

ically reports the state of its queues to the root processor. The root processor uses

this information to make a global decision and periodically send allowances to each

processor on the switch.

report
queue
state

update
bandwidth
allowance

Continue with old
allowance until update.

Use new allowance

report
queue
state

update
bandwidth
allowance

time

� � � � � � �� � � � � � �
� � � � � � �� � � � � � � � � � � � � �� � � � � � �

� � � � � � �� � � � � � � � � � � � �� � � � � �
� � � � � �� � � � � �

Figure 3.7: Periodic reporting of queue states and bandwidth allowance distribution.

Of these two techniques, VERA uses periodic reporting. Because the underlying

hardware already arbitrates for the use of the switch, we want to avoid the additional

overhead incurred by the arbitration that token passing generates. Also, if a processor

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 61

holds a token but only has BE flows waiting to use the switch, it does not have enough

information to determine how much (if any) of the switch resource it may use. This

information could be passed with the token but it would require that every processor

implement an algorithm to determine appropriate switch usage and each processor would

have a different picture of the state of the queues depending on their position in the token

ring.

3.2.6 PCI Switch Implementation

The common denominator of all IP routers is that they move data from an input network

interface to an output network interface. The HAL exports an API that allows any of the

processors in the router to either push (put) or pull (get) data to or from any of the other

processors in the router.

We note that the PCI bus efficiency is highest when data is transferred in long bursts.

This is a direct consequence of the fact that a PCI bus transaction consists of an address

phase followed by one or more data phases. The address phase specifies the address

of the transfer for the first data phase; each subsequent data phase within the same bus

transaction occurs at the next higher address. The address phase takes one PCI clock

cycle; in the best case, each data phase takes one PCI clock cycle. For each data phase,

either the master or the target may insert wait states (each of which takes one PCI clock

cycle). Note that read operations have a mandatory wait state in their first data phase and

each transaction must be separated by at least one PCI clock cycle. By transferring data

in bursts (bus transactions with many data phases), the overhead (per byte transferred) of

the address phase is reduced.

62 CHAPTER 3. IMPLEMENTATION

Because processors cannot consistently generate these efficient bursts, they are often

augmented with DMA engines specifically designed to generate bursts to transfer blocks

of data. Both the PMC694 and the IXP1200 have DMA engines that consistently gen-

erate burst transfers. Note that our Pentium motherboard does not have a DMA engine

for the PCI bus and therefore must implement data movement in software—referred to

as programmed I/O (PIO). An additional advantage of using DMA over programmed

I/O is concurrency; after issuing a DMA request, a thread can either move on to other

computations or yield to another thread.

Due to the freedom in the PCI specification, different board designs will exhibit

different performance characteristics. Both the host processor (the Pentium III) and the

on-board processor of the line cards can arbitrate for and then become the PCI bus master

which allows them to initiate transfers. By using read or write instructions (or a DMA

engine if available) a processor can pull or push data across the bus. Our experimental

results are discussed in Section 3.3.

Managing the DMA Engine / PCI Bus Resource

Since there is only one DMA engine per line card, the DMA engine becomes a critical

resource that is explicitly managed by the HAL. Moreover, because the PCI bus is a

shared resource and there is no inherent bandwidth reservation mechanism, the HAL

must coordinate among the processors when using its DMA engine. Thus, rather than

simply hide the DMA engine beneath a procedural interface, we dedicate a server thread

to the DMA engine on each processor. This thread coordinates with its peers to allocate

the shared bandwidth available on the bus, as well as manages the local engine and DMA

queues. The server supports two DMA work queues: a low-priority queue for packet

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 63

traffic and a high-priority queue inter-processor control messages (e.g., messages that

release packet data buffers.)

It would not be unreasonable for us to use a procedural interface to the DMA engine

which would potentially yield and then let the local scheduler include the state of the

DMA controller in the overall scheduling decision. We choose not to use this approach for

two primary reasons. First, the DMA engine operates asynchronously to the processor;

the DMA engine can even interrupt the processor when it has finished. Second, the DMA

engine was “factored-out” of the local scheduler as a software engineering decision; by

decoupling the DMA engine from the local scheduler, the design and implementation of

each becomes more modular and less complex. The potential inefficiencies introduced

by this decision can be explored as part of future work.

Because our hardware model allows multiple intervening processors and switching

elements between any two processors, the intervening processors must store-and-forward

packets. While this appears to be the problem that the router as a whole is trying to solve

(IP routing), the problem is significantly easier because, unlike the Internet, we have a

centralized controller in the master processor. The HAL hides the details of any necessary

forwarding.

Distributed Queues over PCI

As discussed in the previous section, we elect to implement our distributed queues using a

single input queue followed by a classifier that quickly separates the stream into separate

QoS queues (Method 4). By using a single queue, the sending processors must contend

for a semaphore to be able to insert an item on to the queue. Because the current version

of the PCI bus specification [46] does not support bus locking by arbitrary bus masters,3

3Interestingly, prior versions of the PCI specification did support bus locking.

64 CHAPTER 3. IMPLEMENTATION

we either need special hardware support or expensive software techniques to implement

multiple write queues.

Fortunately, the line cards we selected support I2O and have hardware registers that

directly implement multiple reader or multiple writer queues. They do this by hiding a

FIFO behind a single PCI mapped register. Each element in the FIFO is a 32-bit (pointer-

sized) integer. When a processor reads the hardware register, there is a side effect of

updating the FIFO pointer. The read and update happen atomically. Because these

components only have support for two FIFOs in each direction, we can only support

a single queue.

By using I2O support, we are manipulating pointers to IRHs. In order to effect the

transfer of an IRH, we use two hardware-level FIFOs to implement a distributed queue.

One FIFO contains pointers to empty IRH frames, and one FIFO contains pointers to

to-be-processed IRH frames. Putting an IRH onto a queue involves first pulling a pointer

to a free frame from the free-frame FIFO, filling the frame using the data movement

primitives in the HAL, and then placing the pointer on the to-be-processed FIFO. Getting

an IRH from a queue involves first retrieving a pointer from the to-be-processed FIFO,

processing the data, and then returning the block to the free pool by placing its pointer on

the free-block FIFO.

PCI Low-Level Hardware Abstraction

This section outlines some of the PCI low-level hardware layer API function calls. The

following two functions hide details of how the hardware moves data:

putData(local, remote, size)

This function pushes a block of data of length size from a local address to a remote

address using DMA or PIO, whichever is fastest.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 65

getData(remote, local, size)

This function pulls a block of data of length size from a local address to a remote

address using DMA or PIO, whichever is fastest.

The following three functions hide details of the hardware FIFOs:

f = allocFIFO(dir, depth)

This function allocates a hardware FIFO, f, from a fixed-size pool of FIFOs. The

FIFO is configured to hold depth entries each of which is a pointer-sized integer.

The direction parameter, dir, can be set to either incoming or outgoing. An

incoming FIFO supports multiple remote writers and an outgoing FIFO supports

multiple remote readers. Note that the local processor (which made the call to

allocFIFO) cannot write to incoming FIFOs and cannot read from outgoing FI-

FOs. This restriction along with the choice of pointer-sized items is made to allow

efficient implementations on systems that support I2O.

insert(fifo, item)

This function inserts the item (a pointer-sized integer) on the given fifo. The fifo

must be either a locally allocated outgoing FIFO or a remotely allocated incoming

FIFO.

item = remove(fifo)

This function removes the item (a pointer-sized integer) from the given fifo. The fifo

must be either a locally allocated incoming FIFO or a remotely allocated outgoing

FIFO.

Because we take advantage of I2O support as the basis for insert and remove,

we also must live with the restrictions of I2O. Specifically, the local processor cannot

66 CHAPTER 3. IMPLEMENTATION

access the registers used by the remote processors and vice versa. This is the reasoning

behind the corresponding restrictions in insert and remove. The benefit is that the

implementation of insert or remove can be as simple as a write or read of a memory-

mapped register.

Other Switching Hardware

Our implementation effort up to this point has focused on the PCI bus as a switching

element; however, we considered other technologies when defining the HAL as well.

There are two primary considerations when using other switches. First, the HAL defines

operations for both pushing and pulling data across the switch. This is a natural match for

a bus, which supports both read and write operations, and is consistent with interfaces like

VIA [9] (which form the basis for interfaces like InfiniBand [26]). However, on a switch

component that supports only push (send) operations (e.g., an Ethernet switch), the pull

operation will have to be implemented by pushing a request to the data source, which then

pushes back the requested data. Second, the bus offers only best-effort, shared bandwidth.

On a switching element that supports either dedicated point-to-point bandwidth (e.g.,

a crossbar) or virtual point-to-point bandwidth (e.g., InfiniBand channels), the role of

the DMA server thread diminishes. In effect, the hardware supports the point-to-point

behavior that the HAL requires.

Another possibility is to connect the line card directly to the memory bus of the

processor. This approach was used in the line card of the SHRIMP–II system [5]. A diffi-

culty with this approach is that its method of sending packets without explicit commands

from the processor (called automatic update) requires custom hardware to make direct

performance measurements [33, 40]. Another difficulty is that commercially available

PC hardware generally does not supply a direct connection to the memory bus. This can

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 67

be circumvented by using a dual-processor motherboard and using a custom-designed

line card in place of one of the processors [22].

3.2.7 Prototype Implementation

For our prototype, we chose Linux for both the development environment as well as the

implementation operating system for the Pentium. We discuss the development environ-

ments and then the Pentium environment here and then continue with a discussion of

the line card firmware and microengine environment in Section 3.2.8 and Section 3.2.9,

respectively.

Development Environment

We use the GNU C tools for the Pentium, StrongARM, and PowerPC processors. All run

on the Pentium under Linux. The Pentium compiler is native while the StrongARM and

PowerPC compilers are cross-compilers. We use the Intel-supplied microcode assembler

to assemble IXP1200 microcode. We run the microcode assembler on the WINE Win-

dows emulation environment on Linux. The toolchain to create an executable image for

the IXP1200 is shown in Figure 3.8. The PMC694 toolchain is simpler as the PMC694

does not contain microengines.

From an application developer’s point of view, the prototype VERA environment

is a runtime system. In this context, the DROS is an “application.” The DROS, in

turn, provides execution environments for router extensions. The directory structure of

the runtime system in shown in Figure 3.9. The runtime system contains over 40,000

text lines of code. A template for the directory structure of an application is shown in

Figure 3.10. The directory trees use the following naming conventions:

68
C

H
A

PT
E

R
3.

IM
PL

E
M

E
N

TA
T

IO
N

gcc link

.ogcc.cStrongARM

.ogcc.cpostuca.listuca *.ucMicroengine

crt0.o

libIXP.a

.srec

* Runs under the WINE emulator. Fi
gu

re
3.

8:
V

E
R

A
’s

IX
P1

20
0

To
ol

ch
ai

n

3.
2.

D
IS

T
R

IB
U

T
E

D
R

O
U

T
E

R
O

PE
R

A
T

IN
G

SY
ST

E
M

69

dat doc include

common

bin

src

Lib

libincludedriverbin

linux−i386

Runtime

ixp1200

bin include lib src

Lib

ue

dat doc include

common

bin

srclibincludebin

sa

LibFirmware

bin

pmc694

libinclude src

BootLib

doc

Fi
gu

re
3.

9:
R

un
tim

e
di

re
ct

or
y

st
ru

ct
ur

e
su

pp
or

tin
g

bo
th

th
e

IX
P1

20
0

E
E

B
an

d
PM

C
69

4
lin

e
ca

rd
s

un
de

r
L

in
ux

ru
nn

in
g

on
a

Pe
nt

iu
m

.

70
C

H
A

PT
E

R
3.

IM
PL

E
M

E
N

TA
T

IO
N

Application

src

Lib

libincludebin

linux−i386

driver
[extension]

bin srclibinclude

Lib

pmc694

dat doc include

common

bin

ixp1200

dat doc include

common

bin

src

Lib

libincludebin

sa

bin include lib src

Lib

ue

Fi
gu

re
3.

10
:

A
pp

lic
at

io
n

di
re

ct
or

y
st

ru
ct

ur
e

te
m

pl
at

e
su

pp
or

tin
g

bo
th

th
e

IX
P1

20
0

E
E

B
an

d
PM

C
69

4
lin

e
ca

rd
s

un
de

r
L

in
ux

ru
nn

in
g

on
a

Pe
nt

iu
m

.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 71

linux-i386

The Linux/Pentium directory tree.

linux-i386/driver

The Linux device driver subdirectory. In the Runtime tree, this is the vera.o

driver module. For the Application tree, this contains the code for the driver

extension modules.

ixp1200, pmc694

The IXP1200 EEB and PMC694 subdirectory trees.

ixp1200/sa, ixp1200/ue

The StrongARM and microengine subdirectory trees for the IXP1200.

common

A common subdirectory contains files that are shared by sibling directories. For

example, ixp1200/common contains code common to ixp1200/sa and

ixp1200/ue.

include

An include subdirectory contains header files which describe libraries in ..

/lib. They may have a bin subdirectory containing compiled executable code in

the form of a header file.

src

A src subdirectory contains code that is compiled into executable binaries in a

corresponding ../bin subdirectory.

72 CHAPTER 3. IMPLEMENTATION

src/Lib

A src/Lib subdirectory contains code that is compiled into libraries in a corre-

sponding ../../lib directory. It also contains header files that are copied into

../../include as part of the build process.

src/Firmware

A src/Firmware subdirectory contains code that is compiled into a standalone

image that is typically stored in the non-volatile memory of a line card (e.g., the

flash EEPROM of the IXP1200 EEB.)

src/Boot

A src/Boot subdirectory contains code that is compiled into a standalone image

that is typically loaded into a line card as part of the initialization process performed

by the device driver during module installation.

lib

A lib subdirectory contains subroutine libraries. The corresponding header files

are in ../include.

bin

A bin subdirectory contains compiled, executable programs.

Pentium Implementation

We implemented a unified device driver for the PMC694 and the IXP1200 EEB in the

form of a Linux kernel module. By choosing to develop a Linux kernel module, our de-

vice driver will also work with the communication-oriented operating system, Scout [41],

as well as the Linux kernel module version of Scout called SILK [3]. Figure 3.11 shows

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 73

the driver instantiated with one IXP1200 EEB and two PMC694 boards. In this router

configuration, there are a total of twelve 100Mbps Ethernet ports. There are four types

of software interfaces to the driver:

Control Plane Interface: The driver exports a /dev/vera character device. Through

its ioctl interface, this is used to perform updates from user space that do not apply

to a specific hardware device or network interface (e.g., routing table updates made

via the classification hierarchy).

Kernel Interface: The module exports symbols that support dynamically loaded ker-

nel module extensions that extend the ioctl interfaces of the /dev/vera and

/dev/veraN devices.

Virtualized Network Interfaces: A key element of the module is that the physical net-

work interfaces are virtualized as vthN . Because we want the intelligent line

cards to route the packets directly between hardware devices (either within a board

or from board to board), many packets will never arrive at the network driver

interface to the Linux kernel. However, packets which do arrive on a particular port

and which are to be handled by the kernel are sent to their corresponding virtual

interface. In this way, packets that are not handled by VERA can be processed

normally by the Linux kernel.

Device Interfaces: When the module is instantiated, a character device of the form

/dev/veraN is assigned to each PMC694 or IXP1200 EEB device. This in-

terface allows the boards to be initialized, code to be downloaded, and gives access

to the memory and registers of each board.

74
C

H
A

PT
E

R
3.

IM
PL

E
M

E
N

TA
T

IO
N

Control Plane
Interface

/d
ev

/v
er

a

vt
h0

vt
h1

vt
h2

vt
h3

vt
h4

vt
h5

vt
h6

vt
h7

vt
h8

vt
h9

vt
h1

0

vt
h1

1

network device interface
kernel

interface
E

xp
or

te
d

S
ym

bo
ls

ramix device
interface

/d
ev

/v
er

a1

/d
ev

/v
er

a2

vera.o kernel module

ixp device
interface

/d
ev

/v
er

a0

po
rt

0

0

po
rt

1

1

po
rt

2

2

po
rt

3

3

po
rt

4

4

po
rt

5

5

po
rt

6

6

po
rt

7

7
po

rt
8

0

po
rt

9

1

po
rt

10

0

po
rt

11

1

PowerPC

PMC694

PowerPC

PMC694IXP1200EES

Microengines

StrongARM

PCI Bus

Fi
gu

re
3.

