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ABSTRACT

Recent efforts to add new services to the Internet have in-
creased the interest in software-based routers that are easy
to extend and evolve. This paper describes our experiences
implementing a software-based router, with a particular fo-
cus on the main difficulty we encountered: how to schedule
the router’s CPU cycles. The scheduling decision is compli-
cated by the desire to differentiate the level of service for
different packet flows, which leads to two fundamental con-
flicts: (1) assigning processor shares in a way that keeps the
processes along the forwarding path in balance while meet-
ing QoS promises, and (2) adjusting the level of batching in a
way that minimizes overhead while meeting QoS promises.

1. INTRODUCTION

Software-based routers have always played a role in the In-
ternet, beginning with early implementations [10]. Although
there has recently been a significant focus on hardware sup-
port for routing packets at ever-increasing line speeds [9, 14],
software-based routers continue to be important due to the
ease with which they can be programmed to support new
functionality. Pressure to extend the set of functions that
routers support is happening in several different arenas:

e Routers at the edge of the Internet are programmed to
filter packets, translate addresses, make level-n rout-
ing decisions, translate between different QoS reserva-
tions, thin data streams, run proxy code, and support
extensible control functions.

e A new market in home routers is emerging, where
in addition to running firewall and NAT code, the
router is subsuming functionality that cannot be sup-
ported on computationally-weak consumer electronics
devices.

o The distinction between routers and servers is blurring
as routers that sit in front of clusters run application-
specific code to determine how to dispatch packets to
the most appropriate node.
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e At the fringe, the active network research community
is designing an architecture that will allow future gen-
erations of routers to run arbitrary code, thereby en-
abling the deployment of application-specific virtual
networks.

The key characteristic of a software-based router is that
it implements packet forwarding as a program running on a
general-purpose processor; e.g., a PC with multiple network
interface cards (NICs). This paper describes our experiences
implementing such a system, with a particular focus on the
main difficulty we encountered: how to schedule the router’s
CPU cycles. Like any computing system, a router must
schedule its cycles in a meaningful way—it must decide when
to apply its cycles to forwarding standard IP packets, as
opposed to using its cycles to re-write addresses, run a proxy,
process a control message, or execute a router extension.

This paper is a follow-on to earlier work by Mogul and
Ramakrishnan [11], who studied the phenomenon of live-
lock: a situation in which a router spends all of its time
servicing interrupts at the expense of actually forwarding
packets. The main way in which we go beyond this earlier
work is to also consider the problem of differentiating the
level of service given to different flows, while at the same
time allowing each flow to be processed by a different for-
warding function. We discovered that allowing the router to
promise to forward certain packets at some sustained rate
introduces a fundamental tradeoff between achieving max-
imum performance for best-effort packets, and being able
to keep QoS promises. This tradeoff manifests itself in two
different ways: (1) how to best assign processor shares, and
(2) how to adjust the level of batching.

This paper makes two contributions. First, it describes
the relevant features of a software-based router that com-
bines support for both QoS and extensibility (Section 2).
Second, it discusses the two conflicts identified above, (Sec-
tion 3-4), where for each conflict, we present experiments
that provide insight into the problem and help to evaluate
the effectiveness of our approach.

2. EXTENSBLE ROUTER

This section describes the router we implemented. Our
design generalizes existing software-based routers in that it
supports both extensibility and service differentiation. We
built the router using the Scout operating system [13].

2.1 Process Architecture

The simplest possible architecture for a software-based
router implements all router functionality in a single process.
Such a process executes the following loop:



READ: read a packet from an input port
CLASSIFY: select an output port

PROCESS: perform required packet processing
WRITE: write packet to the output port

where this single process services the various input ports
according to some policy (e.g., round robin). This simple
architecture is important because it represents the most ef-
ficient base case, but it has two serious limitations. First,
it processes packets in FIFO order, and so is unable to dif-
ferentiate the level of service it gives different packet flows.
Second, if the PROCESS step is unable to complete in a
small /fixed amount of time, the process is not able to read
packets off the input ports at line speed, and thus risks hav-
ing packets dropped by the input port.
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Figure 1: Supporting Differentiated Service

Recognition of the first limitation has prompted the archi-
tecture shown in Figure 1, where the key idea is to segregate
incoming packets into multiple queues. Our architecture ad-
dresses the second limitation by adding a third stage to the
packet pipeline. The result is shown in Figure 2, where for
simplicity, we focus our attention on a single input/output
port pair. The following discusses each stage in more detail.
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Figure 2: Supporting Differentiated Service and
Variable Processing

At the first stage, an input process (denoted I) executes
the following loop:

READ: read a packet from the input port
CLASSIFY: classify the packet
ENQUEUE: enqueue packet on appropriate queue

Although not shown in our simple router, we assume a sep-
arate input process for each input port. This places respon-
sibility for selecting which input port to service next with
the process scheduler, as opposed to embedding the policy
in the input process.

