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Abstract

We recognize two trends in router design: increasing pressure to extend the set of services
provided by the router and increasing diversity in the hardware components used to con-
struct the router. The consequence of these two trends is that it is becoming increasingly
difficult to map the services onto the underlying hardware. Our response to this situation is
to define a virtual router architecture, called VERA, that hides the hardware details from the
forwarding functions. This paper presents the details of VERA and reports our preliminary
experiences implementing various aspects of the architecture.
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1 Introduction

There is a clear trend towards extending the set of functions that network routers
support beyond the traditional forwarding service. For example, routers are pro-
grammed to filter packets, translate addresses, make level-n routing decisions, bro-
ker quality of service (QoS) reservations, thin data streams, run proxies, support
computationally-weak home electronic devices, serve as the front-end to scalable
clusters, and support application-specific virtual networks. In general, we expect
routers to support a wide assortment of forwarding functions, each of which pro-
cesses and forwards packets in a flow-specific way.

At the same time routers are being programmed to implement new services, emerg-
ing hardware is making it possible to build routers from commercial off-the-shelf
(COTS) components, including system area network (SAN) switches [9], network
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processors [10,25], and programmable line cards [1,22]. In general, we expect non-
core routers to be constructed from a rich topology of these components, coupled
with general-purpose commodity processors.

The problem such a hardware landscape creates is one of mapping the packet flows
that traverse a router—and by implication the forwarding functions that implement
services they require—onto a particular hardware configuration. The standard sys-
tems response to this situation is to define a virtual router architecture. This paper
describes such an architecture, called VERA, that hides the hardware details from
the forwarding functions. VERA is designed with the following properties in mind:

Extensible: Because we are implementing extensible routers, our design must ex-
port an interface and protocol that allows new functionality to be easily added to
the router.

Compliant: It can be tempting to overlook some of the requirements of RFC1812
[2] when creating a new router architecture. Our goal is to develop an architecture
that supports all of the requirements of a compliant router, with special concern
for broadcast and multicast.

Efficient: Subject to the extensibility and compliancy requirements listed above,
we want the architecture to support efficient implementations on the given hard-
ware. For example, by taking advantage of the processor on intelligent network
interface cards (NICs), many packets can be completely processed and forwarded
without involving the main processor at all. By offloading the main processor as
much as possible, we leave extra headroom for user-level extensions.

In the development of VERA, we have made a series of design choices that, when
taken together, provide a consistent and coherent framework. Nearly every design
choice represents a trade-off among performance, complexity, and modularity. Be-
cause VERA is designed for implementing extensible internet protocol (IP) routers
on a heterogenous processing environment based on COTS hardware, we have
made significantly different design choices than either a general purpose operat-
ing system or a router operating system for a single, centralized processor. The
main contribution of this paper is to identify and motivate these design choices.

Figure 1 shows how the VERA framework constrains and abstracts the essence
of both the routing function space and the hardware configuration space. VERA
consists of a router abstraction, a hardware abstraction, and a distributed router op-
erating system. The router abstraction must be rich enough to support the RFC1812
requirements as well as the extensions of interest. The hardware abstraction must
be rich enough to support the range of hardware of interest. However, it should
expose only enough of the hardware details needed to allow for efficient router im-
plementations. Note that both abstractions must be well “matched” to one another
so that the map between them (i.e., the distributed router operating system imple-
mentation) is efficient and clean. The abstractions must also be chosen to allow us
to model and reason about the system with adequate fidelity without also getting
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Fig. 1. VERA constrains the space of routing function implementations and hardware ex-
posure to facilitate the mapping between the two.

bogged down by details.

This paper describes each of the three main components: the router abstraction
(Section 2), the hardware abstraction (Section 3), and the distributed router oper-
ating system (Section 4). For each layer, we both describe the architecture of the
layer, and report our preliminary experiences implementing the layer. Section 5
then describes vera.o, a Linux device driver that implements the architecture. The
paper concludes by discussing related work and offering some early observations.

2 Router Abstraction
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Fig. 2. The classifying, forwarding, and scheduling of IP packets.

This section defines the router architecture visible to programmers writing new for-
warding functions. The main attribute of the architecture is that it provides explicit
support for adding new services to the router. Figure 2 shows the flow of packets
in a router from an input port to an output port. A switching path is the instantia-
tion of a forwarder, along with its associated input and output queues. An IP router
performs three primary functions on each packet:



Classify: The classifier gets packets from an input port, creates an internal routing
header for the packet, and (based on the contents of the packet) sends the inter-
nal routing header to the appropriate path(s). Classifiers map network flows onto
switching paths. While classifiers do not modify packets, they can pass informa-
tion to the path using fields in the internal routing header. The internal routing
header is discussed further in Section 4.3. To support multicast and broadcast,
classifiers can “clone” packets and send them along multiple paths.

Forward: The forwarder gets packets from its single input queue, applies a for-
warding function to the packet, and sends the modified packet to its single output
queue. All transformations of packets in the router occur in forwarders.

Schedule: The output scheduler selects one of its non-empty input queues, re-
moves an internal routing header, and sends the associated packet to the output
port. The scheduler performs no processing (including link-layer) on the packet.

The router abstraction hides details about the underlying hardware. The abstrac-
tion’s model of the hardware is that of a single processor, a single memory pool,
and no explicit switching elements. Details of data movement are hidden and all
connections appear to be point-to-point. Classifiers, forwarders, and output sched-
ulers run as separate threads. Note that output schedulers are different than the
thread schedulers. The reason why we require that classifiers and schedulers not
modify packets and why we restrict forwarders to a single input queue and a single
output queue is motivated by our thread scheduling scheme; we discuss this later in
Section 4.2.