11
:

T
he
v
e
r
a
.
o

ke
rn

el
m

od
ul

e.
In

th
is

fig
ur

e,
th

e
m

od
ul

e
ha

s
be

en
in

st
an

tia
te

d
in

a
sy

st
em

co
nt

ai
ni

ng
on

e
IX

P1
20

0
E

E
B

an
d

tw
o

PM
C

69
4

bo
ar

ds
.

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 75

3.2.8 Line card Runtime Environment

Firmware / Boot code

Both the IXP1200 EEB and PMC694 line cards needed some customization to work with

the Linux device driver in a commodity PC system. As shipped from the factory, the

IXP1200 EEB is configured to operate as a stand-alone system in a supplied passive (i.e.,

no Pentium) PCI backplane connected to a simple 100Mbps Ethernet line card. The

supplied firmware uses this attached line card to download the application from a remote

source. Because we want to use the IXP1200 EEB in an active (i.e., with a Pentium)

PCI motherboard, we had to reconfigure the board. Specifically, we changed the board

jumpers so that it neither generated the global PCI reset signal at power-up nor acted

as the PCI arbiter—both of these functions are performed by motherboards. We also

wrote our own firmware (and programmed it into the on-board Flash EEPROM) which

assumes that the board is installed in a PC—on power-up it requests a region of the PCI

bus address space from the BIOS, opens a window from the PCI bus to the SDRAM so

that the Pentium can download code directly onto the board. The firmware jumps to an

entry point in this downloaded code when it receives a signal from the Pentium.

Because the PMC694 is designed to work with an active PCI motherboard, we did

not need to modify the firmware on the board. However, the supplied protocol for

downloading application code to the PowerPC memory space involves a handshake for

every 32-bit word transferred (rather inefficient) and requires that the application start

execution at a particularly inconvenient memory address (in the middle of the address

space, splitting the space in two). To alleviate these issues, we created a small boot loader

that the driver installs using the supplied protocol. The boot code then copies itself to the

high end of the address space and operates similarly to the IXP1200 EEB firmware. That

76 CHAPTER 3. IMPLEMENTATION

is, it allows the Pentium to write application code anywhere in the address space and

then waits for a signal from the Pentium to jump to a specified entry point. Figure 3.12

illustrates how the sgo tool loads and runs an executable image on the IXP1200.

{Tool

{Statically Linked
Library

{Loadable Linux
Kernel Module

sgo foo.srec

libVera.a

vera.o

Firmware Code

SDRAM

The sgo tool downloads and runs an
StrongARM program in s−record format.

This library is a thin interface to the
ioctl routines in the device driver.

Downloaded StrongARM code
contains Microengine code.

DownloadHandshake

1. Firmware exposes SDRAM to PCI bus
2. Pentium writes code into SDRAM
3. Pentium notifies Fiirmware of entry point
4. Firmware jumps to entry point
5. StrongARM code expliicitly copies microcode
 to microengines before enabling them

Pentium

IXP1200

ioctl interface

foo

(PCI Bus)

Figure 3.12: Running an executable image on the IXP1200 EEB.

Thread Scheduling

The scheduler running in each scheduling domain of the general purpose processors of

the line cards (e.g., StrongARM and PowerPC) builds upon existing scheduling work

[51], which in turn, is derived from the WF2Q+ scheduler [4]. We have added hooks to

support coarse grain influence from the master processor. In brief, the scheduler assigns

3.2. DISTRIBUTED ROUTER OPERATING SYSTEM 77

a processor share to each forwarder according the the F parms passed to the createPath

operation. Processor shares are also assigned to the scheduler and classifier threads. The

share-based scheduler is augmented to use information about the states of the queues to

determine when a forwarder or output scheduler thread should run. In the case of an

output scheduler, packets in the queue are assumed to be in local memory so that when

an output scheduler thread is activated it will not immediately block as it attempts to fetch

the packet data from a remote processor. This helps keep the output link full.

3.2.9 Microengine Environment

When the IXP1200 comes out of device reset, the microengines remain in a reset state

until the StrongARM releases them, via a register write, where they then start to execute

code in their instruction store. The StrongARM has write access to the microengine

instruction store. As part of the initialization of an application, the StrongARM must

initialize the microengine instruction store and release the microengines from their reset

state.

Virtual Router Processor

Our approach to installing useful packet processing at the microengine level of the pro-

cessor hierarchy is to statically allocate the microengines to two tasks: (1) a router

infrastructure (RI) that is able to forward minimum-sized packets at line speed, and (2) a

virtual router processor (VRP) that runs additional code on behalf of each packet [55].

Since it is impossible to fully predict packet traffic or arrival times, for the sake of

robustness we must assume that packets arrive at line speed, and so we statically allocate

enough microengine contexts to run the input loop.

78 CHAPTER 3. IMPLEMENTATION

The alternative to this static thread scheduling is to dynamically allocate threads to

packets. We reject this approach for two reasons: (1) the design of the microengines is

not conducive to such an approach—significant processing cycles would be wasted in

signaling and coordinating the microengine resources to the tasks, and (2) to ensure we

can accept and classify all packets under worst-case conditions.

3.3 Evaluation

In Chapter 2, we concluded that our architecture is extensible and it is robust under the

assumption that there is a robust implementation. To show that our implementation is

extensible, we need to show that there are CPU cycles available to run new services.

Recall from Chapter 1 that our definition of robustness consists of two parts: (1) routers

must be able to read and classify packets at line speed and (2) routers must honor the

processing guarantees they make. We show this with a VRP that can read and classify

packets at line speed and still have resources remaining to run services.

The remainder of this section is organized as follows. In the next three sections

we characterize the PCI performance (Section 3.3.1), packet transfer performance (Sec-

tion 3.3.2, and VRP performance (Section 3.3.3). The performance characterization is

used to establish extensibility (Section 3.3.4) and robustness (Section 3.3.5). In addition,

the performance characterization is used to set resource limits for the resource allocation

methods we introduce in Chapter 4.

3.3.1 Performance Characterization — PCI

Our PCI micro-benchmarks measure PCI bandwidth between the line cards and the Pen-

tium for the testbed shown in Figure 3.1. In these experiments, the Pentium is running

3.3. EVALUATION 79

a Linux 2.2 kernel, the vera.o kernel module, and an extension module running the

benchmark application code. The StrongARM and PowerPC processors on the line cards

run a minimal VERA environment linked to the benchmark application code.

Tables 3.1 and 3.2 present the raw data from our experiments in copying 64-byte and

1500-byte packets across the PCI bus. In these tables, the Bus Master and Direction

columns describe which device is performing which type of bus cycle. For example, a

host/push indicates that the Pentium is acting as the bus master and is performing PCI

write cycles to “push” the data from the Pentium to the line card. The Mode column

indicates whether the bus master is using its DMA engine or programmed I/O (PIO). In

the case of programmed I/O, we measured the PCI bandwidth when the inner loop copied

bytes and 32-bit words (matching the width of the PCI bus). We also unrolled the 32-bit

word inner loop so that we copied 64-bits and 128-bits per iteration. Finally, we used the

finely tuned memcpy routine from the GNU compiler in place of PIO inner loop.

Observations

As expected, byte copies perform the worst. This is because we are only using 8 out of

32 of the data lines for each PCI bus transaction. Increasing the transfer size to 32-bits

(matching the PCI bus width) made a significant improvement in all cases. In the case

where the Pentium was the bus master (pull only) and the case where the PMC694 was the

bus master (push or pull) the improvement was approximately a factor of four. The other

cases showed and even more significant improvement. As a bus master, the Pentium was

5.7 and 6.6 times faster when writing to the PMC694 and IXP1200 EEB, respectively.

As a bus master, the IXP1200 was 5.4 times faster writing to and 6.7 times faster reading

from the motherboard memory. In the cases where the improvement was more than the

80 CHAPTER 3. IMPLEMENTATION

Bus
Master

Transfer
Size

64-Byte Packets 1500-Byte Packets
Mode Direction Kpps Mbyte/sec Kpps Mbyte/sec

host 8 bits PIO push 161.5 10.33 6.82 10.23
host 32 bits PIO push 919.9 58.88 39.37 59.06
host 64 bits PIO push 975.0 62.40 41.58 62.37
host 128 bits PIO push 962.4 61.60 41.53 62.30
host (memcpy) PIO push 1073.4 68.70 44.29 66.44
host 8 bits PIO pull 15.5 0.99 0.66 0.99
host 32 bits PIO pull 61.1 3.91 2.61 3.91
host 64 bits PIO pull 61.8 3.95 2.63 3.95
host 128 bits PIO pull 61.9 3.96 2.64 3.95
host (memcpy) PIO pull 62.2 3.98 2.66 3.99
card 8 bits PIO push 87.5 5.60 3.69 5.53
card 32 bits PIO push 365.5 23.39 14.84 22.26
card 64 bits PIO push 363.4 23.26 14.81 22.21
card 128 bits PIO push 363.9 23.29 14.81 22.21
card — DMA push 534.2 34.19 17.57 26.35
card 8 bits PIO pull 13.4 0.86 0.57 0.86
card 32 bits PIO pull 53.7 3.44 2.29 3.43
card 64 bits PIO pull 53.8 3.44 2.28 3.41
card 128 bits PIO pull 53.8 3.44 2.28 3.41
card — DMA pull 354.1 22.66 15.74 23.61

Table 3.1: Raw PCI Transfer Rates Between the PMC694 (card) and the Pentium III
Motherboard (host).

factor of four suggested by the ratio of data transfer size, the PCI hardware is combining

successive accesses into more efficient burst cycles.

When unrolling the PIO loop by a factor of two (64 bit transfer size), we measured

a significant (greater than 10%) improvement over 32-bit transfers in the case where the

IXP1200 was writing data to the motherboard memory. This is most likely due to the

fact that by reducing the software overhead, the code is able to feed the PCI interface

fast enough to give it more opportunities to combine adjacent accesses into bursts. We

measured slight, but not significant, improvements when unrolling the loop to a 128-

3.3. EVALUATION 81

Bus
Master

Transfer
Size

64-Byte Packets 1500-Byte Packets
Mode Direction Kpps Mbyte/sec Kpps Mbyte/sec

host 8 bits PIO push 157.2 10.06 6.7 10.01
host 32 bits PIO push 1030.2 65.93 44.2 66.34
host 64 bits PIO push 1028.9 65.85 44.1 66.16
host 128 bits PIO push 1030.1 65.93 44.0 66.14
host (memcpy) PIO push 1073.9 68.73 44.2 66.35
host 8 bits PIO pull 15.3 0.98 0.7 1.02
host 32 bits PIO pull 63.7 4.08 2.7 4.05
host 64 bits PIO pull 63.7 4.08 2.7 4.04
host 128 bits PIO pull 64.3 4.11 2.7 4.09
host (memcpy) PIO pull 64.4 4.13 2.7 4.12
card 8 bits PIO push 65.2 4.17 2.8 4.15
card 32 bits PIO push 349.2 22.35 14.7 22.12
card 64 bits PIO push 387.1 24.78 16.5 24.81
card 128 bits PIO push 387.1 24.78 16.5 24.81
card — DMA push 204.7 13.10 32.7 49.01
card 8 bits PIO pull 10.3 0.66 0.4 0.66
card 32 bits PIO pull 69.1 4.43 2.9 4.42
card 64 bits PIO pull 69.8 4.47 3.0 4.46
card 128 bits PIO pull 71.1 4.55 3.0 4.53
card — DMA pull 179.2 11.47 16.4 24.66

Table 3.2: Raw PCI Transfer Rates Between the IXP1200 EEB (card) and the Pentium III
Motherboard (host).

bit transfer size. With the Pentium as the bus master, we observed that using the tuned

memcpy library function to write to the PMC694 performed more than 10% better than

our simple 32-bit loop.

In most cases, using the DMA engine on the line cards showed significant improve-

ment over PIO. The notable exception is that the DMA engine was slower than PIO for

writes performed by the IXP1200 EEB. This is due to the fact that there is overhead in

setting up the DMA engine. Linearly interpolating the DMA and 64-bit PIO curves and

82 CHAPTER 3. IMPLEMENTATION

finding their intersection shows that the cross-over point occurs when the packet size is

166 bytes. (See Appendix A for the calculation of sa2pt_pio_max.)

Summary

From our experiments, we see that the highest PCI bandwidth occurs when we use write

cycles (i.e., “push”). The best performance for the Pentium occurs when we use the

memcpy routine. For the PMC694, we should always use the DMA engine to move

packets. For the IXP1200 EEB, we should use the DMA engine to read (i.e., “pull”)

packets of any size and to write packets greater then 166 bytes; for smaller packets, the

IXP1200 EEB should use a programmed I/O software loop unrolled to move 64 bits per

iteration.

3.3.2 Performance Characterization — Packet Transfer

This section summarizes the results of our experiments with the IXP1200 EEB as part

of our study on network processors [55]. These micro-benchmarks measure how fast

packets can be forwarded between levels of the processor hierarchy. We conclude this

section with comments about the packet transfer performance of the PMC694.

Ports to Microengines

We initially measured the system using the eight 100Mbps Ethernet ports on the IXP1200

EEB fed by eight Kingston KNE100TX PCI Ethernet cards (based on the 21143 “Tulip”

chip) as traffic sources. (A pair of these cards are installed in each of four 450MHz

Pentium IIs running packet generator software.) When configured to generate minimum-

sized (64-byte) packets, each card transmits at 141Kpps, which is 95% of the theoretical

3.3. EVALUATION 83

maximum of 148.8Kpps [31]. With these traffic sources, the microengines are able to

sustain line speed across all eight ports resulting in a measured aggregate forwarding rate

of 1.128Mpps. This is an expected result as the theoretical forwarding capacity of the

processing and memory resources in the IXP1200 are much greater than the 800Mbps of

testbed traffic.

In an additional experiment, we measured the maximum throughput of the micro-

engines running a null VRP (i.e., no loaded services) at a rate of 3.47Mpps [55]. This

measurement is independent of the number of ports and reinforces the fact that the

microengines have sufficient processing bandwidth to support eight 100Mbps ports at

line speed.

Microengine to/from StrongARM

Since the StrongARM and the microengines share the SDRAM and SRAM, packets need

not be copied to “move” them between the StrongARM and the microengines. The only

latency is the cost of a microengine signaling the StrongARM to inform it that a packet

is available.

Upon detecting that a packet requires service by the StrongARM (e.g., there is a

miss in the route cache or the packet contains IP options), a microengine input context

enqueues the packet in a StrongARM-specific queue instead of a queue assigned to an

output port. At this point, we have two options for signaling the StrongARM: interrupt

the StrongARM or let the StrongARM poll to see if any packets have arrived. In both

cases, the StrongARM dequeues the next packet from this queue, performs whatever

processing is required, and places the packet on the appropriate output queue.

We measured the maximum rate that the StrongARM can process packets by having

it run a null forwarder, with the microengines programmed to pass all their packets to

84 CHAPTER 3. IMPLEMENTATION

the StrongARM. With this configuration, we achieve a maximum forwarding rate of

526Kpps using a polling loop on the StrongARM; interrupting the StrongARM was

significantly slower. By adding a delay loop (in the StrongARM polling loop) that

counts to a pre-determined value, we can determine how many extra cycles we can insert

before impacting the forwarding rate. In our system we found that any delay reduced the

forwarding rate and conclude that the StrongARM has no additional cycles available to

compute on packets when receiving them at this rate.