At the third stage, an output process (denoted O) asso-
ciated with each output port performs the following loop:

SELECT:  select queue for next packet to transmit
DEQUEUE: dequeue the packet from this queue
WRITE: write the packet to the output port

In this case, the link scheduling algorithm is embedded in
the SELECT step of the output process, meaning that this
process has to run in order for a packet to be selected for
transmission.

The middle stage in the pipeline, corresponding to pro-
cesses Fi through F), in Figure 2, performs whatever pro-
cessing the packets require. We say each of these processes
implements some forwarding function F. In the simplest
case, this forwarding function manipulates the TTL and
checksum fields of the IP header and modifies the link-level
header. In general, any number of different functions might
be applied to a packet—standard IP forwarding, IP option
processing, control processing, proxy code, router extension,
active code, and so on. Each of these different forward-
ing functions has different processing requirements. Table 1
gives a representative sample of forwarding functions we
have implemented, where “Active Protocol” corresponds to
an active capsule running in the ANTS active network en-
vironment [18] on our router.

Forwarding Function | Per-Packet Cost (us)
IP Fast Path 0.3
General TP 3.0
Transparent Proxy 10.7
Classical Proxy 12.8
Active Protocol 37.3

Table 1: Costs of various forwarding functions, mea-
sured in microseconds, on a 450 MHz Pentium II.
These times are independent of the costs of the in-
put and output processes.

There are two general questions about the processes that
implement these forwarding functions. The first is why we
need any processes at all; why not just execute these func-
tions as part of the input or output processes? The problem
with moving the forwarding function to the input process
is that it may take an arbitrary length of time to execute,
thereby causing the input process to not keep up with link
speeds. Postponing this function to the output process suf-
fers from much the same problem: there may be an arbitrar-
ily long delay between when a packet is selected for trans-
mission and it can actually be sent, and packet schedulers
do not take such delays into account. The packet scheduler
assumes that the selected packet is immediately available,
and any delay in preparing the packet may cause the link to
become idle.

Once we have determined that we need a third process
in the pipeline, the second question is how many different
forwarding processes are required. Here we have several op-
tions. One is to dispatch a process for every packet. That is,
the classifier running in the input process produces {(packet,
function, queue) triples, and assigns a process to each such
triple. When the process runs, it applies function to packet
and enqueues the result in the specified queue. There are
at least two problems with this process-per-packet approach.
First, it results in a potentially huge number of processes—
tens or hundreds of thousands per second—which is well
beyond the design of most thread packages. Second, rather
than having all messages contained in one message queue or
another, messages are “hidden” in the thread queue. This
makes it much more difficult to reason about the system’s
behavior.

At the other extreme, a single process could perform all
the required packet processing. As before, each classifier
produces {packet, function, queue) triples, and enqueues them



with this forwarding process. The obvious problem is that
packets belonging to flows that have been promised a partic-
ular level of service can be queued behind best effort packets.
In effect, this single forwarding process ignores the separa-
tion of flows achieved by the classifier. This approach should
not be discarded too quickly, however, because it works per-
fectly well for best effort flows which can live with the FIFO
queue that this forwarding process services.

We settle on a compromise approach that establishes a
separate forwarding process for each flow. In effect, this
model isolates all the switching paths through the router.
The input process dispatches each packet to a single switch-
ing path that consists of an input queue, a forwarding pro-
cess, and an output queue. The output process then deter-
mines from which switching path a packet should be trans-
mitted next. Exactly what constitutes a flow is a policy
question. Certainly each QoS flow is treated as a distinct
switching path—and thus has its own forwarding process—
even if it involves the same function F' as some other path.
On the other hand, multiple best effort flows that share the
same forwarding function are assigned to the same switching
path.
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Figure 3: Example Switching Paths

Figure 3 illustrates an example set of switching paths.
It is representative of the cases we study in the next two
sections. To simplify this diagram, we replace the pro-
cess that implements each forwarding function with a la-
beled edge that connects the input queue to the output
queue, and neither the input or output processes are ex-
plicitly shown; they correspond to the demux (classifier)
and mux (packet scheduler) points, respectively. Also, the
output queues are labeled according to how the link sched-
uler treats its packets—best effort (BE) or QoS—and we
assume the minimal IP forwarding function Fy and two non-
standard functions F; and F>. Thus, this simple router—
again focusing on a single input/output port pair—includes
a best-effort /minimal switching path, a QoS/minimal path,
a best-effort /non-standard path, and a QoS/non-standard
path. Note that the two best effort paths aggregate many
end-to-end flows, while the QoS paths carry a single end-to-
end flow.

While we restrict our discussion to a router with a sin-
gle processor, it should be noted that Figure 3 maps to an
environment with multiple processors. VERA [8] uses a hi-
erarchical processing model where the input and/or output
processes run on the processors of intelligent NICs. This
allows the main processor (the Pentium II in our case), to
spend more of its cycles on forwarding functions.