At router initialization time, each port has an associated classifier and scheduler. In
addition, there is an initial set of pre-established switching paths. To support QoS
flows and extensions, our architecture allows paths to be dynamically created and
removed by other paths. Section 2.2 gives details about this application programmer
interface (API).

2.1 Classification Hierarchy

Our router architecture recognizes that packet classification is not a one-step oper-
ation. Instead, we view classification occurring in distinct stages. A simple classi-
fication sequence might be:

Sanity Check: the first step of classification is to identify packets which must be
ignored or are malformed. Packets that are not identified as malformed are sent
to the next level.

Route Cache: at this level, the packet is quickly compared against a cache of
known flows to determine the correct path within the router. Packets not in the
cache, as well as packets that require special processing (e.g., initial packets of a
flow), are sent to the next level.



Prefix Match: most routers run a prefix matching algorithm that maps packets
based on some number of bits in the IP header, ranging from just the destination
IP address to the source/destination addresses and ports [6,15,24,26].

Full Classification: eventually, packets which have not been classified in early
stages will reach a “mop-up” stage which handles all remaining cases, includ-
ing application-level routing. This stage is often implemented with arbitrary C
code.

Figure 3 shows that the internal structure of a classifier is really a hierarchy of sub-
classifiers. Once a packet leaves the classifier C, the packets are fully classified—a
specific path is the target.
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Fig. 3. Classification Hierarchy. Classifier C is composed of partial classifiers Cq, C,, and
Cs. Solid lines indicate packet flow. Dashed lines indicate classification updates (e.g., route
table updates).

For our architecture, we impose the restriction that the outputs from a classifier are
unique. Referring to Figure 3, this would mean that an arrow from C1 could not
point to the same path as an arrow from C», for example.

Although we believe that this hierarchical structure is a fundamental aspect to
packet classification on an IP router [20], the exact form of the hierarchy is of-
ten dictated by the processor hierarchy onto which it will be mapped. We return to
this issue in Section 4.1.



2.2 Router API

This section outlines some of the router layer API function calls.

p = createPath(C, C_parms, F, F_parms, S, S parms)
This function creates a new path, p, by instantiating a forwarder, F, and attaching
it to the existing classifier, C, and scheduler, S through new queues. (Note that
C and S implicitly identify the input and output ports, respectively.) Figure 4
illustrates this process with an example. C_parms include the demultiplexing key
needed to identify the flow which should be redirected to this path. F_parms are
passed to the forwarder, and include the processor reservation (cycles, memory)
required by the forwarder. S_parms include the link reservation needed by the
output scheduler.

removePath(p, parms)
This function removes the existing path, p. The additional parameters indicate
whether the path should be immediately terminated abandoning any packets in
the queues or whether the path should be gracefully shut down by disconnecting
it from the classifier first and then letting the packets drain out of the queues.

updateClassifier(C, parms)
This function allows updates (such as new routing tables) to be sent to a classifier.

Fig. 4. The basic operations performed by the createPath function. Here, an RSVP mod-
ule (1) instantiates a new forwarder, then (2) attaches to the appropriate output scheduler,
and finally (3) attaches to the appropriate classifier.

2.3 Implementation

We have a complete implementation of the router architecture on a single processor
with commodity NICs and have used it to build a variety of forwarders. The im-
plementation is based on the Scout operating system [17]. We discuss OS-related
issues in Section 4. At this stage, the interesting questions are (1) how Scout fills
out the details not specified by the router architecture, and (2) whether or not the
resulting system gave us the required flexibility in extending the router’s function-
ality.

Regarding the first question, the most notable way in which Scout enhances the
interface visible to the programmer is that it provides a component-based program-



ming model for specifying forwarders. That is, Scout makes it possible to create
a forwarder by combining IP modules with “extension” modules that modify stan-
dard IP forwarding. For example, we have constructed a forwarder that selectively
drops packets during congestion for wavelet-encoded video [14]. This forwarder is
specified as eth/wavelet_drop/ip/eth, where each of eth, wavelet_drop, and ip are
names of modules that can be composed. In addition to defining the function that
is applied to each packet, Scout also allows the programmer to specify how many
CPU cycles and how much link bandwidth is to be allocated to a forwarder.

As to the second question, we have implemented a variety of forwarding func-
tions, including both “fine-grain” extensions to IP—analogous to Router Plugins
[5] and Click modules [16], and typified by the wavelet dropper example men-
tioned above—and “coarse-grain” extensions such as TCP proxies (e.g., eth/ip/-
tcp/http_proxy/tcp/ip/eth). Our router abstraction also supports active network-
ing environments. We encapsulate the ANTS execution environment [28] in a for-
warder specified as . ../udp/anep/nodeos/ants/nodeos/udp/...), where anep is
an active networking protocol layer and nodeos defines a wrapper (an execution
environment) that isolates untrusted active protocols downloaded into ANTS from
the rest of the system [19]. Beyond a variety of forwarding functions, we have also
successfully used the interface to establish both best effort and QoS packet flows.

One additional issue that arises from our experience has to do with managing the
classification hierarchy. It is often the case that a flow can only be classified by an
upper level of the hierarchy, meaning that we need to ensure that lower levels do
not. For example, suppose C; is designed to match layer-4 patterns and C;_1 holds a
route cache. If a call to createPath attaches to the classifier and specifies a level-4
pattern, we need to update C; to add the new layer-4 pattern and also ensure that
there is a miss in the route cache at Cj_1. The right side of Figure 5 shows how a
cache will obscure higher classification levels; any change to the tree will require
that the cache be updated to remain consistent.
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Fig. 5. A partial classifier acting as a route cache. The left side shows a routing decision
tree: internal nodes are decision points, leaves are path selections. The right side introduces
a route cache. Misses must traverse the master tree.