IXP1200 to/from the Pentium

We move packets between the IXP1200 and the Pentium over the PCI bus. Our im-

plementation uses the IXP1200’s DMA engine plus I2O queue management hardware

registers. We measured the maximum rate that the Pentium can process packets by having

it run a loop that reads packets from a queue on the IXP1200, and then writes the packet

back onto a queue on the the IXP1200. This experiment is an extension of our PCI micro-

benchmarks presenting in the previous section. In addition to moving packets, this exper-

iment accesses the I2O registers to determine the buffer addresses. (Due to a silicon error,

the I2O mechanism does not work on the B version of the IXP1200. In our experiment,

we used an a priori sequence of buffer addresses and had the Pentium perform additional

PCI reads and writes to a memory location on the IXP1200 EEB to introduce the same

delay as accessing the I2O registers on the IXP1200.) The StrongARM is programmed

to feed packets to the Pentium as fast as possible. We also inserted a delay loop on both

sides to determine the number of spare cycles available, that is, cycles not involved in

the data transfer. The results are given in Table 3.3, which shows that the router is able

to forward up to 534Kpps through the Pentium. This rate saturates the StrongARM, but

leaves 500 cycles per packet available on the Pentium.

3.3. EVALUATION 85

Packet Size Rate Pentium StrongARM
(Bytes) (Kpps) (Cycles) (Cycles)

64 534.0 500 0
1500 43.6 800 4200

Table 3.3: Measured Maximum Forwarding Rate and Excess Per-Packet Processor
Cycles from the IXP1200 EEB to the Pentium and back.

Note that up to this point we have focused on 64-byte packets. This is because

processing minimal-sized packets is the worst-case scenario in the sense that it represents

the highest packet rate. It is also the case that forwarding larger packets scales linearly

on the microengines: forwarding a 1500-byte packet involves forwarding twenty-four

64-byte MPs. Crossing the PCI bus is different, however, since the DMA engine runs

concurrently with the StrongARM. Also note that when a 1500-byte packet does arrive,

we will first move the smaller IRH across the PCI bus; the entire packet will be moved

only when necessary. Our experiments move the entire packet.

PMC694 Comments

Because we did not enter into a non-disclosure agreement (NDA) with Intel, we did not

have access to the datasheets and were not able to develop a polling device driver for

the 82559ER MAC chips on the PMC694 line card. However, based on the PCI micro-

benchmark results in Table 3.1, we can estimate the capability of the PMC694. For these

estimates, we assume that the 82559ER MAC chip can operate continuously at line speed,

is able to push data into the PowerPC memory as efficiently as the Pentium, and is able

to accept data pushed by the PowerPC at the PowerPC’s DMA rate.

86 CHAPTER 3. IMPLEMENTATION

Ports to PowerPC

To estimate how many packets can be moved from the ports to the PowerPC and back to

the ports, we first calculate that maximum packet rate and then identify any bottlenecks.

For the PMC694, the maximum packet (receive) rate is 2× 148.8Kpps, or 297.6Kpps.

This means that a new packet may arrive every 3.360µs. A 64-byte packet is encap-

sulated in a 72-byte Ethernet frame. If the MAC pushes the packet to the PowerPC at

68.7Mbyte/sec, this will take 1.048µs. If the PowerPC pushes the packet back to the

MAC at 34.19Mbyte/sec, this will take 2.106µs. This leaves an idle time of 0.206µs

before the next packet arrives on one of the MACs. Because there is idle time on the

bus, we conclude that there is sufficient switching bandwidth to move packets from the

ports through the PowerPC and back at the aggregate line rate of 297.6Kpps. In addition,

because the PowerPC is not using PIO to move the data, we can pipeline the system and

have 3.360µs× 266MHz, or 893cycles of processing available per packet (less DMA

setup and other overhead). Table 3.4 summarizes these calculations and gives packet rate

and available CPU cycles for the 1500-byte packet case.

Packet Size Ethernet Frame Size Packet Rate PowerPC
(Bytes) (Bytes) (Kpps) (Cycles)

64 72 297.6 893
1500 1508 8.22 32300

Table 3.4: Estimated Maximum Forwarding Rate and Excess Per-Packet Processor
Cycles from the ports to the PowerPC and back.

PowerPC to/from Pentium

As we have just shown, the PCI bus has sufficient bandwidth to support two 100Mbps

Ethernet ports. Table 3.5 gives estimates of the number of available PowerPC and Pen-

3.3. EVALUATION 87

tium cycles when sending packets from the PowerPC to the Pentium and back based on

the PCI micro-benchmarks of Table 3.1. Because the packet rates are limited by the

speed of the ports, the PowerPC cycles are the same as Table 3.4. The Pentium cycles are

estimated by subtracting the Pentium’s PIO transfer time from the packet arrival period

and converting to cycles for a 733MHz processor.

Packet Size Ethernet Frame Size Packet Rate Pentium PowerPC
(Bytes) (Bytes) (Kpps) (Cycles) (Cycles)

64 72 297.6 1460 893
1500 1508 8.22 72560 32300

Table 3.5: Estimated Maximum Forwarding Rate and Excess Per-Packet Processor
Cycles from the PowerPC to the Pentium and back.

3.3.3 Performance Characterization — VRP

To be extensible, a router must be able to operate at line speed and still have processing

resources available to run new services. From the experiments in the previous section,

we know that the microengines can forward 3.47Mpps using a null VRP. Note that this

is greater than the worst-case aggregate line speed of 1.128Mpps for the IXP1200 EEB

system. Based on experimentation [55], we measured that a VRP with the following

characteristics can be applied to every packet and maintain the worst-case aggregate line

speed of 1.128Mpps.

• Each packet is fragmented into 64-byte pieces and becomes accessible to the VRP

in registers one fragment at a time. The first fragment holds both the TCP and IP

headers.

• In addition to the registers that hold each fragment, the code running in the VRP

has access to 8 general purpose 32-bit registers. Values stored in these registers

88 CHAPTER 3. IMPLEMENTATION

are not maintained across invocations of the VRP and, therefore, can only be used

for temporary state (e.g. intermediate computational results or state loaded from

SRAM). An additional register contains the SRAM address of the flow-specific

state.

• The VRP code can execute up to 240 cycles worth of instructions.

• The VRP code can perform up to 24 SRAM transfers (reads or writes) of 4 bytes

each.

• The VRP code can perform 3 hashes with support of the hardware hashing unit of

the IXP1200.

Note that the VRP budget depends on the hardware configuration. If the IXP1200 must

support more ports, then there will be fewer resources available to the VRP. Similarly, if

there are fewer ports, then there will be more resources available to the VRP.

3.3.4 Extensibility

To show that our implementations are extensible, we must show that there are cycles

available to apply to the extensions under worst-case conditions. For the IXP1200 EEB

implementation, the results of our experiments in the previous section show that the mi-

croengines can apply 240 cycles of processing to every packet at the aggregate line speed

of the eight ports on the line card. For the PMC694 implementation, we argue that based

on the PCI micro-benchmarks of Section 3.3.1 the PowerPC can apply approximately

800 cycles of processing to every packet at the aggregate line speed of the two ports on

the line card.

3.3. EVALUATION 89

Because we have cycles to apply to extensions under worst-case conditions, we con-

clude that our implementations are extensible. Note that we have not explicitly mapped

the services to the processors; we have only shown that there are cycles available. In the

next chapter, we address the problem of mapping the services onto the various processing

elements of the router.

3.3.5 Robustness

Recall from Chapter 1 that our definition of robustness consists of two parts: routers

(1) must be able to read and classify packets at line speed and (2) must honor the pro-

cessing guarantees they make. We will address these points here. Note that an important

implication of this definition is that the router does not take on more work than it can

handle. This separable problem is addressed in Chapter 4.

We start by considering the router of Figure 1.4 (page 14). Figure 3.13 depicts

three possible switching paths for this router. Path A includes the microengines and

the IXP1200 memory. Path B includes the microengines, the IXP1200 memory, and the

StrongARM. Path C includes the microengines, the IXP1200 memory, the StrongARM,

the Pentium memory, and the Pentium. The shaded boxes represent processors, while the

non-shaded boxes represent memory that implements packet queues and buffers.

To validate the ability of the system to read and classify packets at line speed, we

configured the microengines to run a synthetic suite of forwarders4 that utilize the full

VRP budget. Under an offered load of 1.128Mpps (the aggregate line speed of the

ports), the microengines were able to forward all packets along path A. In a second

experiment, we directed the microengines to classify an increasing percentage of the

packets as exceptional, thereby simulating a flood of control packets. These exceptional

4based on those in Table 4.1 (page 99)

90 CHAPTER 3. IMPLEMENTATION

Input
Microengine

Contexts

Output
Microengine
Contexts

Pentium

Pentium
Memory

StrongARM

IXP1200
Memory

C

B

A

Output FIFOInput FIFO

Figure 3.13: Three switching paths through the Pentium/IXP1200 processor hierarchy.

packets were directed to the StrongARM and had no effect on the router’s ability to

forward regular packets (those whose forwarder was installed on the microengines)—the

microengines were able to sustain the aggregate line rate of the ports.

Because our system can handle packets at line-speed under worst-case conditions and

provide isolation between services through static scheduling, we conclude that our system

meets the first criteria for robustness. Note that this does not mean that our system is so

over-provisioned that we can apply millions of cycles to every packet. It means that we

3.3. EVALUATION 91

can make an initial classification decision for every packet (possibly deciding to drop the

packet) and still have a cycle budget to apply to each packet.

To be robust, the router must also ensure that it does not take on more work than it can

guarantee to finish. That is, there must be a form of service admission control to ensure

that the router is not over-burdened. In the next chapter, we address the admission control

problem as a part of the resource allocation problem.

92

Chapter 4

Resource Allocation

In the previous chapters we have introduced and discussed an extensible router architec-

ture that uses multiple, heterogeneous processors to classify, forward, and schedule pack-

ets. Up to now we have not discussed how to allocate resources (processing, switching)

within the router. Properly allocating resources is key to maintaining robustness. Recall

that in addition to operating at line speed, a robust router must honor the processing guar-

antees it makes. By admitting a new service, the router is making a guarantee. Admission

control addresses the problem of determining which services the router can allow to run.

In addition, mapping services onto the hardware is key to providing extensibility. If were

are not able to admit any services, clearly our router is not extensible.

This chapter first motivates the resource allocation problem and the related admission

control problem and then introduces some of the issues specific to our architecture.

Next, we describe several algorithms for placing services on the processors of the router.

Finally, we evaluate these algorithms against anticipated workloads.

4.1. PROBLEM SPACE 93

4.1 Problem Space

This chapter investigates the following mapping problem: given a hardware configuration

containing multiple processing elements, how do we best place the services (that is,

the functions implementing the services) on these underlying processing elements. The

problem is similar to job placement on multicomputers [18] except there are the additional

complexities that (1) packets must traverse one processor to reach another, and (2) the

processors are heterogeneous and may have widely varying characteristics.

Note that the services are variable—a given router can support a different number of

services, each service can have different computational requirements, and some services

apply a variable number of cycles to each packet (e.g., they may be data-dependent). In

contrast, the classification and scheduling stages, whether implemented in hardware or

software, can be viewed as part of the router’s fixed infrastructure—each is associated

with a particular port, takes a bounded amount of time for each packet, and must run fast

enough to input/output packets at line speed.

4.1.1 Motivating Example

Based on our experiments of our implementation depicted in Figure 3.13, the router can

forward packets at a maximum rate of 3.47Mpps along path A, 526Kpps along path B,

and 310Kpps along path C [55], but there are three caveats that affect our decision as to

where to place a function implementing a particular service.

First, we cannot simultaneously support paths B and C at their maximum rates since

the StrongARM is involved in both. If we give priority to packets destined for the Pentium

and let the StrongARM primarily serve as a bridge between the microengines and the

Pentium, we limit the services that run on the StrongARM (corresponding to path B)

94 CHAPTER 4. RESOURCE ALLOCATION

to those that fit within its remaining capacity. Similar interference between path A and

paths B and/or C is possible, except that in our design the work for a microengine context

to pass a packet up to the StrongARM is the same as the work to implement path A; no

additional cycles are required.

Second, more complicated services require more cycles-per-packet (cpp), possibly

reducing the maximum forwarding rate. In the case of the Pentium, we have 1510cpp

available at the maximum 310Kpps rate; more expensive services will obviously lessen

the sustainable forwarding rate. In the case of the microengines, all of the available

capacity is needed to achieve the 3.47Mpps forwarding rate. If we have an aggregate line

speed below this rate, then there will be excess capacity that can be used to run additional

services. Note that the aggregate rate of eight 100Mbps ports is 1.128Mpps—well within

the 3.47Mpps capacity of the microengines of an IXP1200. Recall from the last chapter

that we sized the VRP to a static budget of 240 cycles and 24 SRAM accesses per packet

when the microengines are handling eight ports.

Deciding which services to run on the StrongARM is complicated by the fact that the

StrongARM must support the Pentium (as a bridge) and because it shares SRAM and

DRAM bandwidth with the microengines. This means an arbitrary service running on

the StrongARM has the potential to interfere with the microengine’s ability to forward

packets at line speed. As a consequence, the StrongARM must be included in the same

memory resource budget as the microengines.

Third, even though we know the maximum rates that can be supported by the Pentium

and StrongARM, in the worst case all arriving packets require more processing than the

microengines can provide, and so have to be passed up the processor hierarchy. This

means the higher levels of the processor hierarchy must differentiate among packets based

4.1. PROBLEM SPACE 95

on classification done at the microengine level and then schedule their available capacity

in some meaningful way.

4.1.2 Admission Control and Placement

Service placement is a generalization of admission control. In fact, admission control is

a consequence of service placement. That is, the system first creates a list of processors

and switching paths that can support the service. If the list is empty, the service is not

admitted—the router does not admit services that will jeopardize robustness. Note that

the system can include additional policy restrictions (e.g., user A may not install services

on processor B) in its admission control and placement logic.

The hardware abstraction layer maintains a database of the component capabilities.

The capabilities include the bandwidth of the ports and switches as well as the processing

cycles available to the upper software layers. Specifically, this information is used by the

OS to determine appropriate placement of services. It is important to note that the HAL

takes overhead processing cycles and switching capacity into account.

The admission control mechanism must also decide how many services to allow on

the Pentium. For each such service, the requester specifies the expected packet rate and

the expected number of cycles expended on each packet. From these two values, the

mechanism determines the service’s total cycle rate. The service can be admitted only if

the processor has sufficient cycles-per-second available and the total packet rate remains

below the maximum that the Pentium can sustain. Admission control to the Pentium,

as well as the strategy for scheduling the Pentium’s cycles, are discussed in Qie, Bavier,

Peterson, and Karlin [51].

96 CHAPTER 4. RESOURCE ALLOCATION

4.2 Hardware Performance Model

As shown in Chapter 2, our hardware model consists of three major components: pro-

cessors, switches, and ports. A router topology is the connected graph of the direct

connections among these components. Services can be placed on any processor in the

topology, but packets being handled by a particular service must traverse a switching

path through the topology that includes the processor on which that service is placed.

4.2.1 Processors

Each processor in the system is parameterized by the following performance metrics:

scheduling type: Either static or dynamic. Statically scheduled processors require that

all services fit assuming worst case processing rates and worst case bandwidth rates.

Dynamically scheduled processors use average service rates and average packet

rates to determine if a service will fit on a given processor. Whether statically or

dynamically scheduled, we assume that all the services to the system have an inde-

pendent impact (see Chapter 2)—they do not interfere with each other and the cost

each service imposes on the system is additive. As demonstrated elsewhere, this

property can be enforced on both statically [55] and dynamically [51] scheduled

processors. The scheduling type determines how to interpret the next parameter,

cycle rate.

cycle rate: For statically scheduled processors, this is the number of available processing

cycles per packet. For dynamically scheduled processors, this is the total number

of available processing cycles per second.

4.2. HARDWARE PERFORMANCE MODEL 97

transmit cost: This is the cost in processor cycles to transmit a packet to a given switch.

It is expressed as a combination of cycles/packet and cycles/byte. The cycles/packet

overhead is independent of the switch speed and independent of the packet desti-

nation. For processors with DMA engines, the cycles/packet will be approximately

zero. For processors that use programmed I/O (PIO), we assume the existence of

a deep enough write buffer to make the transmit cost independent of the switch

speed.

receive cost: This is the cost in processor cycles to receive a packet from a given switch.