We conclude this discussion by noting that there is a ques-
tion of exactly where to draw the line between the CLASSIFY
step in the input process and the processing done in the for-
warding process. The answer is that, by definition, classifi-
cation is that processing which can be completed in a fixed
number of cycles—selected so the input process is able to

match the link speed—and packet processing is everything
else. This means that to implement application-level clas-
sification, which may take an arbitrary length of time, the
input process partially classifies the packet and selects some
function F' to complete the classification. It also means that
the input process could implement the minimal forwarding
function, cycle budget permitting, although our scheduling
framework argues for minimizing the work done in the input
process.

2.2 Performance

We conclude our description of the base system by report-
ing a series of experiments designed to determine whether
or not our process architecture is prohibitively expensive in
practice. The machine running our prototype router has a
450 MHz Pentium IT processor with a 512 KB L2 cache, and
three Tulip (21143 chip) 100 Mbps network interface cards.
Three additional PCs—labeled A, B, and C in the following
discussion—serve as packet sources.

During the tests, each source PC generates a stream of
64-byte IP packets at rates up to 140 Kpps. Using all three
sources, we can generate an aggregate maximum offered load
of 420 Kpps. We measure the time the router takes to for-
ward a certain number of packets, yielding an average for-
warding rate. While this artificial workload is clearly not
representative of the Internet at large, our experiments are
designed to stress the CPU rather than the network. It is for
this reason that our experiments emphasize switching small
packets; a larger number of small packets place a greater
load on the CPU than fewer large packets.

We measure the relative overhead by plotting the offered
load to the router versus the forwarding rate achieved by
the router. The parameters we chose to vary for this series
of experiments were:

Input Servicing Scheme This is the choice to use inter-
rupt driven input versus input device polling.

Number of Processes We use one, two, or three processes
to forward the packets from input to output. When
we use one process, a single thread handles input, for-
warding, and output. When we use two processes, we
use an input thread and a forward/output thread (this
case allows different forwarding functions but no link
scheduling). For three process experiments, each of
the input, forwarding, and output tasks are assigned
to its own thread.

Batching To reduce the overhead of context switches, we
can enable batching. With batching enabled, each for-
warding process attempts to handle as many packets as
possible up to an arbitrary limit of 16 packets. With-
out batching, each process will handle at most one
packet before yielding the processor. (The input and
output processes always batch.)

Figure 4 summarizes the results of five experiments. In
each experiment, the source PCs gradually increase their
aggregate offered load from 0 to 420 Kpps, while the router
attempts to forward the packets as best it can.

In the interrupt implementation, the router is able to keep
up with the sender up to 48 Kpps, after which it begins to
suffer from receive live-lock. In contrast, the polling imple-
mentations give a more desirable behavior: the forwarding
rate increases up to a certain point and then remains flat.
In the flat portion of the graph, the router drops more and
more packets; however, the router does not waste time on
the dropped packets. These results simply reinforce those
found in [11].
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Figure 4: Impact of interrupt handling and context
switching on forwarding rate.

Maximum | Max. Forwarding Rate
Processes | Batch Size | Kpps Normalized
1: I4+F+4+0 16 294 1.00
2: I, F+0O 16 286 0.97
3 LF, O 16 272 0.93
3:LF, O 1 227 0.77

Table 2: Maximum Forwarding Rates using Polling

Table 2 shows the relative maximum forwarding rates us-
ing polling. The forwarding rates are from the plateaus in
Figure 4. The last column shows the forwarding rates nor-
malized to the single process with batching case. From this
table, we see that each additional process in the forward-
ing pipeline adds 3 to 4% overhead. The effects of batch-
ing are more significant, improving performance by approx-
imately 16%. Further analysis shows that we are batching
on the order of 10 packets at each stage. Comparing three
processes with batching (i.e., our proposed architecture) to
the single process case, we see that the overall difference in
performance is only 7%, which seems a tolerable overhead
for the increased functionality our architecture provides.

Although raw performance is not the focus of this pa-
per, the total 3.3 us forwarding time for each packet did not
come easily. Of the optimizations we made, the most im-
portant to the results presented in this paper was to imple-
ment context switches as inexpensive continuations. Hav-
ing two full-blown context switches on the forwarding path
has the potential to add 10 us to the forwarding time.

3. SCHEDULING DISCIPLINE

The previous section largely ignores the issue of schedul-
ing, and in fact, a simple round-robin scheduler could have
been used to produce the performance results in Figure 4.
As we consider more complex scenarios, however, we must
put more thought into the scheduling decision. In general,
the task of the scheduler is to select the next process for ex-
ecution in a way that leads to desirable behavior along four

dimensions: (1) efficient best effort forwarding which makes
good use of available resources; (2) different qualities of ser-
vice to flows that require more than best effort; (3) robust
behavior in the presence of overload, including packet flood-
ing denial of service attacks; and (4) support for switching
paths of varying computational costs.