3 Hardware Abstraction

This section describes the hardware abstraction layer for VERA. The object of any
hardware abstraction layer (HAL), is to define an interface between the hardware
and the “device independent” upper level software (typically, an operating system).
This allows us to support a variety of hardware configurations without rewriting
the operating system. Choosing the appropriate level of abstraction is somewhat of
an art. We want to choose the abstraction level so that everything below is part of
a consistent and uniform HAL and everything above does not directly access the
hardware. If we select too high a level of abstraction, each port to a new hardware
configuration will require a major effort. If we select too low a level of abstraction,
we will not be able to take advantage of higher-level capabilities provided directly
by the hardware without breaking through the abstraction layer.

3.1 Example Hardware

Before discussing the architecture in detail, we present block diagrams for two ex-
ample hardware configurations. This gives us a concrete reference when discussing
the abstraction.

Pentium IlI
Motherboard
< PCI BUS >
RAMiX PMC694 NIC RAMiX PMC694 NIC
Filtering PowerPC Core Filtering PowerPC Core
Bridge plus Memory Bridge plus Memory
< PCI BUS > < PCI BUS >
MAC MAC MAC MAC
A A A A

Fig. 6. A four-port router using embedded PowerPC cores as network processors with a
Pentium 111 as the master processor.

Figure 6 shows an example 4-port router based on commercially available compo-
nents. (Details on the components are in Section 3.4.) While this router configura-
tion is small, it has two especially interesting features: (1) a high processor cycle to
port bandwidth ratio, and (2) substantial processing cycles “close” (low-latency) to
the ports.



Figure 7 shows a larger configuration with thirty-two 100 Mbit/s Ethernet ports
based on the 1XP1200 network processor [10], the 1X Bus, and the 1XB3208 bus
scaling fabric. By using four IXB3208 chips, this design scales to 128 ports and
eight IXP1200 processors.
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Main Processor
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Network Processor Network Processor
< IX BUS lXB.SZOB . IX BUS >
‘ ‘ Bus Scaling Fabric ‘ ‘
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Fig. 7. A hypothetical 32-port router using 1XP1200 network processors with a Pentium as
the master processor.

In our architecture, we also consider loosely coupled clusters of personal comput-
ers that utilize gigabit Ethernet, InfiniBand, or some other SAN technology as the
underlying switching technology.

3.2 Hardware Abstraction

The hardware abstraction layer for VERA can be broken down into three major
sections: processors, ports, and switches. The abstractions for the ports and proces-
sors are fairly standard. The abstraction for the switching elements is more involved
and represents the bulk of the hardware abstraction layer. We describe each of the
abstractions here:

Processors: The hardware abstraction layer groups the actual processors into vir-
tual processors. Each virtual processor is either a single processor, a symmetric
multiprocessor (SMP), or a complex/hybrid processor like the 1XP1200 (which
has a StrongARM core and six programmable microengines). The relevance is
that each virtual processor is its own scheduling domain with a single thread
pool. Also, any memory local to a processor is consolidated with and owned by
that processor.

Ports: A device driver hides the register level details of the media access controller
(MAC) chips and provides a uniform interface for upper layers. Each MAC chip
is “owned” by a particular processor. The interface exports a scatter/gather ca-
pability that can read and write the header and data from separate memory lo-
cations. Note that these memory locations must be local to the processor that
controls the port.



Switches: The switching elements are modeled as passive (no processing cycles)
and shared (all devices connected to a switch share a single bandwidth pool).
This also means that there is no explicit control registers accessible to the soft-
ware to schedule data movement through the switch. VERA’s switch abstraction
provides an interface for interprocessor data movement and distributed queues
whose head and tail are on different processors. Together, these are the primi-
tives needed by the distributed router operating system to implement the inter-
processor communication and message passing which is the basis for all the data
movement within the router. Sections 3.4.1 and 3.4.2 discuss the details of data
movement and queues in greater detail.

In addition to the abstractions of the processors, ports, and switches, the hardware
abstraction maintains a static database containing the topology of the system, as
well as the capabilities of the components.

The router topology is the connected graph of the direct connections among the
components of the router. By ignoring the switches and considering only the pro-
cessors and ports, we can find a spanning tree with the master processor at the root
and all the ports as leaves. This spanning tree is called the processor hierarchy.
Figures 8 and 9 show the hardware abstraction of the architectures shown in Fig-
ures 6 and 7, respectively. The nodes of the graphs are the processors, switches,
and ports (MACSs). The graph edges (solid lines) indicate packet switching paths.
The dashed arrows indicate the edges of the spanning tree defining the processor
hierarchy. Figures 8 and 9 both have three distinct switching elements because both
the filtering bridges of Figure 6 and the IXB3208 of Figure 7 segregate the buses
and partition the bandwidth.
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Fig. 8. The hardware abstraction of Figure 6. The solid lines indicate packet flow paths.
The dashed arrows show the processor hierarchy.

As mentioned above, the hardware abstraction layer maintains a static database of
the component capabilities. The capabilities include the bandwidth of the ports and
switches as well as the processing cycles available to the upper software layers.
Specifically, this information is used by the distributed router operating system to
determine appropriate placement of threads. It is important to note that the HAL
only advertises available processing cycles and switching capacity; this takes into
account any cycles and switching capacity needed to implement the abstraction
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Fig. 9. The hardware abstraction of Figure 7. The solid lines indicate packet flow paths.
The dashed arrows show the processor hierarchy.

layer itself.