It is expressed as a combination of cycles/packet overhead and cycles/byte.

4.2.2 Switches

Functionally, the switch abstraction provides an interface for interprocessor data move-

ment and distributed queues whose head and tail are on different processors. Part of the

fixed infrastructure running on each processor implements each queue’s head and tail.

This corresponds to the classifier that receives packets and decides how to process them

(queue head), and the scheduler that selects a packet and then transmits it (queue tail).

The performance of these two activities is captured, respectively, by the transmit cost

and receive cost parameters defined above.

The performance of the switch itself is characterized by by both its bandwidth and

overhead (e.g., DMA setup, the address phase on the PCI bus, the interframe gaps on an

Ethernet). Thus, each switch in the system is parameterized by the following performance

metric:

transfer time: The time it takes to transfer a packet from point A to point B through the

switch. It is specified with the time to transfer a minimum-sized packet and the time

98 CHAPTER 4. RESOURCE ALLOCATION

to transfer a maximum-sized packet. Intermediate sizes are computed using linear

interpolation. Switches are not assumed to have symmetric bandwidth between

the same two processors. This is why we characterize the directed transfer time.

Also, when computing the capacity of a switching path one must take into account

that when a packet is transmitted slowly, it is the same as transferring a larger

packet more quickly—it takes the same “wire time.” Finally, a given switch will

have different performance characteristics depending on the particular processors

or ports to which it is connected.

4.2.3 Ports

Ports essentially serve as packet producers/consumers in our model. They are trivially

parameterized by the following performance metrics:

duplex: Either half-duplex (the sum of the input and output bandwidth is the line-speed

of the port) or full-duplex (independently, the input bandwidth and the output

bandwidth is the line-speed of the port). Full-duplex gives twice the bandwidth

of half-duplex.

packet time: The overhead time on the wire for a “zero-length” packet. In addition

to the overhead fields in the Ethernet frame, this parameter captures the required

interframe gap between packets.

byte time: The time on the wire for each byte in the packet.

4.3. WORKLOAD 99

4.3 Workload

Determining a representative set of services is problematic since there is no well-estab-

lished extensible router workload. Thus, our approach is to define a plausible workload,

based on a characterization of the limited set of services we have implemented, and then

vary this workload in an effort to understand the robustness of the algorithms.

We have implemented six example services that fit on the microengines. Table 4.1

gives the memory and cycle requirements for each. The first (TCP splicer) connects two

TCP connections in a cut-through path. The second (Wavelet Dropper) thins a wavelet-

encoded video data stream. The third (ACK Monitor) watches a TCP connection for

repeat ACKs in an effort to determine the connection’s behavior [45]. The fourth (SYN

Monitor) counts the rate of SYN packets in an effort to detect a SYN attack. Port Filter

is a simple filter that drops packets addressed to a set of up to five port ranges. The last is

minimal IP processing (IP--), which consists of decrementing the TTL, recomputing the

checksum and replacing the Ethernet header. (Note that the IP header also needs to be

validated—the checksum verified and the version and length fields checked—but this is

done as part of the classifier rather than the forwarder.)

SRAM Register Registers
Forwarder Read/Write Operations Needed

(bytes) (instructions)

TCP Splicer 24 45 7
Wavelet Dropper 8 28 4
ACK Monitor 12 15 4
SYN Monitor 4 5 0
Port Filter 20 26 2
Minimal IP (IP--) 24 32 2

Table 4.1: Cycle, Memory and Register Requirements of Example Services. From [55].

100 CHAPTER 4. RESOURCE ALLOCATION

In addition, we have measured more complicated services such as TCP proxies and

full IP to require at least 800 and 660 cycles per packet, respectively. Also, the prefix

matching algorithm we use as part of classification [56] requires on average 236 cycles

per packet.

A workload is an ordered list of services that are to be installed on our extensible

router. The next section describes the parameters of the services. For our evaluations,

we randomly generate the parameters for each service based on a distribution of service

classes that characterizes the workload. Section 4.3.2 describes the service classes.

4.3.1 Service Characterization

We characterize the processing requirements of services as follows. Note that we decou-

ple the input and output profiles to model both filtering services that discard packets (and

hence have more input than output), and multicast services that replicate packets (and

hence have more output than input).

processing rate: The average and maximum processing rate for each packet, specified

as cycles/packet.

input rate: The average packet rate consumed by the service, specified as packets/sec

and bytes/packet.

output rate: The average packet rate produced by the service, specified as packets/sec

and bytes/packet.

type: Services are characterized as either per-flow or global. Each packet is processed

by all of the global services on the current processor plus the one per-flow service

identified during classification. The input and output rates are left unspecified for

4.3. WORKLOAD 101

global services since they are applied to every packet. The introduction of these

two types of services is due to both the nature of the services we expect to support

as well as the design of the IXP1200 microengines. We expect to perform some

operations on every packet (e.g., decrement TTL, update checksum, strip link-layer

header, or count packets). Because branches are expensive on the microengines

(the consume both additional cycles and space in the instruction store), we want to

optimize the application of these global services that the program counter simply

falls through to each global service.

In general, the input rate and output rate are distinct. For our evaluations, we simplify

the evaluation by assuming that the packet rates into and out of a given service are equal.

4.3.2 Service Classes

We characterize the distribution of processing rates of the services in two stages. First,

based on our experience implementing actual services, we define four classes of services.

Each of these classes is characterized by an average processing rate, the standard de-

viation of a normal distribution, and a minimum and maximum cap. The four classes

are summarized in Table 4.2. These parameters were chosen based on measurements of

actual services on a prototype router.

Second, we vary the workload according to a distribution of the services across these

four classes. Our starting point is to assume 9% of the services are tiny, 90% are evenly

split between small and medium (i.e., 45% each), and 1% are large. We selected this

distribution (abbreviated 9/45/45/1) because it roughly matches the capability of the

hardware—the architectures we are considering are ill-suited for workloads that need

to support more than a handful of very large applications (such as a traditional scalable

102 CHAPTER 4. RESOURCE ALLOCATION

Processing Rate Distribution
(cpp)

Class Avg S.D. Min Max Description

Tiny 50 25 10 100
These services are global (i.e., applied
to every packet), and include packet
counters and filters.

Small 300 75 150 500

These services are per-flow, only operate
on the initial 64 bytes of the packet, and
include header editors, redirectors, smart
droppers, and packet taggers.

Medium 3500 500 1000 5000

These services are per-flow, and include
proxies, content caches, application-
specific overlay networks, and active
protocols. Some only operate on the
initial 64 bytes of the packet while others
operate on the entire packet. We elected
a mix of 50% each.

Large 50K 15K 5000 100K

These services are per-flow, operate on
the entire packet, and include server
programs and control protocols (e.g.,
BGP).

Table 4.2: Workload Forwarding Classes.

server might be asked to support) or more than a few services that must be applied to every

packet (there simply are not enough cycles per packet available at high bandwidths). In

other words, small and medium services best fit the sweet-spot of the architecture. They

also happen to correspond to majority of the services we have encountered in practice.

We evaluate the impact of varying this distribution later in this section.

Given these processing rates, we then choose the packet arrival rates such that they

are inversely proportional to the processing rate (i.e., expensive services expect a lower

packet arrival rate than those with inexpensive processing rates).1 We also select packet

1The actual ratios are normally distributed around an average arrival rate that is inversely proportional
to the processing rate.

4.4. ALGORITHMS 103

sizes from a bi-modal distribution. Packet sizes are chosen (with equal probability)

from normal distributions with a mean of either 128 bytes or 1000 bytes. The lower

value models small packets such as TCP/IP ACKs while the larger value models packets

containing content [43, 44]. We also limit the packet size to the legal Ethernet range of

64–1518 bytes.

4.4 Algorithms

Placing a given service on a router is a two step process. First, we must determine the

set of processors where the service will fit—that is, not cause any particular resource

to exceed a pre-determined, resource-specific threshold. Second, from the set of viable

alternatives, we must select which processor (if any) to receive the service. For the algo-

rithms presented here, we do not include policy restrictions (e.g., user A may not install

services on processor B); however, our method can be extended in a straightforward way

to incorporate this kind of logic.

When we can characterize the resource utilization of a service placed on a particular

processor of the router in terms of a fixed overhead, a per packet, and a per byte utilization

(and can show that this characterization already takes into account any negative resource

impact due to packets contending for resources), we have a system that supports the

concept of independent impact.

4.4.1 Utilization Vectors

To support the placement process, we define a d-dimensional utilization vector, along

with associated manipulation primitives. Each of the d non-negative components of the

utilization vector correspond to a particular resource (e.g., Pentium utilization, PCI bus

104 CHAPTER 4. RESOURCE ALLOCATION

utilization, or StrongARM utilization) in the router. Each component is normalized so

that 0 indicates no resource utilization and 1 indicates full resource utilization.

When considering whether a service s can be placed on a particular processor p we

use the following utilization vectors:

Router Utilization: This vector, denoted u, is the cumulative utilization of all the ser-

vices already placed on the router. Initially, this vector is 0.

Service Impact: This vector, denoted is,p, is the incremental utilization of placing a par-

ticular service on a particular processor.2 Because each service has an independent

impact on the router, this vector is independent of the router utilization vector.

Provisioning Vector: The components of this static vector, denoted p, set the maximum

utilization threshold for each resource. With the origin as one corner, this vector

determines the opposite corner of a d-dimensional rectangular parallelepiped. As

long as the router utilization remains within this region, the router is not over-

utilized. Typically, each component of the provisioning vector is 1 making the

region a unit hypercube.

Using these definitions, we say that a service s can be placed on processor p as long

as the “sum” of the current router utilization u and the service impact is,p lies within the

region defined by the provisioning vector p.

2The service impact also depends on the particular path the packets will take through the system. In
this thesis, we assume that the path traversing the minimum number of components from the input port, to
the processor, to the output port is best. Since we assume a hierarchical organization, determining which
components lie on the path is trivial.

4.4. ALGORITHMS 105

Calculating Service Impact

The precise details of how to compute a service’s impact depend on what aspects of the

router (hardware and software) and the service (requirements) are included in the model.

This section gives an overview of some of the considerations; Section 4.5 describes the

method of calculation for a specific set of experiments.

Each component of the service impact vector is computed independently based on

how the service interacts with the corresponding router resource as follows:

Dynamically-scheduled processors: The CPU resource is modeled in terms of max-

imum cycles per second. Services that are placed on a dynamically-scheduled

processor consume cycles based on the service’s average processing requirements

per packet, average packet rate, and average packet size. Services that are placed so

that packets must pass through a dynamically-scheduled processor have an impact

on the processor based on the average packet rate and the average packet size. Note

that we make the simplifying assumption that global services cannot be placed on

dynamically-scheduled processors.

Statically-scheduled processors: The CPU resource is modeled in terms of maximum

cycles per packet. All packets are guaranteed this many cycles under all condi-

tions (specifically, when packets are arriving at the processor at the maximum rate

possible based on the topology of the router). Services are placed on statically-

scheduled processors based on their worst-case processing requirements indepen-

dent of packet rate or packet size. Services that are placed so that packets must

pass through a statically-scheduled processor have no impact on the processor.

The maximum available cycles per packet already takes into account the fact that

processor can move packets at line speed.

106 CHAPTER 4. RESOURCE ALLOCATION

Ports and Switches: When a per-flow service is placed on the router, it impacts the

utilization of the associated input and output port and all the switches along the path

based on the average packet rate and average packet size for the service. Global

services have no effect on port or switch utilization.

Utilization Vector Addition

The only restrictions on the definition of “sum” is that it be associative, commutative, and

closed; that is, the result of adding a set of utilization vectors is a utilization vector and

the result is independent of the order in which they are combined.

Ordinarily, the “sum” of two utilization vectors is defined as the usual component-

by-component sum. However, if the router contains statically-scheduled processors sup-

porting both per-flow and global services, the utilization vector and the definition of the

“sum” become more complex. For packets associated with a per-flow service hosted by

a statically-scheduled processor, the worst-case number of cycles required is the sum of

the worst-case requirements for all of the global services hosted by the processor plus

the worst-case requirement for the per-flow service. To ensure that this stays within

the strict per packet budget of the processor under all conditions, we must separately

maintain both the global service contribution (the sum of the worst-case global service

requirements) and the per-flow service contribution (maximum of the worst-case per-

flow service requirements). By using three components (global service sum, per-flow

service maximum, and their sum) in the utilization vector, we capture the dual nature of

these processors. With this scheme, the provisioning vector not only limits the overall

processor utilization, it can independently limit the utilization of global services and per-

flow services.

4.4. ALGORITHMS 107

4.4.2 Online Placement Algorithms

As mentioned in Chapter 3, we model services as having an independent impact on the

resources of the router. The goal of the placement algorithm is to place as many services

as possible from a set of services—the workload. Broadly, our placement algorithms

can be divided into two classes: online and offline. Online algorithms consider each

service in the order specified by the workload while offline algorithms (discussed in

Section 4.4.3) simultaneously consider all of the services of the workload. Our service

placement algorithms currently impose the constraint that services do not move once they

have been placed.

Our expectation is that a deployed router would use a combination of online and

offline placement algorithms. The router would use an offline algorithm to place a static

set of universal services at boot time and then use an online algorithm to dynamically

place services on processors as the requests to place services arrive.

In the following descriptions, the running times of the algorithms are expressed in

terms of n, the number of services to place; m, the number of processors; and, d, the

dimensionality of the utilization vector.

For each service, considered in workload-order, the online algorithm determines the

set of feasible processors—those for which the resulting utilization vector is within the

bounds set by the provisioning vector. From this set, the algorithm then chooses one of

the processors based on one of the following placement strategies. If the service will not

fit on the router, it is skipped and the algorithm continues with the next service in the

workload. Because only one pass is made through the workload, these online algorithms

take O(nmd)-time to process the n services.

108 CHAPTER 4. RESOURCE ALLOCATION

Ordered: This online placement strategy is parameterized by an ordered list of pro-

cessors on the router. A service is placed on the first processor (in order) on

which it fits. The name of an instance of the algorithm (e.g., UE-SA-PT) is the

concatenation of the processor abbreviations (UE, microengine; SA, StrongARM;

PT, Pentium; PP, PowerPC) in the order considered for placement on the router.

L2-Norm: This placement strategy places each service on the processor that minimizes

the L2 norm (Euclidean norm) of the resulting router utilization vector. Geomet-

rically, vectors with the same L2 norm lie on the same hypersphere. The intuition

is that this strategy keeps the router utilization vector as close as possible to the

origin.

Balanced: This placement strategy places each service on the processor that minimizes

the L∞ norm of the resulting router utilization vector. (The L∞ norm of the utiliza-

tion vector is the value of its maximum component.) Geometrically, vectors with

the same L∞ norm lie on the same hypercube. The intuition is that this algorithm

tends to balance the utilization of the components, not letting any one get too far

ahead of the others. The balanced strategy allows the router utilization to get farther

from the origin than a L2 norm strategy as long as the utilization vector stays away

from the boundaries defined by the provisioning vector.

Hybrid: As the name implies, this placement strategy combines the Ordered and Bal-

anced strategy. It first attempts to place a service on a pre-selected processor. If the

service does not fit, the service is placed on one of the remaining processors using

the Balanced strategy.

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 109

4.4.3 Offline Placement Algorithms

An offline algorithm considers all of the services in the workload simultaneously to

determine the best configuration. Because each service could be placed on any of m

processors (or not placed at all), the number of possible configurations is (m+1)n. Given

that we are considering workloads with hundreds of services, an exhaustive search is

not feasible. (An exhaustive search, however, may be reasonable for optimally placing a

small set of common services during router boot time.)