3.1 Proportional Share

We use a proportional share (PS) scheduler to meet these
four competing goals. PS is a general scheduling discipline
that provides a cycle rate to a process; it abstracts the
main features of a class of algorithms, such as Weighted
Fair Queuing [3]. The essential characteristics of PS are:

e Each process reserves a cycle rate—e.g., 1 million cycles-
per-second (Mcps)—and is guaranteed to receive at
least this rate when it is not idle.

e Unused and unallocated capacity is fairly distributed
to active processes in proportion to each process’s reser-
vation. An active process that receives extra cycles
beyond its reservation is not charged for them.

e An idle process cannot “save credits” to use when it
becomes active. Unused share is simply lost.

o The guarantees made to processes provide isolation
between them—each process gets its rate no matter
what the other processes do.

Proportional sharing maps naturally onto our process ar-
chitecture, and accomplishes the varying goals we have set
for our router. First consider QoS flows, where share as-
signment is straightforward given some knowledge about
processing costs. Every flow traverses a pipeline of three
processes (i.e., input, forwarding, and output), and we need
to set the process shares so that the pipeline forwards data
through the system at the flow’s reserved rate. The process-
ing costs for reading a packet in the input process, and send-
ing it in the output process, are fixed and known in advance.
Therefore, we can determine the amount that the shares of
these processes need to be increased to accommodate the
packets of the new QoS flow. If we assume that we know
the cost function for the flow’s forwarding process (e.g., how
many cycles per bit it requires) then the share of the for-
warding process is obvious too. We return to the question
of how to determine the cycle rate required by forwarding
functions in Section 3.5; for now, we assume that forwarding
functions have regular costs that can be determined through
off-line experimentation, as illustrated in Table 1.

Unlike QoS flows, no hard commitments are made to best
effort flows, but shares are still useful for producing good
system behavior. We observe that live-lock and poor over-
load behavior are actually problems of balance—one com-
ponent of the system is receiving more cycles than is de-
sirable, with the result that other components get too lit-
tle. Our implementation provides good best effort perfor-
mance by assigning shares to different pipeline stages based
on the ideal balance of the system in high load. For example,
micro-experiments run on the configuration described in the
previous section indicate that in the three-process case, the
input process spends 1.6 us on each packet, the forwarding
process spends 0.3 us on each packet, and the output pro-
cess spends 1.4 us on each packet. Thus, the results shown
in Figure 4 were achieved with a balanced share assignment
of 5:1:5 (I:F:0) for the three-process case. Similarly, for the
two-process case—an input process and a combined forward-
ing/output process—a balanced system has almost exactly
a 1:1 ratio.



It is important to keep in mind that a process receives its
share only if it has work to do. For example, each forwarding
process shown in Figure 3 is allowed to run only when its
input queue is not empty and its output queue is not full.
We say a process that meets these conditions is eligible.

3.2 Input Process Share

Focusing on best effort or QoS flows in isolation makes
share assignment easy. Unfortunately, a conflict arises when
we consider a router that supports both types of flows. The
issue is what share to give the input processes. For the sake
of best effort flows, we want to assign input process shares
based on the ideal (balanced) cycle distribution in overload,
since giving too big of share to the input process potentially
leads to live-lock. On the other hand, should this rate be less
than is required to read and classify packets at line speed,
QoS flows are vulnerable to denial of service attacks. This
is because packets belonging to well-behaved QoS flows may
be dropped on a line card if the input process does not have
enough share to keep up with packets arriving at line speed.

It is not clear how to assign a share to the input process to
best satisfy both kinds of flows. The system designer must
make a fundamental tradeoff when choosing the input share.
Our approach is to favor QoS flows by giving the input pro-
cess a conservative share, but we temper this decision by
adding a queue estimator mechanism.

Before describing this mechanism, we illustrate the prob-
lem faced by QoS flows under unexpected load. Figure 5
shows an experiment in which a QoS flow shares the incom-
ing link with best effort traffic. The QoS flow has reserved
a rate of 49 Kpps, and this same amount is dedicated to
the best effort packets. The input process therefore receives
a share sufficient to read 98 Kpps from the interface. At
the start of the test, the QoS flow is sending packets at its
reserved rate, while the best effort traffic is within expecta-
tions at 39 Kpps.
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Figure 5: QoS experiencing drops under heavy load

At time 40000 in the experiment, the best effort traffic
rate increases at 2000 pps per second up to a peak rate of
84 Kpps. The router only forwards about 49 Kpps of these
packets because this consumes all the cycles allocated to
best effort. However, the input process was only given a
large enough share to read 98 Kpps from the interface. Since
packets are arriving at a total rate of 133 Kpps, many are
dropped on the line card, including packets belonging to the
QoS flow. Figure 5 shows the forwarding rate of the QoS
flow dropping down to a rate about 10 Kpps less than it has
reserved. Though the QoS flow is well-behaved, the router
is not honoring the promise it has made to provide service to
the flow. This is a result of not setting aside enough cycles
for the input process to handle the worst case.