3.3 Hardware API

This section outlines some of the hardware layer API function calls. The following
two functions hide details of how the hardware moves data:

putData(local, remote, size)
This function pushes a block of data of length size from a local address to a
remote address.

getData(remote, local, size)
This function pulls a block of data of length size from a local address to a remote
address.

The following three functions hide details of how the hardware queues data:

g = allocHWqueue(dir, depth)
This function allocates a distributed queue, g, from a fixed-size pool of queues.
The queue is configured to hold depth entries each of which is a pointer-sized
integer. The direction parameter, dir, can be set to either i nconi ng or out -
goi ng. An incoming queue supports multiple remote writers and an outgoing
queue supports multiple remote readers. Note that the local processor (which
made the call to allocHWqueue) cannot write to incoming queues and cannot
read from outgoing queues.

push(queue, item)
This function pushes the item (a pointer-sized integer) on the given queue. The
queue must be either a locally allocated outgoing queue or a remotely allocated
incoming queue.

item = pop(queue)
This function pops the item (a pointer-sized integer) from the given queue. The
queue must be either a locally allocated incoming queue or a remotely allocated
outgoing queue.

11



3.4 Implementation Issues

We now discuss two implementation issues—data movement and queue manage-
ment across the PCI bus—for the PMC694 NIC and the 1XP1200 Ethernet Eval-
uation Board (EEB). The key property of these configurations is that they employ
a (PCI) bus-based switch. We later briefly comment on the implementation issues
that arise on configurations that use other switching technology.

Pentium Il
Motherboard
< PCI BUS >
RAMiX PMC694 NIC Intel IXP1200 EEB
Filtering PowerPC Core IXP1200 Network Processor
Bridge plus Memory plus Memory
< PCI BUS > < IX BUS >
MAC MAC Octal MAC
A A AA A A AL

Y Yyvvyvyvyyvy

Fig. 10. Testbed based on a Pentium Il motherboard with both a PMC694 NIC and an
IXP1200 EEB.

Figure 10 shows our development testbed consisting of a commodity motherboard
connected to two different off-the-shelf network interface cards using a standard
33MHz, 32bit primary PCI bus. The motherboard is an Intel CA810E with a
133MHz system bus, a 733MHz Pentium Il CPU, and 128 Mbytes main mem-
ory.

The first NIC is a RAMiX PMC694 [22]. It contains its own 266 MHz PowerPC
processor, two 100 Mbit/s Ethernet ports, and 32 Mbytes of memory. The primary
PCI bus (of the motherboard) is isolated from the secondary PCI bus (of the PMC-
694) with an Intel 21554 non-transparent PCI-to-PCI bridge. The secondary PCI
bus is also 32bits and operates at 33MHz. The PMC694 has a two-channel direct
memory access (DMA) engine and queue management hardware registers used to
support the Intelligent 1/0 (1,0) standard [12].

The second NIC is an Intel 1XP1200 Ethernet Evaluation Board (EEB) which is
sold as part of an evaluation kit [11]. The board contains a 199 MHz IXP1200
network processor, eight 100 Mbit/s Ethernet ports, and 32 Mbytes of memory. The
IXP1200 chip contains a general-purpose StrongARM processor and six special-
purpose MicroEngines. Like the PMC694, this boards also has a two-channel DMA
engine and 1,0 support registers.
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3.4.1 Data Movement

The common denominator of all IP routers is that they move data from one network
interface to another. The HAL exports an API that allows any of the processors in
the router to either push (put) or pull (get) data to or from any of the other processors
in the router.

Focusing on PCl-based configurations, we note that the PCI bus efficiency is high-
est when data is transferred in long bursts. This is a direct consequence of the fact
that a PCI bus transaction consists of an address phase followed by one or more
data phases. The address phase specifies the address of the transfer for the first
data phase; each subsequent data phase within the same bus transaction occurs at
the next higher address. The address phase takes one PCI clock cycle; in the best
case, each data phase takes one PCI clock cycle. For each data phase, either the
master or the target may insert wait states (each of which takes one PCI clock cy-
cle). Note that read operations have a manditory wait state in their first data phase
and each transaction must be separated by at least one PCI clock cycle. By trans-
ferring data in bursts (bus transactions with many data phases), the overhead (per
byte transferred) of the address phase is reduced.

Because processors cannot always consistently generate these efficient bursts, they
are often augmented with DMA engines specifically designed to use bursts to trans-
fer blocks of data. Both the PMC694 and the 1XP1200 have DMA engines which
consistently generate burst transfers. Note that the Pentium motherboard does not
have a high-speed PClI DMA engine.

Due to the freedom in the PCI specification, different board designs will exhibit
different performance characteristics. We performed a series of measurements of
the PCI bandwidth between the motherboard and each of the boards of Figure 10.
Both the host processor (the Pentium I11) and the on-board processor of the NICs
can arbitrate for and then become the PCI bus master which allows them to initiate
transfers. By using read or write instructions (or a DMA engine if available) a pro-
cessor can pull or push data across the bus. Our experimental results are discussed
in the following paragraphs.