As a comparison point and because early experimentation with the online algorithms

led us to believe that the order in which services were considered would have an impact on

the number which could ultimately be placed on the router, we developed the following

offline algorithm:

Scan: The offline scan algorithm first creates a list with nm items each containing ref-

erences to one of the services s from the workload and one of the processors p in

the router. This list is then repeatedly scanned for the (s, p) pair which, if placed

on the router, would yield the minimum L∞ norm of the resulting router utilization

vector, u. After updating u, all other entries in the list containing s are removed (so

that a given service is not placed more than once), and the process repeats. This

algorithm runs in O(n2md)-time.

4.5 Experimental Results on IXP1200 EEB

This section explores the algorithm space by evaluating the placement algorithms for

a specific hardware configuration under varying service workload. Our intuition is to

(1) place on the microengines those services that require relatively few processing cycles

110 CHAPTER 4. RESOURCE ALLOCATION

per packet in the worst case but expect a lot of traffic, (2) place on the Pentium those

services that require many processing cycles per packet and expect little traffic, and

(3) place on the StrongARM those services with “intermediate” processing and band-

width requirements.

A “closest-to-the-ports” scheme would give the microengines the highest priority, the

StrongARM an intermediate priority, and the Pentium the lowest priority. A “closest-to-

the-root” scheme would assign priorities in the opposite order.

Our placement results depend on the characteristics of the router and the workload.

We discuss these next.

4.5.1 IXP1200 Router Parameters

We evaluated the placement algorithms using the hardware configuration shown in Fig-

ure 1.4 (page 14). It includes a 733MHz Pentium III PC with a 32bit, 33MHz PCI bus

connected to an off-the-shelf 200MHz IXP1200 network processor-based intelligent line

card with eight 100Mbps Ethernet ports.

The router is modeled with both per-packet overhead and per-byte costs. In some

instances there was a zero per-byte cost. For example, the microengines share memory

with the StrongARM, meaning there is no per-byte cost to transfer data. In this case,

the per-packet cost captures the signaling overhead between the code running on the

microengines and the code running on the StrongARM. Also note that in one instance

we calculated a slight negative per-packet overhead. This is due to the fact that it is

sometimes more efficient to handle small packets. Because all packets are at least 64 bytes

long, in no case is the overall time for a packet ever negative.

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 111

As a simplification, we constrained the ports to be full-duplex and the services to

have symmetric input and output bandwidth. These assumptions allow us to model the

ports and microengines in aggregate. It also means that we can arbitrarily split the

measured round-trip packet overhead cost between transmitting and receiving. (Every

packet received by a processor will also be transmitted by that processor.) Tables 4.3

and 4.4 summarize the measured and derived parameters for this configuration. (See

Appendix A.) For our experiments, the IRH contains the first 64-bytes of the packet plus

an additional overhead of 4 bytes.

Parameter Value Units Description

pt_cps 733 Mcyc/s Pentium cycles/second
pt_env_cpp 1342 cyc/pkt Pentium environment overhead.
irh_oh 4 bytes IRH overhead.
irh_ph 64 bytes IRH maximum payload.
min_bpp 64 bytes/pkt Minimum packet size.
max_bpp 1518 bytes/pkt Maximum packet size.
port_spp 1600 ns/pkt Time required to send or receive a packet.
port_spb 80 ns/byte

Table 4.3: Router Parameters for a Pentium PC. (See Appendix A for details.)

4.5.2 Workload Generation

Section 4.3 characterizes the service classes in a workload. What remains is the method

of setting the number of services in a workload. On the one hand, if the services in a

workload use too few resources for a given router, then any algorithm will succeed in

placing all the services. On the other hand, if we have too many services in the workload

(so that only a small fraction could possibly be placed), an offline algorithm will have an

unfair advantage in that it can choose among many more configurations. The concern here

is that if an offline algorithm is allowed to choose from a workload with a large number of

112 CHAPTER 4. RESOURCE ALLOCATION

Parameter Value Units Description

sa_cps 199.1 Mcyc/s StrongARM cycles/second
ue_cpp 768 cyc/pkt Microengine cycles/Packet.
sa2pt_dma_spp 3739 ns/pkt Time on PCI bus when StrongARM sends

to Pentium using DMA.sa2pt_dma_spb 17.91 ns/byte
sa2pt_pio_spp 3.27 ns/pkt Time on PCI bus when StrongARM sends

to Pentium using PIO.sa2pt_pio_spb 40.30 ns/byte

sa2pt_pio_max 166 bytes Max packet size for StrongARM to use PIO
on PCI.

pt2sa_spp -34.94 ns/pkt Time on PCI bus when Pentium sends to
StrongARM using PIO.pt2sa_spb 15.09 ns/byte

sa_ue2_cpp 189 cyc/pkt Cost to the StrongARM to receive from
the microengines.sa_ue2_cpb 0 cyc/byte

sa_2ue_cpp 189 cyc/pkt Cost to the StrongARM to send to the
microengines.sa_2ue_cpb 0 cyc/byte

sa_pt2_cpp 186 cyc/pkt Cost to the StrongARM to receive from
the Pentium.sa_pt2_cpb 0 cyc/byte

sa_2pt_dma_cpp 186 cyc/pkt Cost to the StrongARM to send to the
Pentium using DMA.sa_2pt_dma_cpb 0 cyc/byte

sa_2pt_pio_cpp 27 cyc/pkt Cost to the StrongARM to send to the
Pentium using PIO.sa_2pt_pio_cpb 8 cyc/byte

pt_sa2_cpp 99 cyc/pkt Cost to the Pentium to receive from the
StrongARM.pt_sa2_cpb 0 cyc/byte

pt_2sa_cpp 99 cyc/pkt Cost to the Pentium to send to the
StrongARM.pt_2sa_cpb 11 cyc/byte

sa_env_cpp 513 cyc/pkt StrongARM environment overhead.
NUMPORTS 8 Number of Ports

Table 4.4: Router Parameters for a Pentium PC with an IXP1200 EEB line card. (See
Appendix A for details.)

services, the subset it selects may not be representative of the distribution of the workload

as a whole. We want to make the workload large enough to bring out the differences in

the online placement algorithms while keeping it small enough to make a reasonable

comparison (for a given workload distribution) with offline placement algorithms.

Clearly, the appropriate size of the workload will depend on the capacity of the router.

A “big” router will be able to handle a larger workload than a “small” router. For our

experiments, we use the minimum impact of a service on a router as the basis for deter-

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 113

mining the size of the workload. To calculate the minimum impact (a utilization vector),

we first calculate the service impacts, is,p, of placing the service on each processor. The

components of the minimum impact vector are calculated as the minimum value of the

corresponding components of the service impacts.

To generate a workload, we randomly generate services attempting to match the

desired distribution of tiny, small, medium, and large services. For each service we

generate, we calculate its minimum impact. If the sum of the service’s minimum impact

and the running total of the minimum impacts (of the services already in the workload) is

“acceptable,” then the service is added to the workload; otherwise, the service is not added

to the workload and the workload is complete. For our experiments, we add services to

the workload until the total minimum impact port utilization and utilization of any switch

or processor component would both be at least 1.

Table 4.5 lists the workloads for the IXP1200 EEB router along with the total min-

imum impact. There are several observations to make about this table. First, only the

StrongARM, microengine, and port minimum impacts are shown. The Pentium and PCI

bus minimum impacts are zero and are not shown. They are zero because the StrongARM

has the capability of handling any of the services (in isolation) that the Pentium could

handle. This means that for services that could be placed on either the StrongARM or the

Pentium, the minimum impact on the Pentium (and PCI bus) is zero and the minimum

impact on the StrongARM is smaller impact of placing the service on the StrongARM or

placing the service on the Pentium (and using StrongARM cycles to move the packets).

Second, the first two workloads (3/51/45/1 and 5/49/45/1) have significantly more

services (503 and 295, respectively) than the other workloads. This is due to the fact

that they contain a large percentage of small services. The small services can be placed

on any of the processors. (When placed on a microengine, they typically consume 30–

114 CHAPTER 4. RESOURCE ALLOCATION

Target
Distribution

(percentages)

Actual Distribution
(counts)

Total
Services

Total
Minimum Impact

tny sml med lrg N σ SA UE Port

3/51/45/1 14 256 227 6 503 40 0.88 0.97 4.32

5/49/45/1 14 145 133 3 295 32 0.52 0.96 2.65

7/47/45/1 13 91 88 2 194 16 0.34 0.97 1.56

9/45/45/1∗ 16 83 83 2 183 23 0.32 0.97 1.44

11/43/45/1 15 60 63 1 139 9 0.24 1.04 1.08

13/41/45/1 19 57 63 2 140 16 0.24 1.35 0.99

15/39/45/1 23 58 68 1 151 18 0.26 1.63 0.99

9/15/75/1 21 35 175 3 234 15 0.69 1.47 1.00

9/25/65/1 18 49 127 3 196 23 0.50 1.17 0.99

9/35/55/1 15 58 91 2 165 18 0.35 0.97 1.14

9/45/45/1∗ 16 83 83 2 183 23 0.32 0.97 1.44

9/55/35/1 16 100 64 2 182 32 0.25 0.95 1.57

9/65/25/1 13 99 39 2 153 16 0.16 0.96 1.60

9/75/15/1 14 126 26 2 168 12 0.10 0.96 1.99

9/45/33/13 14 72 53 21 160 20 0.22 0.97 1.27

9/45/35/11 14 69 54 17 154 12 0.21 0.94 1.27

9/45/37/9 14 71 59 14 158 27 0.23 0.93 1.31

9/45/39/7 14 72 62 11 159 12 0.24 0.95 1.19

9/45/41/5 14 73 67 8 163 18 0.26 0.95 1.35

9/45/43/3 14 74 70 5 164 21 0.28 0.99 1.22

9/45/45/1∗ 16 83 83 2 183 23 0.32 0.97 1.44
∗Listed multiple times in the table.

Table 4.5: Workloads for the IXP1200 EEB router. The three horizontal sections
correspond to the X-axes in the graphs of Figures 4.1, 4.2, and 4.3. Each row is the
average across five generated workloads. The standard deviation of N is σ.

60% of the available budget.) Because they can be placed anywhere, the small services

have a minimum impact of zero on the Pentium, StrongARM, and microengines. As a

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 115

consequence, workloads with larger percentages of small services will tend to have more

services overall.

Finally, because the small, medium, and large services always impact the ports, we

can make some observations about the port column. Note that the port column (like the

microengine column) is the aggregate utilization of all eight ports. For the three rows

where the port impact is less than or equal to 1, we interpret this to mean that the router is

not well suited to the corresponding distribution. That is, without attempting to optimally

place the services, we already know that the microengines (in these cases), will be over

utilized. This is due to the impact of the tiny services. By definition, these services must

be placed on the statically scheduled microengines. From the table, we see that when

there are 18 or more of these services, the microengines are oversubscribed.

4.5.3 Fixed Service Distribution

To establish a starting point, we evaluate the algorithms across five 9/45/45/1 workloads

containing an average of 183 services. The results are reported in Table 4.6. Included in

the table are the six possible Ordered algorithms along with the variants of the L2-Norm,

Balance, Hybrid, and Scan algorithms. Early experiments showed that the standard

versions of these algorithms (ending in a 1) did not perform as well as we had expected.

Analyzing the service placement as well as the reason services which could not be placed

led us to believe that the StrongARM was a bottleneck. By placing too many services on

the StrongARM, we were preventing future services from being placed on the Pentium.

We modified these algorithms to scale the StrongARM utilization by a multiplicative

factor before computing the appropriate norm. The final digit in the algorithm name

gives the scaling factor. By making the StrongARM artificially expensive, we were able

116 CHAPTER 4. RESOURCE ALLOCATION

to place more services on the router than we otherwise would have been able. Intuitively,

this makes sense when one considers the topology of the router. The StrongARM cycles

are a precious resource. When they are exhausted, services can neither be placed on the

StrongARM nor can they be placed on the Pentium.

Placement Total Placed Utilization
Algorithm UE SA PT N σ %∗ Port UE SA PCI PT

O
rd

er
ed

UE-PT-SA 90 0 85 174 22 99.2 1.44 0.99 0.33 0.48 0.41
UE-SA-PT 90 85 0 174 22 99.2 1.44 0.99 0.74 0.00 0.00
PT-UE-SA 36 0 90 127 15 72.1 1.09 0.97 1.00 0.64 0.58
PT-SA-UE 36 0 90 127 15 72.1 1.09 0.97 1.00 0.64 0.58
SA-UE-PT 36 88 3 127 18 72.1 1.08 0.97 1.00 0.01 0.01
SA-PT-UE 36 88 3 127 18 72.1 1.08 0.97 1.00 0.01 0.01

L
2-

N
or

m

L2-Norm1 28 77 23 127 9 72.6 1.04 0.97 1.00 0.04 0.07
L2-Norm2 25 69 35 129 9 73.3 1.04 0.97 1.00 0.06 0.11
L2-Norm4 22 65 41 128 8 73.0 1.01 0.97 1.00 0.10 0.14
L2-Norm8 22 55 59 136 6 77.2 1.07 0.97 1.00 0.32 0.28

B
al

an
ce

d

Balance1 28 65 46 138 18 78.7 1.06 0.97 1.00 0.25 0.22
Balance2 64 36 76 176 22 100.0 1.44 0.99 0.76 0.44 0.37
Balance4 79 13 82 175 22 99.5 1.44 0.99 0.49 0.47 0.40
Balance8 86 5 84 175 22 99.4 1.44 0.99 0.38 0.47 0.40

H
yb

ri
d

UE;S-P-1 90 46 39 174 22 99.2 1.44 0.99 0.52 0.06 0.12
UE;S-P-2 90 30 55 174 22 99.2 1.44 0.99 0.45 0.09 0.17
UE;S-P-4 90 22 63 174 22 99.2 1.44 0.99 0.42 0.15 0.21
UE;S-P-8 90 2 83 174 22 99.2 1.44 0.99 0.33 0.45 0.39

Sc
an

Scan1 16 57 82 156 13 88.7 0.84 0.94 0.99 0.44 0.38
Scan2 16 56 84 156 12 89.1 0.85 0.94 0.99 0.47 0.40
Scan4 16 56 84 156 12 89.1 0.85 0.94 0.99 0.47 0.40
Scan8 16 56 84 156 12 89.1 0.85 0.94 0.99 0.47 0.40

∗Normalized to the best algorithm for this workload.

Table 4.6: Algorithm performance on the IXP1200 EEB router across five 9/45/45/1
workloads containing an average of 183 services. Due to round-off error, the sum of the
placements does not always total N. The standard deviation of N is σ.

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 117

There are several observations to make about these results. First, most rows have a

port utilization that exceeds 1. This is because the algorithms are using a provisioning

vector that has a port component that is infinite (the other components are set to 1). This

allows the algorithms to place more services and not be limited by the ports. When the

port utilization is greater than 1, it means that the processors and switches in the router

were not the limiting factor for the workload. Note that we are not explicitly modeling the

IX bus in this version of the simulator; however, because we have measured the IX bus

and microengines operating at 3.47Mpps, we know that they could handle 23.3 times the

traffic of a single 100Mbps Ethernet port. This is 2.9 times the traffic of the eight ports

in our router. As long as the port utilization remains under 2.9, the results are still valid.

Second, the Ordered algorithms, not surprisingly, are sensitive to the order selected,

with results ranging from 72.1% to 99.2%. While it is clear that both orders that prefer

the StrongARM are not likely to yield good results, the relative behavior of the other

orders is not so obvious. We expect that with more complex architectures, the correct

order will be even harder to predict. Thus, while intuition and simulations might suggest

a particular order, it is difficult to draw any general conclusions about its behavior.

Third, exploiting knowledge about the vulnerable components in the system (the

StrongARM) had a noticeable effect on the Balanced algorithm (increasing the success

rate from 78.7% to 100%). While there was no net effect on the Hybrid algorithms, we

observed an expected downward trend on the number of services placed on the Strong-

ARM as its weight was increased. While the Ordered UE-PT-SA and the Hybrid al-

gorithms placed the same total number of services (174), the placement distribution was

different; as the cost of the StrongARM increases, the Hybrid algorithm behaves more and

more like the UE-PT-SA algorithm. The intuitive difference is that the Ordered UE-PT-

SA algorithm blindly places services on the Pentium (after considering the microengines)

118 CHAPTER 4. RESOURCE ALLOCATION

and the Hybrid algorithm makes an informed decision. It does not bother to put a service

on the Pentium which would cause the StrongARM to expend more effort forwarding the

packets than it would by performing the service itself.