Returning to the question of how this strategy affects best
effort traffic, we observe that there are two risks to running
the input process at line speeds. Under heavy load, it is
possible that the router will waste cycles reading packets
that are dropped later in the pipeline. There is nothing we
can do about this if we want to protect QoS flows. Under
a light input load, the risk is that the input process—which
is essentially a polling thread—runs even though there is no
useful work for it to do. This is bad, because the router itself
may still be heavily loaded; that is, other interfaces may be
servicing high packet volumes even though this one is not.
Previous work [5, 11] examines switching between polling
and interrupts based on load to handle this situation. The
queue estimator addresses the same problem from a different
angle.

To understand the queue estimator, consider that the pro-
cess architecture is designed to ensure that all messages are
buffered in explicit message queues, as opposed to hidden
thread queues. Our current framework uses these queues to
decide process eligibility, where a process is eligible to run
only if its input queue is not empty and its output queue
is not full. Note that calculating the eligibility of an input
process is not straightforward since its input queue resides
on the device. It may be possible to exploit a NIC sta-
tus register that contains the number of packets buffered on
the device. However, a process must read this register—we
do not want the scheduler itself doing device I/O—and we
must still decide when to schedule this process. This does
not solve the problem.

The goal of the queue estimator is simply to estimate the
device queue length based on previous observations. It does
this by keeping a weighted average of the packets read during
each execution of the polling thread. Each input process
also has a sleep interval and a target range. If the weighted
average of packets is less than the target range, the sleep
interval is increased (up to some maximum); if it is greater,
the interval is decreased. The process then sleeps for that
interval before becoming eligible to run again. Note that
this mechanism allows the input thread to adjust its rate to
read a batch of packets every time it runs; we will discuss
this point further in Section 4. The point is that the state
of all queues, including the receive queue on the device, is
available to be incorporated into the scheduling decision.

3.3 Robustness

We now turn our attention to the performance of our
router when forwarding only best effort packets. We show
that the system is robust, in that it achieves good best effort
forwarding rates even when the system becomes imbalanced
(i.e., the shares are not quite right). We test this situa-
tion by varying the cost of the forwarding process, where
described in Section 2.2, we know that the input requires
1.6 us to read and classify each packet.

In this experiment, packet flows from the three sources
traverse three different switching paths, denoted A, B, and
C. Flow A uses a forwarding function that spends 8.0 us on
each packet, meaning that it has an ideal share ratio of 1:5.
The forwarding functions for flows B and C delay their pack-
ets by an additional 8.0 us and 16.0 us, respectively, meaning
that their ideal share ratios are 1:10 and 1:15. The fourth
column of Table 3.3 shows the forwarding rate that is achiev-
able for these three flows, where the three flows run serially
(i.e., they are not competing with each other). This table
gives only the peak forwarding rate for each flow, which cor-
responds to the measured throughput rate at the maximum
sending rate of 140 Kpps. The maximum forwarding rate of



Flow | Fwd Cost | Ideal balance | Balanced share | 1:10 share w/o estimator | 1:10 w/ estimator
A 8 us 1: 5 101 Kpps 101 Kpps 101 Kpps
B 16 ps 1:10 56 Kpps 56 Kpps 56 Kpps
C 24 ps 1:15 38 Kpps 35 Kpps 38 Kpps

Table 3: Best effort throughput in Kpps

each host’s packets are very close to what we would expect.
The system is allocating the CPU efficiently.

Next, instead of configuring the router to give each flow its
ideal share, we set the ratio to 1:10, meaning that flow B is
balanced, while flow A gives too much weight to the forward-
ing process and flow C gives too much weight to the input
process. There are two situations where such an imbalance
might arise in practice. One is that the amount of processing
required varies from packet to packet, so we can establish
only the average CPU allocation for a given flow. The sec-
ond is that we give the input process a conservative cycle
rate—perhaps for the sake of protecting QoS promises—but
it can’t effectively use this rate. Flow C corresponds to this
latter case.

The fifth and sixth columns of Table 3.3 show the results
of the imbalance. The difference between the two columns
is that the fifth drops packets that demux to a full queue (as
we might do if we had QoS flows), while the sixth uses the
queue estimator of Section 3.2 to limit the rate at which the
input process runs (appropriate with no QoS flows). Not
surprisingly, flow B performs exactly as before, since it is
given the same share assignment. Though the shares are
out of balance for flow A, it is unaffected, since the for-
warding process’s unused share is distributed upstream to
the input process (recall that PS fairly distributes unused
share). However, flow C’s throughput drops to 35 Kpps in
the fifth column. The problem is that the input process
is running at a faster packet rate than the forwarding pro-
cess causing packets to drop off the tail of the forwarding
process’s input queue. Column six for flow C shows that
eligibility and throttling do readjust the rate of the input
process to match the forwarding process.