PMC694 PCI Bandwidth

Table 1 summarizes the results of our experiments with the PMC694. Here the
Pentium processor runs a Linux 2.2 kernel while the PowerPC runs our “raw” code
with no operating system. Under programmed 1/0O (P10), we measured several dif-
ferent data movement techniques. These differ in the number of bits transferred per
loop iteration (Transfer Size). We measured transfer size of 64 bits and 128 bits by
unrolling the 32-bit loop two times and four times, respectively. We obtained our
best times by using the ANSI C memcpy library routine which uses tuned assembly
routines. Our code was written in ANSI C.
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BuUS Transfer 64-Byte Packets | 1500-Byte Packets

Master Size Mode | Direction | Kpps | MByte/sec | Kpps | MByte/sec

host 32 bits PIO push 919.9 58.88 39.37 59.06
host 64 bits PIO push 975.0 62.40 41.58 62.37
host 128 bits PIO push 962.4 61.60 41.53 62.30
host | (memcpy) | PIO push 1073.4 68.70 44.29 66.44

host 32 bits PIO pull 61.1 3.91 2.61 3.91
host 64 bits PIO pull 61.8 3.95 2.63 3.95
host 128 bits PIO pull 61.9 3.96 2.64 3.95
host | (memcpy) | PIO pull 62.2 3.98 2.66 3.99

card 32 bits PIO push 365.5 23.39 14.84 22.26
card 64 bits PIO push 363.4 23.26 14.81 22.21
card 128 bits PIO push 363.9 23.29 14.81 22.21

card — DMA push 534.2 34.19 17.57 26.35

card 32 bits PIO pull 53.7 3.44 2.29 3.43

card 64 bits PIO pull 53.8 3.44 2.28 3.41

card 128 bits PIO pull 53.8 3.44 2.28 3.41

card — DMA pull 354.1 22.66 15.74 23.61
Table 1

Raw PCI Transfer Rates Between the PMC694 (card) and the Pentium Il Motherboard
(host).

IXP1200 PCI Bandwidth

Table 2 summarizes the results of our experiments with the 1XP1200 EEB. These
experiments are analogous to the PMC694 experiments. As with the PMC694 ex-
periments, the Pentium processor runs a Linux 2.2 kernel while the StrongARM
runs our “raw” code with no operating system. We locally modified the firmware
and jumper settings to run the board without an operating system and to allow it
to be plugged into the PCI bus of a commodity motherboard. Note that the Micro-
Engines were not used in this experiment. (Details on our MicroEngine software
architecture can be found in [23].)

PCI Bandwidth Generalizations and Observations

From Tables 1 and 2, we see that the fastest way to move a packet from the card
to the host and back to the card is for the card to push the packet to the host using
its DMA controller and then have the host push the packet back to the card using
memcpy-based PIO. (The notable exception is that due to the DMA setup over-
head, small packets should be sent using programmed /O on the I1XP1200. Our
experiments show that the crossover point is at approximately 168 bytes/packet.)
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BuUS Transfer 64-Byte Packets | 1500-Byte Packets

Master Size Mode | Direction | Kpps | MByte/sec | Kpps | MByte/sec

host 32 bits PIO push 1030.2 65.93 44.2 66.34
host 64 bits PIO push 1028.9 65.85 441 66.16
host 128 bits PIO push 1030.1 65.93 44.0 66.14
host | (memcpy) | PIO push 1073.9 68.73 44.2 66.35

host 32 bits PIO pull 63.7 4.08 2.7 4.05
host 64 bits PIO pull 63.7 4.08 2.7 4.04
host 128 bits PIO pull 64.3 4.11 2.7 4.09
host | (memcpy) | PIO pull 64.4 4.13 2.7 412

card 32 bits PIO push 349.2 22.35 14.7 22.12
card 64 bits PIO push 387.1 24.78 16.5 24.81
card 128 bits PIO push 387.1 24.78 16.5 24.81

card — DMA push 204.7 13.10 32.7 49.01

card 32 bits PIO pull 69.1 443 2.9 4.42

card 64 bits PIO pull 69.8 4.47 3.0 4.46

card 128 bits PIO pull 71.1 4.55 3.0 4.53

card — DMA pull 179.2 11.47 16.4 24.66
Table 2

Raw PCI Transfer Rates Between the 1XP1200 EEB (card) and the Pentium Il Mother-
board (host).

Since there is only one DMA engine per NIC, this engine becomes a critical re-
source that is explicitly managed by the HAL. (An additional advantage of using
DMA over programmed 1/O is concurrency; after issuing a DMA request, a thread
can either move on to other computations or yield to another thread.)

Moreover, because the PCI bus is a shared resource and there is no bandwidth reser-
vation mechanism, the HAL must coordinate among the processors when using its
DMA engine. For example, suppose processors A, B, C, and D are all connected to
the same PCI bus. Suppose there is a QoS flow between processors A and B. In this
case the HAL must ensure that a best effort flow between processors C and D does
not prevent the QoS flow from meeting its reservation. To effectively support QoS
flows in the router, the system must allow reservations on all of the limited, shared
resources.

Thus, rather than simply hide the DMA engine beneath a procedural interface, we
dedicate a server thread to the DMA engine on each processor. This thread co-
ordinates with its peers to allocate the shared bandwidth available on the bus, as
well as manages the local engine and DMA queues. The server supports two DMA
work queues: a low-priority queue for packet traffic and a high-priority queue inter-
processor control messages (e.g., messages that release packet data buffers.)
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Because our hardware model allows multiple intervening processors and switching
elements between any two processors, the intervening processors must store-and-
forward the packets. While this appears to be the problem that the router as a whole
is trying to solve (IP routing), the problem is significantly easier because, unlike the
Internet, we have a centralized controller in the master processor. The HAL hides
the details of any necessary forwarding.

3.4.2 Queues

Another fundamental aspect of IP routers is that the packets of each network flow
should be processed in FIFO order. Because we statistically multiplex the process-
ing cycles among the ports, the router must occasionally buffer packets in dis-
tributed queues. Recall that a distributed queue has a tail located on one processor
and the head located on a second processor.

Our requirement that the distributed queues support multiple readers and multi-
ple writers on the remote side of the queue stems from the fact that we anticipate
the number of available queues with hardware support to be limited. (In fact, the
PMC694 only supports 2 queues in each direction at the interface to the PowerPC
core.) Due to this limitation, we anticipate that these queues will need to be shared.
We revisit this issue in Section 4.4.