Fourth, the offline algorithms performed worse than the best online algorithms. Recall

that the services were added in the order of their impact on the system, with the lesser

impact services selected first. It turns out that the smallest services (those that would

probably fit on the microengines) have a high impact due to their high packet rates, and

so they were added last. This is confirmed by the fact that only 16 services were loaded

onto the microengines for these algorithms. We also tried running the Scan algorithm

in the reverse direction, with the highest impact services added first. This makes a

certain amount of sense because it allows you to place the worst-case services onto a

highly loaded system, with the best-base services filling in the “cracks.” From these

observations, we conclude that the random nature of the workload works in favor of the

online algorithms.

Finally, the Balance and Hybrid algorithms outperformed the L2 norm algorithms.

This is because both the Balance and Hybrid algorithms use the L∞ norm, which better

models the shape of the region defined by the provisioning vector.

4.5.4 Varying Service Distributions

We next consider the behavior of the algorithms under different workload distributions. In

the graphs which follow, we exclude the SA-PT-UE algorithm because its behavior was

nearly identical to the SA-UE-PT algorithm. In addition, we only show the one norm-

based algorithm of each type that had the best performance for the 9/45/45/1 workload.

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 119

We vary the service distributions one pair at at time (tiny and small, small and me-

dium, medium and large). For each graph, the fraction placed is relative to the best

performing algorithm for the given workload. Therefore, for each workload, there will

be an algorithm with a relative fraction placed value of 1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3/51 5/49 7/47 9/45 11/43 13/41 15/39

R
el

at
iv

e
Fr

ac
tio

n
Pl

ac
ed

Tiny to Small Ratio

UE-PT-SA
UE-SA-PT
PT-UE-SA
PT-SA-UE
SA-UE-PT
L2-Norm8

Balance2
UE;S-P-4

Scan4

Figure 4.1: Relative algorithm placement performance under different non-port-limited
workloads. The medium and large fraction of the workloads are fixed at 45% and 1%
respectively

Figure 4.1 shows the consequence of varying the ratio of tiny to small services, where

the former are applied to all packets and the later are applied on a per-flow basis. As we

can see, all the algorithms have a slight trend upward as more tiny services are included.

This may be due to the fact that smaller services pack better. Moreover, the results show

120 CHAPTER 4. RESOURCE ALLOCATION

that both UE-PT-SA and UE;S-P-4 have consistently good behavior across this set of

workloads. This leads us to conclude that placing services on the microengines first is

a good idea. Similarly, both PT-SA-UE and SA-UE-PT have similar, poor behavior.

This re-enforces the insight that placing services on the StrongARM before attempting to

place them on the microengines is a bad idea.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15/75 25/65 35/55 45/45 55/35 65/25 75/15

R
el

at
iv

e
Fr

ac
tio

n
Pl

ac
ed

Small to Medium Ratio

UE-PT-SA
UE-SA-PT
PT-UE-SA
PT-SA-UE
SA-UE-PT
L2-Norm8

Balance2
UE;S-P-4

Scan4

Figure 4.2: Relative algorithm placement performance under different non-port-limited
workloads. The tiny and large fraction of the workloads are fixed at 9% and 1%
respectively

Next, Figure 4.2 shows the consequence of varying the ratio of small to medium

services. As in Figure 4.1, the general trend of the better performing algorithms is

slightly upward. Interestingly, the offline Scan4 algorithm had the opposite trend.

4.5. EXPERIMENTAL RESULTS ON IXP1200 EEB 121

A modified version of Scan4 where the services with the largest impact were placed

first had an opposite trend and did perform better for 55/35, 65/25, and 75/15 (reaching

nearly 1.0). However, this reversed version performed significantly worse under all the

other workloads we measured.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

33/13 35/11 37/9 39/7 41/5 43/3 45/1

R
el

at
iv

e
Fr

ac
tio

n
Pl

ac
ed

Medium to Large Ratio

UE-PT-SA
UE-SA-PT
PT-UE-SA
PT-SA-UE
SA-UE-PT
L2-Norm8

Balance2
UE;S-P-4

Scan4

Figure 4.3: Relative algorithm placement performance under different non-port-limited
workloads. The tiny and small fraction of the workloads are fixed at 9% and 45%
respectively

Finally, Figure 4.3 plots the behavior of the algorithms as ratio of medium to large

services changes. The graph is relatively flat for most of the well-performing algorithms,

meaning that most are insensitive to the medium-to-large mix.

122 CHAPTER 4. RESOURCE ALLOCATION

4.6 Experimental Results on PMC694

This section explores an alternative hardware implementation based on the PMC694.

While the IXP1200 EEB router is a three-tier processor hierarchy, the PMC694 router is

only a two-tier processor hierarchy. Another significant difference is that the IXP1200

EEB architecture assigns a microengine context to each port while the PowerPC in the

PMC694 architecture must service multiple (two in this case) ports.

4.6.1 PMC694 Router Parameters

We have evaluated the placement algorithms using a hardware configuration consisting

of a 733MHz Pentium III PC with a 32bit, 33MHz PCI bus connected to an off-the-shelf

266MHz PMC694 intelligent line card with two 100Mbps Ethernet ports.

As in the IXP1200 router, we constrained the ports to be full-duplex and the services

to have symmetric input and output bandwidth. Tables 4.3 and 4.7 summarize the mea-

sured and derived parameters for this configuration. (See Appendix A.) Because the

PowerPC is now at the bottom of the hierarchy, we must statically schedule a portion

of the available processor cycles so that we can support both the initial classification

(environment) and the tiny services (applied to every packet) at line speed. The tiny

services must fit within a worst case budget of 657cpp. This is 893cpp (from Table 3.4)

less the environment cost of 236cpp (from Table 4.7). In addition, the overall expected

cycle cost must fit within a total budget of 297.6Kpps× 657cpp, or 195.5Mcps. (Note

that this is 74% of the available 266Mcps on the PowerPC.)

4.6. EXPERIMENTAL RESULTS ON PMC694 123

Parameter Value Units Description

pp_cpp 893 cyc/pkt PowerPC cycles/packet
pp2pt_spp -581.1 ns/pkt Time on PCI buses when PowerPC sends to

Pentium using DMA.pp2pt_spb 38.34 ns/byte
pt2pp_spp -33.23 ns/pkt Time on PCI buses when Pentium sends to

PowerPC using PIO.pt2pp_spb 15.08 ns/byte
mc2pp_spp -33.23 ns/pkt Time on secondary PCI bus when MAC

sends to PowerPC.mc2pp_spb 15.08 ns/byte
pp2mc_spp -581.1 ns/pkt Time on secondary PCI bus when PowerPC

sends to MAC.pp2mc_spb 38.34 ns/byte
mp_ofact 0.7 Secondary PCI bus occupancy factor.
pp_mc2_cpp 0 cyc/pkt Cost to the PowerPC to receive from the

ports.pp_mc2_cpb 0 cyc/byte
pp_2mc_cpp 0 cyc/pkt Cost to the PowerPC to send to the ports.
pp_2mc_cpb 0 cyc/byte
pp_pt2_cpp 186 cyc/pkt Cost to the PowerPC to receive from the

Pentium.pp_pt2_cpb 0 cyc/byte
pp_2pt_cpp 186 cyc/pkt Cost to the PowerPC to send to the Pentium.
pp_2pt_cpb 0 cyc/byte
pt_pp2_cpp 99 cyc/pkt Cost to the Pentium to receive from the

PowerPC.pt_pp2_cpb 0 cyc/byte
pt_2pp_cpp 99 cyc/pkt Cost to the Pentium to send to the PowerPC.
pt_2pp_cpb 11 cyc/byte
pp_env_cpp 236 cyc/pkt PowerPC environment overhead.
NUMPORTS 2 Number of Ports

Table 4.7: Router Parameters for a Pentium PC with an PMC694 line card. (See
Appendix A for details.)

4.6.2 Workload Generation

Table 4.8 lists the workloads for the PMC694 router along with the total minimum impact.

There are a couple of observations to make about this table. First, only the PowerPC,

secondary PCI bus, and port minimum impacts are shown. The Pentium and primary PCI

bus minimum impacts are zero and are not shown. They are zero because the PowerPC

has the capability of handling any of the services (in isolation) that the Pentium could

handle. This means that for services that could be placed on either the PowerPC or

124 CHAPTER 4. RESOURCE ALLOCATION

the Pentium, the minimum impact on the Pentium (and primary PCI bus) is zero and

the minimum impact on the PowerPC is smaller impact of placing the service on the

PowerPC or placing the service on the Pentium (and using PowerPC cycles to move the

packets).

Target
Distribution

(percentages)

Actual Distribution
(counts)

Total
Services

Total
Minimum Impact

tny sml med lrg N σ PP sPCI Port

3/51/45/1 4 66 59 2 130 8 0.41 0.99 1.12

5/49/45/1 6 62 57 2 127 12 0.64 0.99 1.12

7/47/45/1 9 62 60 2 133 3 0.86 0.97 1.09

9/45/45/1∗ 12 61 61 1 136 8 0.94 0.95 1.07

11/43/45/1 15 56 58 1 130 9 1.25 0.88 0.99

13/41/45/1 19 57 63 2 140 16 1.64 0.87 0.99

15/39/45/1 22 57 67 1 148 20 1.93 0.88 0.99

9/15/75/1 21 35 175 3 234 15 1.80 0.89 1.00

9/25/65/1 18 49 127 3 196 23 1.46 0.88 0.99

9/35/55/1 13 51 80 2 146 12 1.12 0.89 1.00

9/45/45/1∗ 12 61 61 1 136 8 0.94 0.95 1.07

9/55/35/1 11 67 44 2 124 9 0.92 0.93 1.05

9/65/25/1 9 65 25 1 101 3 0.94 0.95 1.06

9/75/15/1 8 69 14 1 92 7 0.81 0.98 1.11

9/45/33/13 12 60 45 18 134 8 1.02 0.94 1.06

9/45/35/11 12 60 46 14 132 18 1.05 0.95 1.06

9/45/37/9 12 61 50 12 136 5 1.01 0.92 1.04

9/45/39/7 13 64 56 10 143 6 1.12 0.92 1.04

9/45/41/5 12 62 56 7 137 15 1.07 0.94 1.06

9/45/43/3 12 61 59 4 136 3 1.12 0.87 0.98

9/45/45/1∗ 12 61 61 1 136 8 0.94 0.95 1.07
∗Listed multiple times in the table.

Table 4.8: Workloads for the PMC694 router. Each row is the average across five
generated workloads. The standard deviation of N is σ.

4.6. EXPERIMENTAL RESULTS ON PMC694 125

Second, as in the IXP1200 EEB case, we can make some observations about the router

based on the port column. Note that the port column is the aggregate utilization of both

ports. Where the port impact is less than or equal to 1, we interpret this to mean that the

router is not well suited to the corresponding workload. It is interesting to note that the

all four workloads not well suited to the IXP1200 EEB were also not well suited to the

PMC694.

4.6.3 Fixed Service Distribution

Table 4.9 shows the algorithm performance on the PMC694 across five 9/45/45/1 work-

loads containing an average of 136 services. This is analogous to Table 4.6 for the

IXP1200 EEB. Because there are only two processors in the hierarchy, there are only two

Ordered algorithms and the Hybrid algorithms degenerate into one of these two Ordered

algorithms. To make a better comparison with the IXP1200 EEB results, we also included

variants (ending in 2, 4, or 8) where the PowerPC (like the StrongARM) was made more

expensive by the corresponding scaling factor.

There are several observations to make about these results. First, neither Ordered

algorithm performed better than the other algorithms. Placing too many services on the

PowerPC (as in the PP-PT case) caused the PowerPC to saturate; placing too many

services on the Pentium (as in the PT-PP case) caused the secondary PCI bus to saturate.

In fact, in the case of the PT-PP algorithm, the secondary PCI bus saturated before the

ports.

Second, for the L2-Norm, Balance, and Scan algorithms, the number of services

placed on the PowerPC drops as the scaling factor increases. This is an expected result.

Interestingly, the scaling factor associated with the PowerPC (analogous to the scaling

126 CHAPTER 4. RESOURCE ALLOCATION

Placement Total Placed Utilization
Algorithm PP PT N σ %∗ Port sPCI PP pPCI PT

O
rd

. PP-PT 130 1 131 12 96.6 1.02 0.91 0.96 0.00 0.00
PT-PP 12 114 126 6 93.1 0.97 1.00 0.92 0.20 0.19

L
2-

N
or

m

L2-Norm1 126 7 133 10 98.2 1.05 0.93 0.95 0.00 0.01
L2-Norm2 97 39 136 8 100.0 1.06 0.95 0.94 0.01 0.03
L2-Norm4 91 45 135 8 99.9 1.06 0.95 0.94 0.02 0.04
L2-Norm8 90 46 135 8 99.9 1.06 0.96 0.94 0.02 0.04

B
al

an
ce

d

Balance1 107 29 136 8 100.0 1.05 0.97 0.94 0.05 0.04
Balance2 67 64 131 7 96.8 1.02 0.98 0.93 0.11 0.09
Balance4 63 69 133 6 97.8 1.02 0.99 0.92 0.12 0.09
Balance8 63 70 133 6 97.8 1.02 0.99 0.92 0.12 0.09

Sc
an

Scan1 117 18 136 8 100.0 1.06 0.94 0.91 0.01 0.01
Scan2 108 27 136 8 100.0 1.06 0.95 0.90 0.01 0.02
Scan4 83 52 135 8 99.9 1.04 0.95 0.90 0.05 0.05
Scan8 65 70 135 7 99.4 1.01 0.98 0.91 0.12 0.09

∗Normalized to the best algorithm for this workload.

Table 4.9: Algorithm performance on the PMC694 router across five 9/45/45/1 workloads
containing an average of 136 services. Due to round-off error, the sum of the placements
does not always total N. The standard deviation of N is σ.

factor for the StrongARM) had a relatively small net effect. This may be due to the fact

that the PowerPC on the PMC694 must perform the tasks that both the microengines and

the StrongARM on the IXP1200 EEB perform.

Third, compared to the IXP1200 EEB, the algorithms for the PMC694 tend to place

a larger fraction of the services in the workloads. This is due to the fact that the PMC694

architecture is simpler than the IXP1200 EEB (i.e., fewer levels in the processor hier-

archy). As the architecture gets simpler, our method of generating workloads emulates

the behavior of the placement algorithms. For example, consider a router with a sin-

gle processor (i.e., a PC with “dumb” network interface cards). Because there is only

4.7. EVALUATION 127

one place to put a service (on the Pentium), the minimum impact used to generate the

workload will be identical to the actual impact. As a result, our method of generating

workloads—adding services until no more will fit—implies that the resulting workload

will always fit. Another consequence of a simpler architecture is that the algorithms have

fewer choices available and will, naturally, yield similar results. In the example case of a

single processor, all algorithms degenerate into the trivial “place it on the only processor”

algorithm.

Finally, compared to the IXP1200 EEB, the port utilization tends to be closer to 1.

This can be interpreted in two ways. On the one hand, it means that the PMC694 router

has less headroom—that is, less excess capacity. On the other hand, it means that the

PMC694 router is better optimized.

4.7 Evaluation

This chapter models an extensible router as a hierarchy of processor and switching ele-

ments, and studies a collection of algorithms for placing the services onto this architec-

ture. As expected, the algorithms have a noticeable effect on the number of services that

can be placed, with a 39% difference between the best and worst algorithm we evaluated.

In addition to demonstrating feasible algorithms for resource allocation and admission

control, we offer the following observations.