This experiment doesn’t really demonstrate the impact of
assigning a conservative share to the input process(es) in
an effort to protect against a flood of best effort traffic. In
another experiment, we configured three input ports, two
of which had no traffic arriving and one on which packets
arrive at full speed. We gave each input process a large
enough CPU share to receive packets at line speed, and we
set the processing rate for each packet to 6 us, which fully
utilizes the CPU. Without the queue estimator, roughly
30% of the CPU is wasted polling idle input ports, thereby
yielding a forwarding rate of 91 Kpps for the active port.
With the estimator enabled, the router was able to forward
packets at 130 Kpps, the maximum achievable rate for this
configuration.

3.4 Best Effort Policy

Another issue is the extent to which best effort traffic
should be aggregated versus isolated. As described in Sec-
tion 2.1, each unique forwarding function is assigned to a
separate switching path (forwarding process). The alter-
native is that a single switching path services multiple for-
warding functions rather than being limited to just one. The
latter approach reduces the state the router must maintain,
but the former approach makes it possible to assign each
switching path a different processor share.

For example, a router might establish a policy that best
effort packets that require option processing should be seg-
regated from best effort packets without options, with the
former receiving preferential treatment by the scheduler. As
another example, one could ensure that forwarding functions
that process route updates receive a sufficient share. This is
effectively an attempt to differentiate service, just as with
QoS flows, but based on functionality rather than bandwidth
requirements.

3.5 Determining Cycle Rates

The final issue is how to determine the cycle rate that
each forwarding function requires. This rate is needed to
reserve the appropriate share and to implement admission
control. This section describes our experiences to date.

We have been describing the rate of a flow in terms of
packets per second, yet most QoS schemes provide rates in
terms of bits per second. We assert that most QoS applica-
tions send packets of roughly equal size, and so it is possible
to translate a bit rate into a packet rate. Our experience also
suggests that the number of cycles required to process each
packet (or per byte of data) can be accurately measured,
and hence, it is possible to compute a cycle rate. If these
assumptions hold, then it should be possible for a router to
derive the cycle rate from an RSVP-style bit rate reserva-
tion. If not, then it may be necessary for the application
to explicitly state the cycle rate it requires, and if the com-
putation is data-dependent, this reservation may need to be
conservative.

The next question, then, is whether it is necessary to
make a conservative reservation for data-dependent flows.
To maximize resource usage, it would be better for each
application to reserve the average cycle rate its packets re-
quire. The worry is that even though the forwarding process
receives its reservation over a long interval, any given packet
might arrive at the output queue late, and hence forfeit its
share of the link capacity. We note that this is exactly the
same problem as the presence of jitter in the arrival rate of
packets, the effects of which can be mitigated with sufficient
buffering. In other words, as long as a switching path’s out-
put queue is large enough, it can buffer packets produced
during good times (when processing costs are small), and
therefore not go empty when processing cost are large.

4. BATCHING

Our design requires every packet be handled by three
threads, which if implemented naively, means that the router
performs three context switches for every packet it forwards.
A context switch in Scout costs 2 us on the prototype hard-
ware, which implies 6 us of overhead for each packet. When
compared to the 3.3 us required to process a minimal IP
packet—the sum of the time spent in the input, forward-
ing, and output processes—this overhead is significant. The
obvious solution is to batch packets, so that the cost of
each context switch can be amortized over multiple packets.
Table 2 in Section 2.2 shows that turning batching off for
just the forwarding process (both the input and output pro-



cesses still batch) drops the forwarding rate from 272 Kpps
to 227 Kpps. Unfortunately, batching can have a negative
impact on other aspects of the system, as discussed in the
rest of this section.

4.1 Batching and Granularity

Though batching leads to better performance, we must
be careful because it leads to coarser scheduler granularity.
A QoS flow with finite buffer size requires its CPU share
to be delivered within a certain period, that is, before its
queue becomes full. With large batch sizes, a thread may
be able to hog the CPU for a long period of time, thereby
delaying the execution of other flows. If the delay (or service
lag) exceeds the maximum another flow can buffer, future
packets belong to this flow will be dropped even if they are
within the flow’s reservation. Under such a scenario, the
contract between the system and the flow is violated.

To verify our conjecture, we performed an experiment that
explores the transitions from the router being link-bound to
being CPU-bound. We use the same experimental setup
as in Section 2.2, and we refer to the packets coming from
source z as “flow 2”. Flows B and C are QoS flows sending at
90 Kpps (they have reserved this rate), while flow A is best
effort. Flow A arrives on port 1 of the router, flow B arrives
on port 2, and flow C on port 3. The router forwards flow
B to output port 1, and both flows A and C are routed to
port 2. A and C compete for the same output link; the link
is saturated when flow A transmits at 50 Kpps. Running
flow A at this rate, we then measure the performance of
all three flows as the processing time for flow A’s packets
increases. The system transitions from being link-bound to
being CPU-bound at just before 5us on the z-axis in the
following results.