Without special hardware support, implementing a multiple reader or writer queue
over the PCI bus would require the processors to acquire and release semaphores
using software techniques (for example, spinning on remote memory locations [7]).
This is because the current version of the PCI bus specification [18] no longer
supports bus locking by arbitrary bus masters. Fortunately, components that sup-
port 12,0 have hardware registers that directly implement multiple reader or writer
queues. They do this by hiding a FIFO queue behind a single PCI mapped register.
When a processor reads the hardware register, there is a side effect of updating the
queue pointer. The read and update happen atomically.

Because we take advantage of 1,0 support as the basis for push and pop, we also
must live with the restrictions of 1,0. Specifically, the local processor cannot ac-
cess the registers used by the remote processors and vice versa. This is the reason-
ing behind the corresponding restrictions in push and pop. The benefit is that the
implementation of push and pop can be as simple as a memory-mapped register
write and read, respectively.

3.4.3 Other Switching Hardware

Our implementation effort up to this point has focused on the PCI bus as a switching
element, but we considered other technologies when defining the HAL. There are
two considerations when using other switches. First, the HAL defines operations for
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both pushing and pulling data across the switch. This is a natural match for a bus,
which supports both read and write operations, and is consistent with interfaces
like VIA [4] (which form the basis for future interfaces like InfiniBand [9]). On
a switch component that supports only push (send) operations (e.g., an Ethernet
switch), pull will have to be implemented by pushing a request to the data source,
which then pushes back the data.

Second, the bus offers only best-effort, shared bandwidth. On a switching element
that supports either dedicated point-to-point bandwidth (e.g., a crossbar) or virtual
point-to-point bandwidth (e.g., InfiniBand channels), the role of the DMA server
thread diminishes. In effect, the hardware supports the point-to-point behavior that
the HAL requires. Of course a best effort switch (e.g., Ethernet switch) will have
to be managed much like a PCI bus.

4 Distributed Router Operating System

As shown in Figure 1, the job of the distributed router operating system is to pro-
vide an execution environment for the forwarding functions which ties together the
router abstraction and hardware abstraction. A case in point is that the OS must
bridge the semantic gap between the high-level router abstraction and the low-level
HAL,; the OS implements the createPath call using the data movement and hard-
ware queue support functions of the HAL. In addition to tying together these core
abstractions, the OS provides a computation abstraction in the form of a thread API
and a memory abstraction in the form of both a buffer management API and an
internal routing header datatype.

We use the Scout operating system as a prototype implementation of VERA for
the special case of a single switch connecting a single processor to multiple MAC
devices. In the following subsections, we outline the major features and abstractions
provided by the operating system. We are in the process of extending Scout with
VERA support for distributed configurations.

4.1 Processor Hierarchy

In our abstraction, the processors are organized into a hierarchy. The dashed arrows
in Figures 8 and 9 shows how the master processors directly control the subordinate
processors which eventually control the MAC devices. At router initialization time,
administrative message queues are created from the master processor to each of
its child processors, and so on down the hierarchy. The single, master processor
maintains the master copies of the routing tables and controls the overall operation
of the router. Since each processor operates independently and has its own thread
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scheduler, the control the master processor has over the other processors is, by
necessity, coarse grained.

The processor hierarchy nicely maps to the classification hierarchy of Figure 3. The
first partial classifier, C1, always runs on the processor controlling the MAC for that
input port. The last partial classifier, Cy,, always runs on the master processor. In-
termediate classification stages can be mapped to either the current processor, or
the next processor up the processor hierarchy. Each classifier exports a single in-
terface. This interface is only exported on the master processor. Updates to the
classifier are made via this interface and then trickle down the classification hierar-
chy as needed. This means that the OS must propagate router abstraction level calls
to updateClassifier through the processor hierarchy to the master processor where
they can be fed into the classifier at the top level.

4.2 Thread Assignment and Scheduling

The OS provides an abstraction of computation in the form of a thread API. At
the router abstraction level, each forwarder and output scheduler runs as a separate
thread on a particular processor. As mentioned above, classifiers are multithreaded
with the first level of classification running on the processor which owns the input
port and the last level of classification running on the master processor. The output
scheduler threads run on the processor that owns the output port. Forwarder threads
and intermediate classification threads can run on any processor in the router. Inter-
mediate classification threads are statically assigned to processors at initialization
time.

In Figure 4 we saw an example of the createPath instantiating a new path. An
important part of path creation is identifying on which processor to instantiate the
forwarder. The OS supports this decision by maintaining a database of resource
reservations for processor cycles and internal switching cycles. In addition to the
traditional object code, a forwarder object file also contains per packet processing
and switching requirements for each processor architecture supported by the for-
warder object file. During a createPath call, the OS uses the resource database to
determine a list of eligible processors that have enough processing cycles to run
the function. With the internal router graph, the OS attempts to find a path that has
enough switching cycles to support the request. Paths are greedily considered from
shortest to longest. If no path is found which can support the request, the call to
createPath fails.

After new forwarder threads are instantiated, they must be scheduled along with all
the other classifier, forwarder, and output scheduler threads. Because our architec-
ture supports a heterogeneous distributed processing model, the OS must provide
support for scheduling computations across the entire router. In Section 3.2 we de-
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fined a scheduling domain as a tightly bound set of processors (usually, a single
processor) running a single thread scheduler. Because the amount of processing re-
quired on each packet is small, we have chosen not to have a single, fine-grained
scheduler for all the threads of the router. Instead, each processor runs a completely
independent scheduler. The master scheduler (running on the master processor)
provides only coarse grain adjustments to each scheduling domain to guide their
independent scheduling decisions.