First, including architecture-specific knowledge is important to the performance of

the algorithms. For example, weighting the impact of placing services on the Strong-

ARM improves both the L2-Norm and L∞ norm (Balance) algorithms, and trying to first

place services on the microengines (resulting in the Hybrid algorithm) yields additional

improvements. In general, the Hybrid algorithm’s combination of the L∞ norm strategy

128 CHAPTER 4. RESOURCE ALLOCATION

and architecture-specific knowledge performed best across the workloads we considered.

The L∞ norm strategy also yielded consistently good results on the PMC694.

Second, the best-performing algorithms—Balance, Hybrid, and UE-PT-SA—were

largely insensitive to the workload mix, performing equally well as we varied the dis-

tribution of service processing times. Generally, all of the algorithms performed better

when presented with a larger ratio of smaller-sized jobs, which is not surprising since

smaller jobs offer more opportunities for placement.

Third, some of the simple Ordered algorithms on the IXP1200 EEB performed sur-

prisingly well. We believe these algorithms should be viewed as an approximation to

the Hybrid algorithm, which like the best case order algorithm (UE-PT-SA), first tries

to fit the service on the microengines. Although our particular configuration did not

illustrate this advantage, we believe the Hybrid algorithm should scale better than UE-

PT-SA and that Balance should scale better than Hybrid for more complex combinations

of processors above the microengine level. The Ordered algorithms on the PMC694

were inferior (either placed fewer services or had a higher variance) to the norm-based

algorithms. Together, this tells us that, in general, the norm-based algorithms outperform

the Ordered algorithms.

Finally, the evaluation of the algorithms exposed three interesting observations about

the hardware. One is that even though the StrongARM is on the critical path to the

Pentium, originally leading us to believe that placing any services on the StrongARM

was a bad idea, we found that the StrongARM was able to host a significant fraction

of the workload, approximately 20% for the best algorithms. A second observation is

that while there might be a market for the IXP1200 as a stand-along system, adding the

Pentium to the hierarchy has significant benefit at relatively little cost. One ramification

of adding the Pentium is that it can be the processor that runs a general-purpose OS (e.g.,

4.7. EVALUATION 129

Linux) in support of legacy services (e.g., BGP), leaving the StrongARM free to run a

minimal runtime system that is sufficient for the intermediate-sized services for which it

seems well suited. The last observation is that despite concerns about the primary PCI bus

being the bottleneck, it was never the first saturated device in our experiments; generally

the StrongARM was the bottleneck.

4.7.1 Extensibility and Robustness

Recall from Chapter 1 that our definition of robustness consists of two parts: routers

(1) must be able to read and classify packets at line speed and (2) must honor the pro-

cessing guarantees they make. At the end of the previous chapter, we concluded that our

implementation is able to read and classify packets at line speed. In this chapter we argue

that the router can make processing guarantees, in the form of admission control, that it

can honor. We show this by demonstrating a method of assigning services to processors

in a way that we do not oversubscribe the critical resources of the extensible router.

Because our algorithms do admit services when there are resources available, we con-

clude that our resource allocation mechanism provides extensibility. In addition, because

our algorithms successfully prevent the router from over-committing its resources, we

conclude that our resource allocation mechanism provides robustness.

130

Chapter 5

Conclusions

This dissertation demonstrates that one can to build a router that is simultaneously ex-

tensible and robust using commercially available, PC-based components. We show this

by presenting a novel architecture, key implementation methods for PC-based systems,

performance evaluations using two different line cards, and several resource allocation

algorithms.

5.1 Research Contribution

The main contribution of this thesis is to demonstrate that we can build a router from

commercially available, PC-based components (specifically, multi-port, programmable

line cards) that is simultaneously extensible and robust. To show this, we (1) describe

an architecture, called VERA, that is extensible and robust; (2) present implementation

techniques to realize this architecture on a PC-based router; and (3) characterize and

analyze the problem of mapping the functions implementing the router services to the

various, heterogeneous processors comprising the router in a way to preserve robustness.

5.1. RESEARCH CONTRIBUTION 131

The architectural contribution is to identify the design decisions we made while defin-

ing and implementing VERA. The design consists of three layers. First, VERA defines

an upper interface, called the router abstraction, that has explicit support for extensi-

bility. The router abstraction consists of three elements: classifiers, forwarders, and

schedulers. In addition, we support a classification hierarchy. Second, VERA defines

a lower interface, called the hardware abstraction, that hides the details of the underlying

hardware. The hardware abstraction also consists of three elements: processors, ports,

and switches. The processors within the router are organized into a processor hierarchy.

Our architecture defines the mapping of an abstract forwarding path (through the elements

of the router abstraction) onto a switching path (through the elements of the hardware

abstract) as a concrete forwarding path. Third, a distributed OS ties the upper and lower

abstractions together.

During the implementation of key elements of VERA, we have uncovered the many

details involved in data movement and queue management in a distributed environment

(distributed queues). We have determined that a key design consideration for our router

architecture is that the design must support the independent impact of flows. To sup-

port independent impact and ensure that our router is robust (can handle packets at line

rate), we have introduced a combination of static and dynamic scheduling of processor

schedules.

Using performance measurements on actual hardware, this thesis characterizes and

analyzes the problem of mapping the functions implementing the router services to the

various, heterogeneous processors comprising the router hardware. This includes defin-

ing a hardware performance model. Our analysis is based on a utilization vector rep-

resenting the overall utilization of the router. We have found that an algorithm that

minimizes the L∞ norm of the utilization vector will be able to place more services on

132 CHAPTER 5. CONCLUSIONS

the router than algorithms which do not consider the utilization or algorithms that use a

Euclidean norm.

All of these contributions are in the context of specific hardware configurations con-

sisting of both a three-level and a two-level processor hierarchy. We demonstrate our

two-level design on a Pentium augmented with a PowerPC-based line card and our three-

level design on a Pentium augmented with an IXP1200 network processor based line

card. While we have focused on two, relatively small, router configurations, we believe

our basic architecture applies equally well to richer configurations. In general, as network

processors become more prevalent in high-end routers, we expect our techniques to also

apply there as well. In the end, we expect the distinction between “hardware-based” and

“software-based” routers to become less meaningful.

5.2 Future Work

There are several directions we can extend the work presented in this thesis. First, as part

of an ongoing effort to incorporate VERA into SILK [3, 54], we can continue to develop

the software base. Specifically, we would like to update the control interface to the VERA

Linux device driver so that SILK paths can control services installed on the processors

on the line cards.

Second, we would like to explore the design space of VERA routers. One direction is

to build a larger system consisting of multiple PCs. By using multiple PCs and labeling

one as the root processor we will have a deeper processor hierarchy. This will let us

explore the space toward systems like Suez [8, 50] and SHRIMP [5]. Multi-PC systems

will allow us to validate or modify the distributed queue technique across LAN/SAN

links. Another area of the design space is to explore multiple line cards (possibly of

5.2. FUTURE WORK 133

different types) on the PCI bus. This will let us better understand the point at which the

PCI bus may (or may not) become the bottleneck.

Third, we would like to enhance the resource allocation model presented in Chapter 4.

Specifically, we would like to include memory in the utilization vector. This will allow us,

for example, to limit the number and/or size of the services installed on a processor. This

is particularly relevant to the microengines which only have a 1024 word instruction store.

In addition to extending the model, we would like to enhance its fidelity by including

more measurements of the hardware and fewer parameters derived indirectly from other

measurements. An important part of validating our router model is developing real-world

workloads.

Finally, we would like to explore the possibility designing and building a semaphore

server for the PCI bus. This would be a simple hardware device for the PCI bus that

would allow multiple bus masters to acquire and release semaphores (protecting shared

queues and buffers) without spinning on shared memory locations across the bus. This

would act as an extension (or replacement) to the I2O hardware registers we exploit in our

current implementation. By having this functionality on a separate board, we no longer

would require I2O support on the line cards. Advanced capabilities might include support

for a hardware callback—bus masters could register their request for a semaphore. When

it is released, the semaphore server could directly contact the queued bus master.

134

Appendix A

Router Parameter Table Calculations

This appendix gives the calculations for the entries in Tables 4.3, 4.4, and 4.7. The

parameter names use the following abbreviations:

pt Pentium

sa StrongARM

ue Microengine

pp PowerPC

mc (MAC) port on the PMC694

bpp bytes/packet

cpb cycles/byte

cpp cycles/packet

cps cycles/second

spb seconds/byte

spp seconds/packet

A.1. COMMON ROUTER PARAMETERS 135

A.1 Common Router Parameters

This section gives the calculations for the entries in Tables 4.3.

pt_cps

Pentium III cycles per second. Set to 733Mcps.

pt_env_cpp

Pentium III environment cost in cycles/packet. The environment cost is the over-

head cost per packet to classify and shuffle the packet within the CPU. It is the

total number of cycles per packet less the send/receive cost and less the forwarding

function cost. Peterson, et al. [47] reports that a 450Mcps (MHz) Pentium II can

forward 290.0Kpps through “IP Fast Path” code (IP--). Dividing these two values

gives a total of 1550cpp. Their code used a DMA-based Ethernet chip and a polling

device driver. Because their code performed a differential checksum computation

(rather than recalculating the checksum from scratch), only a few bytes of the

packet are accessed. As a result, there is no per-byte cost in this code. On a

Pentium III, we measured the IP-- function (decrement TTL, update checksum)

at 10cpp. We assume that the cycles/instruction (CPI) for the Pentium II and

Pentium III are approximately the same.1 The total send/receive cost is the sum

of pt_sa2_cpp and pt_2sa_cpp (see below), or 198cpp. We conclude that

the Pentium III environment cost (pt_env_cpp) is 1550−10−198, or 1342cpp.

irh_oh, irh_ph

The internal routing header (IRH) overhead, irh_oh, is set to 4 bytes. This is

enough to tag a block. The second parameter, irh_ph, indicates the maximum

1An informal search of the Internet indicates that this is the conventional wisdom.

136 APPENDIX A. ROUTER PARAMETER TABLE CALCULATIONS

amount of data from the packet that is sent in the IRH. We set this to 64 bytes so

that the smallest packet will fit in an IRH.

min_bpp, max_bpp

The minimum and maximum Ethernet packets sizes in bytes/packet. For our model,

we do not include the preamble or the SFD (Start Frame Delimiter) fields in the

packet size range. The sizes are derived from [25] and include the destination

address (6 octets), source address (6 octets), length/type field (2 octets), the data

(46 to 1500 octets), and the FCS (frame check sequence) (4 octets).

port_spp, port_spb

Time on the wire for a 100 BASE–T (100Mbps) Ethernet packet. The overhead

time per packet (port_spp) is the interFrameGap of 960ns plus the time to

transmit the preamble (7 octets = 56 bits) and the SFD (1 octet = 8 bits) at 10ns/bit,

or 1600ns. The per-byte time (port_spb) is 80ns (8 bits per octet at 10ns per

bit).

A.2 IXP1200 EEB Router Parameters

This section gives the calculations for the entries in Table 4.4.

sa_cps

StrongARM cycles per second. Set to 199.1Mcps.

ue_cpp

The statically scheduled microengines use a fixed per packet budget. Our value is

calculated based on the VRP of Section 3.3.3 as 240cyc/pkt + 24accesses/pkt×

22cyc/access, or 768cpp. Note that rather than modeling processing cycles and

A.2. IXP1200 EEB ROUTER PARAMETERS 137

memory access separately, we convert the memory accesses to processing cycles at

a rate of 24accesses/pkt. In a deployed system, we must ensure that there are no

more than 22 memory accesses in the VRP code for each packet.

sa2pt_dma_spp, sa2pt_dma_spb

Time on the PCI bus when the StrongARM sends to the Pentium using DMA. From

Table 3.2, we have the data points (64bytes, 13.10MByte/sec) and (1500bytes,

49.01MByte/sec). Converting the rates to time gives the data points (64bytes,

4.885µs) and (1500bytes, 30.61µs). A linear fit gives an overhead (sa2pt_dma_

spp) of 3739ns/pkt and a per-byte time (sa2pt_dma_spb) of 17.91ns/byte.

sa2pt_pio_spp, sa2pt_pio_spb

Time on the PCI bus when the StrongARM sends to the Pentium using PIO. From

Table 3.2, we have the data points (64bytes, 24.78MByte/sec) and (1500bytes,

24.81MByte/sec). Converting the rates to time gives the data points (64bytes,

2.583µs) and (1500bytes, 60.46µs). A linear fit gives an overhead (sa2pt_pio_

spp) of 3.272ns/pkt and a per-byte time (sa2pt_pio_spb) of 40.30ns/byte.

sa2pt_pio_max

Since the StrongARM DMA overhead is so great, small packets should be sent

using PIO. The intersection of the PIO and DMA lines occurs at 166.8bpp so we

set sa2pt_pio_max to 166.

pt2sa_spp, pt2sa_spb

Time on the PCI bus when the Pentium sends to the StrongARM using PIO. From

Table 3.2, we have the data points (64bytes, 68.73MByte/sec) and (1500bytes,

66.35MByte/sec). Converting the rates to time gives the data points (64bytes,

931.2ns) and (1500bytes, 22.61µs). A linear fit gives an overhead (pt2sa_

138 APPENDIX A. ROUTER PARAMETER TABLE CALCULATIONS

spp) of −34.84ns/pkt and a per-byte time (pt2sa_spb) of 15.09ns/byte. The

negative overhead is due to the fact that the Pentium is slightly more efficient at

sending 64-byte blocks than sending 1500-byte blocks.

sa_ue2_cpp, sa_ue2_cpb, sa_2ue_cpp, sa_2ue_cpb

The StrongARM cost to receive from (ue2) and send to (2ue) the microengines.

The per byte cost (cpb) is zero because the microengines share packet memory

with the StrongARM. Dividing the microengine to StrongARM to microengine

rate of 526Kpps with a null forwarder (see Section 3.3.2) into the 199.1Mcps

StrongARM processor rate, we get a round trip cost of 378cpp. We arbitrarily

assign half of the cost (189cpp) to each leg of the trip. (This division only becomes

important when we introduce forwarders which have a significant imbalance in the

number of packets in versus the number of packets out. This is not the case for our

current simulations.)

sa_pt2_cpp, sa_pt2_cpb, sa_2pt_dma_cpp, sa_2pt_dma_cpb

The StrongARM cost to receive from (pt2) and send (using DMA) to (2pt) the

Pentium. The per byte receive cost (sa_pt2_cpb) is zero because the Pentium

writes the packet data directly into the StrongARM memory across the PCI bus.

The per byte send cost (sa_2pt_dma_cpb) is zero because the DMA engine

moves the data, not the StrongARM. Dividing the StrongARM to Pentium to

StrongARM rate of 534Kpps with a null forwarder (see Section 3.3.2) into the

199.1Mcps StrongARM processor rate, we get a round trip, per packet, cost of

372cpp. Again, we arbitrarily assign half of the cost (186cpp) to each leg of the

trip.

A.2. IXP1200 EEB ROUTER PARAMETERS 139

sa_2pt_pio_cpp, sa_2pt_pio_cpb

The StrongARM cost to send (using PIO) to the Pentium. Using the per byte time

on the PCI bus (sa2pt_pio_spb) of 40.30ns and a 199.1Mcps clock rate gives

a per byte cost (sa_2pt_pio_cpb) of 8cpb. We model the StrongARM per

packet cost as taking the same time as the Pentium per packet cost (pt_2sa_cpp)

of 99cpp and scale it based on the ratio of the CPU clock rates to give a per packet

cost (sa_2pt_pio_cpp) of 27cpp.

pt_sa2_cpp, pt_sa2_cpb, pt_2sa_cpp, pt_2sa_cpb

The Pentium cost to receive from (sa2) and send to (2sa) the StrongARM. The

per byte receive cost (pt_sa2_cpb) is zero because the StrongARM writes the

packet data directly into the Pentium memory across the PCI bus. The remaining

Pentium costs are derived from Table 3.3. We expect the behavior to be linear

and model it as a fixed overhead, P, and a per byte cost, B, using the following

simultaneous equations:

P+(64byte)∗B+500cpp = 733Mcps/534Kpps

P+(1500byte)∗B+800cpp = 733Mcps/43.6Kpps

Solving gives P = 198cpp (round-trip) and B = 11cpb (send only). Again, we

equally split the round-trip overhead between sending (pt_sa2_cpp) and receiv-

ing (pt_2sa_cpp). The per byte send cost (pt_2sa_cpb) is 11cpb.

sa_env_cpp

StrongARM environment cost in cycles/packet. We assume that, except for clas-

sification, the environment overhead on the StrongARM will be 25% of that the

Pentium. From [56] we assume that prefix-match classification requires on average

140 APPENDIX A. ROUTER PARAMETER TABLE CALCULATIONS

236 cycles per packet. For our model, we set the StrongARM environment cost to

be 0.25(1342−236)+236, or 513cpp.