Figure 6 shows the forwarding rate for the flows when we
enable simple batching. We allow each thread to run until
it has processed up to n packets, where n is the maximum
batch size. As flow A’s cost increases, it hogs the CPU while
it works on a batch of packets in the queue. Because flow
A gets the CPU in large bursts while it processes a batch of
packets from its queue, the input threads of flows B and C
do not get to run often enough and their packets are dropped
on the line cards, resulting in loss of share.
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Figure 6: Detrimental Effects of Simple Batching as
Processing Costs Increase.

Realizing the cause of the problem, we turn off batching,.
In Figure 7, both flows B and C are able to maintain their
packet rate. Obviously, A’s rate decreases as it spends more
time on each packet. The improvement comes from the fact

that the proportional share scheduler regains control at a
finer granularity. As we have seen, though, turning batch-
ing off comes with a cost. To quantify the effect, we use
a measure called the Efficiency Indez (E), which is defined
to be the percentage of CPU cycles actually used to pro-
cess packets (those spent in input, forwarding and output
threads) among all cycles consumed (including cycles spent
context switching or making scheduling decisions). Concep-
tually, a higher E means less scheduling overhead. In this
experiment, F is 66.2%.
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Figure 7: No Batching

In Figure 8, we turn batching back on but we only al-
low batching to process 16 packets or process for 30 us,
whichever comes first.! We see that QoS flows B and C meet
their reservation and that the aggregate forwarding rate is
higher than that in Figure 7. In this figure, the measured E
is 81.6%.
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Figure 8: Batching with a 30 ys limit.

The lesson learned is that the PS scheduler needs to get
a frequent enough opportunity to re-schedule the processor
in order to preserve the rate requested by QoS flows. Care-
fully controlled batching provides this opportunity without
sacrificing performance.

'Note that a switching path is not preempted; whether or
not the timeslice has expired is checked once per path exe-
cution. For the sake of this paper, we assume that only well-
behaved functions are admitted to the system. Untrusted
functions could either run in a preemptable process, or the
system could kill a packet if it exceeds a certain time limit.
Both facilities could easily be added to our architecture.



4.2 Batching Throttle

This section describes a batching throttle mechanism that
considers each flow’s processing cost and queue length, and
the system’s scheduling overhead. It can dynamically adjust
the level of batching to trade off granularity for efficiency,
and at the same time meet QoS promises.

G Scheduler Granularity. A flow can process as
many packets as possible within timeslice G
but must yield the processor when it expires.

E Efficiency Index. The percentage of CPU cy-
cles that are actually used to process packets,
as opposed to run scheduler, etc.

T Overhead Threshold. E =1/(1+T).
Csw | Average Context Switch cost.

Cpp; | Average per packet processing cost of Flow;.

B; Batch Threshold of Flow;, the minimum inte-

ger satisfying % <T

D; Delay Threshold of Flow;. Indicating packets
of Flow; should be processed no later than
time D; after being enqueued.

Table 4: Notation used by the batching throttle

Table 4 contains notation used in describing the batching
throttle. Context switch cost C'sw is a constant that can be
measured in advance. G,E and T are system parameters
that can be configured by the administrator, while Cpp;, B;
and D; are flow-specific variables.

The batching throttle affects the system’s behavior in
three ways. First, it preserves a specific scheduler granular-
ity by requiring threads to surrender control at least every
G time units. This addresses the problem associated with
simple batching mentioned in Section 4.1. Second, it tries
to schedule threads that can process a full batch when they
run, in an attempt to improve the efficiency of the system.
If a thread processes B; packets before it yields the proces-
sor, the context switch that follows will add no more than
Csw/(B; x Cpp;) overhead, i.e. be bound by 7. Third, it
allows for flows with latency requirements by including a
timeout mechanism: a flow that is not efficient after wait-
ing D; is allowed to run anyway. We now explain how the
batching throttle works in detail.

A thread can be in one of four possible states: Idle, Eligi-
ble, Active and Running. The scheduler chooses threads for
execution from those that are Active. The Eligible state now
signifies that the thread for Flow; has fewer than B; packets
in its input queue or fewer than B; empty slots in its output
queue, and is therefore considered inefficient to run. (For
the time being, we consider the forwarding threads only,
and therefore each thread corresponds to a single flow.) A
transition from Eligible to Active is triggered by two events.
The first is a wakeup call,? in which case the thread becomes
Active if its input queue length and output queue slots are
at least B;. The second is a timeout, which occurs once the
thread has spent D; in the Eligible state. Figure 9 shows the
thread transitions between the four states.