The scheduler running in each scheduling domain builds upon our existing schedul-
ing work [21], which in turn, is derived from the WF2Q+ scheduler [3]. We have
added hooks to support coarse grain influence from the master processor. In brief,
the scheduler assigns a processor share to each forwarder according the the F_parms
passed to the createPath operation. Processor shares are also assigned to the sched-
uler and classifier threads. The share-based scheduler is augmented to use informa-
tion about the states of the queues to determine when a forwarder or output sched-
uler thread should run. In the case of an output scheduler, packets in the queue are
assumed to be in local memory so that when an output scheduler thread is activated
it will not immediately block attempting to fetch the packet data from a remote
processor. This helps keep the output link full. We explore the issue of ensuring
that the packet data is local to the output scheduler in the next section.

In Section 2 we stated several design rules, including: (1) classifiers must com-
pletely classify a packet and not modify the packet, (2) forwarders must have a
single input and a single output, and (3) output schedulers do not modify packets.
These design rules are motivated by the need to support QoS in our router. When a
QoS reservation is made, certain resources are reserved for the corresponding path.
The thread scheduler must ensure that the threads belonging to particular QoS paths
get the share of the processor they need to meet their reservation. Because the clas-
sification threads must be scheduled based on link bandwidth (because the flow for
a packet is unknown until after classification), we want the classifiers to perform the
minimum amount of processing. (This allows the thread scheduler to have control
over the maximum amount of processing.) Once packets are classified, forwarder
threads can be scheduled based on the QoS reserved for the corresponding flow.
Our design stipulates that output schedulers not modify packets. This allows the
scheduler to make its thread scheduling decision based on the state of the queues
going into and coming from the output scheduler without needing to estimate the
amount of processing which might need to be performed on the packet. Because
no packet processing occurs in the classifier or output scheduler, all the processing
must occur in the forwarder. We have chosen not to perform link-layer processing
in the output scheduler, the forwarder can perform arbitrary processing at the link
layer. The downside is that if there are N different media types in the router, each
processor must be capable of handling all N link layers. However, we expect N to
be small enough that N x N translation will not be an issue.

19



4.3 Internal Packet Routing

It is well known that routers should internally copy data as little as possible. Our
architecture helps reduce the amount of data copying by sending an internal routing
header (rather than the entire packet) from place to place. This internal routing
header contains the initial bytes of the packet plus an ordered scatter/gather list of
pointers to blocks containing the data of the packet. A reference count is associated
with each block; the OS uses this count to determine when a block can be recycled.
(The classifier changes the reference count from its nominal value of one when a
multicast or broadcast packet is detected; the reference count is set to the number
of destinations.)

An interesting property of IP routers is that in most cases only the header need
be modified by the forwarder; the body/payload of the packet remains unchanged.
When activated by the thread scheduler, a forwarder first reads the next internal
routing header from its input queue, fetches any (remote) packet data it needs and
then performs the computation. After processing the packet, the forwarder sends
the updated internal routing header to its output queue (which is connected to the
appropriate output scheduler). It is the responsibility of the queue API to make sure
all the packet data is local to the output scheduler before the internal routing header
is placed on the queue. Because the classification hierarchy and the forwarder on the
invoked path may not have needed the entire packet to complete the classification
and requisite forwarding function, the packet may be scattered in several blocks
across several processors. Anytime a block is moved, the internal routing header is
updated with the new location. When the internal routing header reaches the output
scheduler’s processor, the data must copied to local memory before the internal
routing header can be placed on the output scheduler’s inbound queue. Figure 11
illustrates the sequence.

(1) The forwarder, F, send an internal routing header (IRH) to the output sched-
uler, S.

(2) The queue server (QS), preprocesses the IRH to determine the location of the
packet data.

(3) The QS uses the HAL data movement primitives to fetch the packet data.

(4) The QS modifies the IRH to indicate that the data is now local and places it
on the input queue where it is visible to S.

(5) S reads the IRH from the queue.

(6) S directs the data from local memory to the device queue.

Until now we have discussed the issues with moving the data through the router.
Eventually, these buffers must be recycled when the packet data is no longer needed.
The HAL data movement commands are really data copying commands. It is the
responsibility of the OS to manage the buffers. When we wish to move a buffer
referenced by an IRH, we send a release message to the source processor. The pro-

20



IRH

Switch

Memory

Fig. 11. This shows the steps performed by the OS when an internal routing header (IRH) is
sent from a forwarder, F, on one processor to an output scheduler, S on another processor.
(See text.)

cessor decrements the reference count associated with the block(s) and reuses any
whose count has reached zero.

4.4  Queues

Recall that our queuing system is modeled after 1,0. This means that we are push-
ing and popping pointers to IRHSs. In order to effect the transfer of an IRH, we
use two hardware-level queues to implement the high-level queues of the router ab-
straction. To simplify the explanation of the process, we will temporarily refer to the
low-level queues as (circular) buffers. One buffer contains pointers to empty IRH
frames, and one buffer contains pointers to to-be-processed IRH frames. Putting an
IRH onto a queue involves first pulling a pointer to a free frame from the free-frame
buffer, filling the frame using the data movement primitives in the HAL, and then
placing the pointer on the to-be-processed buffer. Getting an IRH from a queue
involves first retrieving a pointer from the to-be-processed buffer, processing the
data, and then returning the block to the free pool by placing its pointer on the
free-block buffer. We elect this method because 1,0 gives us hardware support for
managing these circular buffers and we want to take advantage of this support when
it is available.

With the path of each flow requiring two high-level queues (one of which will usu-
ally span a switching element) and the router handling 1000’s of flows, the OS
must be able to efficiently create and destroy queues. Because the limitation im-
posed by the hardware (Section 3.4.2) will generally be much less than the number
of queues the router must support, the OS must use the limited hardware to create
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a larger number of virtual queues. These virtual queues are multiplexed on top of
the hardware queues.