NUMPORTS

The number of 100Mbps ports on the IXP1200 EEB. Set to 8.

A.3 PMC694 Router Parameters

This section gives the calculations for the entries in Table 4.7.

pp_cpp

Available PowerPC cycles per packet for minimum sized packets arriving at the

maximum rate across all ports. From Table 3.4 (page 86).

pp2pt_spp, pp2pt_spb

Time on the PCI buses when the PowerPC sends to the Pentium using DMA. From

Table 3.1, we have the data points (64bytes, 34.19MByte/sec) and (1500bytes,

26.35MByte/sec). Converting the rates to time gives the data points (64bytes,

1872ns) and (1500bytes, 56930ns). A linear fit gives an overhead (pp2pt_spp)

of −581.1ns/pkt and a per-byte time (pp2pt_spb) of 38.34ns/byte. The nega-

tive overhead is due to the fact that the PowerPC is more efficient at sending 64-byte

blocks than sending 1500-byte blocks.

pt2pp_spp, pt2pp_spb

Time on the PCI buses when the Pentium sends to the PowerPC using PIO. From

Table 3.1, we have the data points (64bytes, 68.70MByte/sec) and (1500bytes,

66.44MByte/sec). Converting the rates to time gives the data points (64bytes,

931.6ns) and (1500bytes, 22580ns). A linear fit gives an overhead (pt2pp_

A.3. PMC694 ROUTER PARAMETERS 141

spp) of −33.23ns/pkt and a per-byte time (pt2pp_spb) of 15.08ns/byte. The

negative overhead is due to the fact that the Pentium is more efficient at sending

64-byte blocks than sending 1500-byte blocks.

mc2pp_spp, mc2pp_spb

Time on the secondary PCI bus when a MAC (port) sends to the PowerPC. Because

we are modeling the MAC as having the same transfer characteristics as a Pentium,

these values are the same as pt2pp_spp and pt2pp_spb.

pp2mc_spp, pp2mc_spb

Time on the secondary PCI bus when the PowerPC sends to a MAC (port). Because

we are modeling the MAC as having the same transfer characteristics as a Pentium,

these values are the same as pp2pt_spp and pp2pt_spb.

mp_ofact

Secondary PCI bus occupancy factor. This models the fact that the PCI bus uti-

lization increases with additional bus masters. The secondary PCI bus has four bus

masters. Based on early experiments, we use a factor of 0.7 so that the secondary

PCI bus utilization is approximately the same as the per-port utilization for func-

tions placed on the PowerPC. We did not use an occupancy factor for the primary

PCI bus (for either the IXP1200 EEB or PMC694 models) because there are only

two bus masters and our round trip measurements already took this into account.

pp_mc2_cpp, pp_mc2_cpb, pp_2mc_cpp, pp_2mc_cpb

The PowerPC cost to receive from and send to the ports. These are set to zero

because we assume that the DMA operations are pipelined with the CPU cycles

when we derived the value of 893cpp. (See Section 3.3.2.)

142 APPENDIX A. ROUTER PARAMETER TABLE CALCULATIONS

pp_pt2_cpp, pp_pt2_cpb, pp_2pt_cpp, pp_2pt_cpb

The PowerPC cost to receive from and send to the Pentium. The per byte receive

cost is zero because the Pentium pushes the data. The per byte send cost is zero

because the DMA engine pushes the data. The per packet costs are set to be the

same as StrongARM (DMA) case.

pt_pp2_cpp, pt_pp2_cpb, pt_2pp_cpp, pt_2pp_cpb

The Pentium cost to receive from and send to the PowerPC. The per byte receive

cost is zero because the PowerPC pushes the data. Other costs are set to be the

same as StrongARM case.

pp_env_cpp

The PowerPC environment cost in cycles/packet is set to be the same as the Strong-

ARM.

NUMPORTS

The number of 100Mbps ports on the PMC694. Set to 2.

143

Bibliography

[1] Alteon WebSystems, Inc., San Jose, California. ACEnic Server-Optimized
10/100/1000 Mbps Ethernet Adapters Datasheet, August 1999.

[2] F. Baker. Requirements for IP Version 4 Routers; RFC 1812. Internet Request for
Comments, June 1995.

[3] A. Bavier, T. Voigt, M. Wawrzoniak, and L. Peterson. SILK: Scout Paths in the
Linux Kernel. Technical Report 2002–009, Department of Information Technology,
Uppsala University, Uppsala, Sweden, February 2002.

[4] J. C. R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms.
In Proceedings of the ACM SIGCOMM ’96 Conference, pages 143–156, Stanford,
California, August 1996.

[5] M. A. Blumrich, R. D. Alpert, Y. Chen, D. W. Clark, S. N. Damianakis, C. Dubnicki,
E. W. Felten, L. Iftode, K. Li, M. Martonosi, and R. A. Shillner. Design Choices
in the SHRIMP System: An Empirical Study. In Proceedings of the 25th Annual
ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 330–
341, Barcelona, Spain, June 1998.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W.-K. Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29–36, 1995.

[7] A. T. Campbell, S. Chou, M. E. Kounavis, and V. D. Stachtos. Implementing
Routelets: Virtual Router Support for the IXP1200 Network Processor. In
Proceedings of the IXA University Program Workshop, Portland, Oregon, June
2001.

[8] T. Chiueh and P. Pradhan. Suez: A Cluster-based Scalable Real-Time Packet Router.
In Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS), pages 136–143, Taipei, Taiwan, 2000.

[9] Compaq Computer Corporation, Intel Corporation, Microsoft Corporation. Virtual
Interface Architecture Specification, Version 1.0, December 1997.

144 BIBLIOGRAPHY

[10] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Workloads for
Programmable Network Interfaces. In IEEE 2nd Annual Workshop on Workload
Characterization, Austin, Texas, October 1999. Also appears as Chapter 7 in [30].

[11] M. Dasen, G. Fankhauser, and B. Plattner. An Error Tolerant, Scalable Video
Stream Encoding and Compression for Mobile Computing. In Proceedings of
the 1st Advanced Communications Technologies and Services (ACTS) Mobile
Communication Summit, pages 762–771, Granada, Spain, November 1996.

[12] B. Davie, August 1999. Personal Communication.

[13] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A Software
Architecture for Next Generation Routers. IEEE/ACM Transactions on Networking,
8(1):2–15, February 2000.

[14] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small Forwarding Tables
for Fast Routing Lookups. In Proceedings of the ACM SIGCOMM ’97 Conference,
pages 3–14, Cannes, France, October 1998.

[15] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences with a High-Speed
Network Adaptor: A Software Perspective. In Proceedings of SIGCOMM ’94
Conference, pages 2–13, London, October 1994.

[16] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad. On Using Intelligent
Network Interface Cards to support Multimedia Applications. In Proceedings of the
8th International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), pages 95–98, Cambridge, UK, July 1998.

[17] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad. SPINE: A Safe
Programmable and Integrated Network Environment. In Proceedings of the
8th ACM SIGOPS European Workshop on Support for Composing Distributed
Applications, pages 7–12, Sintra, Portugal, September 1998.

[18] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1999.

[19] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network and Client
Variability via On-Demand Dynamic Distillation. In Proceedings of the 7th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 160–170, Cambridge, Massachusetts,
October 1996.

[20] Y. Gottlieb and L. Peterson. A Comparative Study of Extensible Routers.
In Proceedings of the 5th International Conference on Open Architectures and
Network Programming (OPENARCH), pages 51–62, New York City, June 2002.

BIBLIOGRAPHY 145

[21] A. N. Habermann. Introduction to Operating System Design, pages 72–75. Science
Research Associates, Inc., 1976.

[22] F. Hady, June 2002. Personal Communication.

[23] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
packet language for active networks. In Proceedings of the 3rd ACM SIGPLAN
International Conference on Functional Programming Languages, pages 86–93,
Baltimore, Maryland, September 1998.

[24] IBM Microelectronics Division. IBM PowerNP NP4GS3 Network Processor
Solutions Product Overview, April 2001.

[25] IEEE Standard 802.3. Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications. IEEE, New York, NY,
October 2000.

[26] InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.0,
October 2000.

[27] Intel Corporation. IXP1200 Network Processor Datasheet, September 2000.

[28] Intel Corporation. IXP12EB Intel IXP1200 Network Processor Ethernet Evaluation
Kit Product Brief, 2000.

[29] Intelligent I/O (I2O) Special Interest Group. Intelligent I/O (I2O) Architecture
Specification, Version 2.0, March 1999.

[30] L. K. John and A. M. G. Maynard, editors. Workload Characterization for Computer
System Design. Kluwer Academic Publishers, Boston, Massachusetts, March 2000.

[31] S. Karlin and L. Peterson. Maximum Packet Rates for Full-Duplex Ethernet.
Technical Report TR–645–02, Princeton University, February 2002.

[32] S. Karlin and L. Peterson. VERA: An Extensible Router Architecture. Computer
Networks, 38(3):277–293, February 2002.

[33] S. C. Karlin, D. W. Clark, and M. Martonosi. SurfBoard – A Hardware Performance
Monitor for SHRIMP. Technical Report TR–596–99, Princeton University, March
1999.

[34] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router. ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

146 BIBLIOGRAPHY

[35] M. E. Kounavis, A. T. Campell, S. Chou, F. Modoux, J. Vicente, and H. Zhuang.
The Genesis Kernel: A Programming System for Spawning Network Architectures.
IEEE Journal on Selected Areas in Communications, 19(3):511–526, March 2001.

[36] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J. Lockwood, P. Pappu, D. Richards,
D. Taylor, J. Parwatikar, E. Spitznagel, J. Turner, and K. Wong. Design of a High
Performance Dynamically Extensible Router. In Proceedings of the DARPA Active
Networks Conference and Exposition (DANCE 2002), pages 42–64, San Francisco,
California, May 2002.

[37] T. V. Lakshman and D. Stiliadis. High Speed Policy-based Packet Forwarding
Using Efficient Multi-dimensional Range Matching. In Proceedings of the ACM
SIGCOMM ’98 Conference, pages 203–214, Vancouver, British Columbia, Canada,
September 1998.

[38] O.-I. Lepe-Aldama and J. Garcı́a-Vidal. A Performance Model of a PC Based
IP Software Router. In Proceedings of the IEEE International Conference on
Communications (ICC 2002), volume 2, pages 1230–1235, New York City, April
2002.

[39] O.-I. Lepe-Aldama and J. Garcı́a-Vidal. I/O Bus Usage Control in PC-Based
Software Routers. In Proceedings of the 2nd International IFIP–TC6 Networking
Conference (NETWORKING 2002), pages 1135–1140, Pisa, Italy, May 2002.

[40] M. Martonosi, S. Karlin, C. Liao, and D. W. Clark. Performance Monitoring
Infrastructure in Shrimp Multicomputers. International Journal of Parallel
and Distributed Systems and Networks (Invited paper in the special issue on
Measurement of Program and System Performance), 2(3):126–133, 1999.

[41] D. Mosberger and L. L. Peterson. Making Paths Explicit in the Scout Operating
System. In Proceedings of the Second USENIX Symposium on Operating System
Design and Implementation (OSDI), pages 153–167, Seattle, Washington, October
1996.

[42] J. Moy. OSPF Version 2; RFC 2328. Internet Request for Comments, April 1998.

[43] C. Partridge. How Slow is One Gigabit Per Second? ACM SIGCOMM Computer
Communication Review, 20(1):44–53, 1990.

[44] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham,
M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma, J. Mcallen, T. Mendez,
W. C. Milliken, R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Storch, B. Tober,
G. D. Troxel, D. Waitzman, and S. Winterble. A 50-Gb/s IP Router. IEEE/ACM
Transactions on Networking, 6(3):237–247, June 1998.

BIBLIOGRAPHY 147

[45] V. Paxson. Automated Packet Trace Analysis of TCP Implementations. In
Proceedings of the ACM SIGCOMM ’97 Conference, pages 167–179, Cannes,
France, September 1997.

[46] PCI Special Interest Group, Hillsboro, Oregon. PCI Local Bus Specification,
Revision 2.2, December 1998.

[47] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau, S. Schwab,
H. Dandelkar, A. Purtell, and J. Hartman. An OS Interface for Active Routers.
IEEE Journal on Selected Areas in Communications, 19(3):473–487, March 2001.

[48] L. L. Peterson, S. C. Karlin, and K. Li. OS Support for General-Purpose Routers. In
Proceedings of the 7th Workshop on Hot Topics in Operating Systems (HotOS–VII),
pages 38–43, Rio Rico, Arizona, March 1999.

[49] J. Postel. Internet Protocol; RFC 791. Internet Request for Comments, September
1981.

[50] P. Pradhan and T. Chiueh. Operating System Support for Programmable Cluster-
Based Internet Routers. In Proceedings of the 7th Workshop on Hot Topics in
Operating Systems (HotOS–VII), pages 76–81, Rio Rico, Arizona, March 1999.

[51] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Scheduling Computations on a
Programmable Router. In Proceedings of the ACM SIGMETRICS 2001 Conference,
pages 13–24, Cambridge, Massachusetts, June 2001.

[52] RAMiX Incorporated, Ventura, California. PMC/CompactPCI Ethernet Controllers
Product Family Data Sheet, 1999.

[53] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP–4); RFC 1771. Internet
Request for Comments, March 1995.

[54] N. Shalaby, L. Peterson, A. Bavier, Y. Gottlieb, S. Karlin, A. Nakao, X. Qie,
T. Spalink, and M. Wawrzoniak. Extensible Routers for Active Networks. In
Proceedings of the DARPA Active Networks Conference and Exposition (DANCE
2002), pages 92–116, San Francisco, California, May 2002.

[55] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a Robust
Software-Based Router Using Network Processors. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP), pages 216–229,
Chateau Lake Louise, Banff, Alberta, Canada, October 2001.

[56] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix
expansion. ACM Transactions on Computer Systems, 17(1):1–40, February 1999.

148 BIBLIOGRAPHY

[57] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Level Four
Switching. In Proceedings of the ACM SIGCOMM ’98 Conference, pages 191–202,
Vancouver, British Columbia, Canada, September 1998.

[58] D. E. Taylor, J. S. Turner, and J. W. Lockwood. Dynamic Hardware Plugins
(DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable
Routers. In Proceedings of the 4th International Conference on Open Architectures
and Network Programming (OPENARCH), pages 25–34, Anchorage, Alaska, April
2001.

[59] C. B. S. Traw and J. M. Smith. Hardware/Software Organization of a
High-Performance ATM Host Interface. IEEE Journal on Selected Areas in
Communications (Special Issue on High Speed Computer/Network Interfaces),
11(2):240–253, 1993.

[60] Vitesse Semiconductor Corporation, Longmont, Colorado. IQ2000 Network
Processor Product Brief, 2000.

[61] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP), pages 40–53, Copper
Mountain Resort, Colorado, December 1995.

[62] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed IP
Routing Lookups. In Proceedings of the ACM SIGCOMM ’97 Conference, pages
25–36, Cannes, France, October 1997.

[63] S. Walton, A. Hutton, and J. Touch. High-Speed Data Paths in Host-Based Routers.
IEEE Computer, 31(11):46–52, November 1998.

[64] D. Wetherall. Active network vision and reality: lessons from a capsule-based
system. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP), pages 64–79, Kiawah Island Resort, South Carolina, December
1999.