When a virtual queue is established, it is given an identification key. Each queue
element is tagged with the key of the destination virtual queue. A demultiplexing
step occurs on the receiving end to assign the incoming item to the correct queue.
Note that this step can be combined with the queue server thread of Figure 11.

5 Realization in Linux

We have implemented a Linux kernel module which is a unified device driver for
both the PMC694 and the 1XP1200 EEB. (By choosing to develop a Linux kernel
module, our device driver will also work with the communication-oriented operat-
ing system, Scout [17].) Figure 12 shows the driver instantiated with one 1XP1200
EEB and two PMC694 boards. In this router configuration, there are a total of
twelve 100 Mbit/s Ethernet ports.

/devivera
Exported
Symbols
Idev/vera0
Idev/veral
Idevivera2

vthO
vthl
vth2
vth3
vth4
vth5
vthé
vth7
vth8
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vth10
vthll

Control Plane
Interface

‘ kernel ‘ ‘

Lo ixp device ramix device
. network device interface
interface

interface interface

vera.o kernel module / / i

./ . :
K / /
PCI Bus
- 7 ;

14 /4 14
IXP1200EES PMC694 PMC694
StrongARM
77777777777777777777777777777777777777 PowerPC PowerPC
Microengines
0 1 2 3 4 5 6 7 0 1 0 1

port0
portl
port2
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port4
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Fig. 12. The vera.o kernel module. In this figure, the module has been instantiated in a
system containing one 1XP1200 EEB and two PMC694 boards.
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As shown in Figure 12, there are four types of interfaces to the driver:

Control Plane Interface: The driver exports a character device interface as
/devivera. This is used to perform updates (from user space) which do not apply
to a specific hardware device or network interface. (For example, routing table
updates made via the classification hierarchy as discussed in Section 2.1.)

Kernel Interface: The module exports symbols which allow kernel modules
which are dynamically loaded (after vera.o is loaded) to extend the ioctl in-
terface to either /dev/vera or /dev/veraN.

Virtualized Network Interfaces: A key element of the module is that the physical
network interfaces are virtualized. Because we want the intelligent NICs to route
the packets directly between hardware devices (either within a board or from
board to board), many packets will never arrive at the network driver interface
to the Linux kernel. However, packets which do arrive on a particular port and
which are to be handled by the kernel are send to their corresponding virtual
interface. In this way, packets which are not handled by VERA can be processed
normally by the Linux kernel.

Device Interfaces: When the module is instantiated, a character device of the form
/deviveraN is assigned to each PMC694 or IXP1200 EEB device. This interface
allows the boards to be initialized, code to be downloaded, and gives access to
the memory and registers of each board.

6 Related Work

Many currently available general-purpose operating systems such as Unix or Win-
dows can be configured to route Internet packets. However, as general-purpose sys-
tems, they were not necessarily designed with packet forwarding in mind. For ex-
ample, we have measured Linux to be up to six times slower forwarding vanilla IP
packets than Scout [21]. More importantly, however, such general-purpose systems
provide no explicit support for adding new forwarders. Unfortunately, router oper-
ating systems in commercial products are closed, and the extent to which they are
extensible is not clear.

Recent systems like Click [16] do support extensibility, but do not consider dis-
tributed heterogeneous environments. Other efforts to define architectures for ac-
tive network also support extensibility [8,28], but pay little attention to either per-
formance or compliance. In contrast, our focus is on how to make a compliant IP
router extensible.

The Router Plugin [5] system is the closest to our effort in that it considers both ex-
tensibility and high-performance distributed architectures. The main difference is
that we envision the extensible forwarders running across a hierarchy of commodity
processors, while Router Plugins are restricted to the processor on the network in-
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terface card. A second difference is that our architecture explores the design space
of extensible internet routers implemented on the heterogeneous processing envi-
ronment of commodity PC components, while the Router Plugins effort is focused
on the design of custom hardware.

Walton, et. al. [27] describe how to make efficient use of the PCI bus on a PC-based
router by exploiting peer-to-peer DMA. We take advantage of the same technique,
but extend their work in several ways. For example, we use intelligent NICs with
much higher processor cycle to port bandwidth ratios than they consider; we as-
sume the possibility of moving non-standard forwarders onto the interface cards.
We also pay particular attention to how the various resources (bus, CPU) are sched-
uled, and the synchronization problems that occur when multiple sources are trying
to access the same sink devices.

The hardware abstraction’s switch API is similar to the VIA [4] and 1,0 [12] in-
terfaces. VERA’s interface is significantly smaller and specifically tailored to the
needs of a router. However, as discussed in Section 3.4, components designed to
support VIA and 1,0 are particularly well suited to support many of VERA’s hard-
ware abstractions directly in hardware.

7 Concluding Remarks

This paper describes a virtual router architecture, called VERA, that bridges the
gap between the new services being written to run on IP routers and the COTS
hardware that we expect will soon be used to build non-core routers. The paper’s
main contribution is to identify the design decisions we made while defining and
implementing VERA.

The design consists of three layers. First, VERA defines an upper interface, called
the router abstraction, that has explicit support for extensibility. We have used a
prototype implementation of this interface to build a variety of new forwarders.
Second, VERA defines a lower interface, called the hardware abstraction, that hides
the details of the underlying hardware. At this level, we have uncovered the many
details involved in data movement and queue management in a distributed envi-
ronment. Third, a distributed OS ties the upper and lower abstractions together. At
this layer we have preliminary experience with scheduling and resource allocation
based on a prototype implementation in Scout.
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