2Wakeup happens upon every packet arrival at the input
queue and removal from the output queue. However, only
one wakeup does the real work of restoring thread states,
moving it from Idle to Eligible state. Once the thread is in
Eligible state, subsequent wakeups only perform a check on
the queue length.

Suspend/ Block

Wakeup / Time out

Figure 9: State Transition

The behavior of the batching throttle is mainly charac-
terized by two parameters: Scheduler Granularity G and
Overhead Threshold T. They are subject to the following
constraint:

Csw
a M

This is because under the control of batching throttle, exe-
cution of B; packets of Flow; should not exceed the system’s
timeslice, therefore B; x Cpp; < G holds for every flow. Sub-
stituting in the definition of B; will give us equation 1.

Equation 1 formulates the conflict between fine-grained
scheduling and lower scheduler-related overhead. In particu-
lar, improving system throughput by lowering the overhead
threshold T must result in coarser scheduling granularity
G. Previous fair queuing studies tell us coarser granularity
means performance deterioration in terms of fairness and
latency.

An administrator can choose any values for the batching
throttle parameters as long as they obey this constraint. We
would like to stress that with the batching throttle mecha-
nism, it is possible to dynamically adjust system behavior in
response to workloads. That is, rather than setting values
for G and T that are always enforced, the system tries to
choose the best values based on observed load. This is done
as follows. The system calculates the E required to forward
all packets based on the current workload and available cy-
cles, from which it can calculate the overhead threshold T'.
An appropriate G value can then be derived by Equation 1.
When the load is low, E is small so a large T is acceptable.
This means that we can run the scheduler at finer granular-
ity to improve the fairness and latency each flow experiences.
As the input load increases, there comes a point at which
the system will not be able to admit a new flow without
improving the efficiency E. If maximizing throughput is the
system’s goal, it can lower T in order to make room for the
new flow. G will have to be adjusted accordingly and the
the result is longer delay and coarser control.

We need to address two issues when G is increased to a
larger value. First, the service lag introduced by coarser
granularity should not lead to the problem of Section 4.1.
Since B; increases with G, B; approaching Flow;’s queue
length can be viewed as a warning that the lag is likely to
cause the flow to drop packets. The system then may want
to allocate more buffers to counter the effect, thereby trading
memory for CPU efficiency. Second, for a QoS flow with
tighter delay requirements, waiting for its B;th packet to
arrive before considering it Active is not an appropriate thing
to do. The batching throttle includes a delay parameter D;
with each flow. If a thread has spent D; in the Eligible state,
it times out and becomes Active. Since the scheduler now
has to run an “inefficient” thread, the system may not be
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able to achieve the efficiency it planned for. Therefore, such
timeouts must not be uncontrolled. We can imagine that we
only grant this privilege to a few QoS flows.

As an aside, although the batching throttle focuses on
forwarding threads (whose processing costs have the great-
est variance), it can be applied to input and output threads
as well. In fact, the throttle fits quite naturally with the
queue estimator described in Section 3.2. Recall that since
the queue on the line card is not visible, the queue estima-
tor adjusts the sleep interval of the thread based on previ-
ous observations. In the language of the batching throttle,
the system cannot see when the B;th packet arrives, so it
guesses how long until it arrives and sets D; accordingly.
This dynamically adjusts the actual execution rate of the
input thread in response to the workload, helping perfor-
mance by avoiding unnecessary polling.

4.3 Evaluation

In this section we present experimental results designed to
demonstrate the effectiveness of the batching throttle. We
have implemented and tested the mechanism on our proto-
type system. We also developed a simulator which is used
to produce results presented in this section. The simulator
captures all scheduler related events. It allows us to log de-
tailed tracing information without incurring overhead which
on a real system would interfere with scheduling decisions.
We configured 13 flows, with the flow specifications shown
in Table 5.

Flow | Pps Cpp | Type | D;(us) | Share
1 5000 | lps | BE | N/A | 0.5%
2 | 10000 | 1ps | BE | N/A | 1.0%
3 | 20000 1ps | BE | N/JA | 2.0%
4 5000 3us | QoS N/A 1.5%
5 10000 3us | QoS N/A 3.0%
6 20000 | 3ps | QoS | N/A 6.0%
7 5000 3us | QoS 2000 1.5%
8 10000 | 3pus | QoS | 1000 3.0%
9 20000 3us | QoS 500 6.0%

10 5000 | 10 pus BE N/A 5.0%
11 10000 | 10pus | BE N/A | 10.0%
12 | 20000 | 10us | BE | N/A | 20.0%
13 100000 | varies | BE N/A 3.0%

Table 5: Flow Specifications

Intuitively, Flows 1-12 can be viewed as separate end-to-
end flows executing different forwarding functions. Some of
them (type QoS) make a reservation. Despite the flow type,
the CPU share each flow gets is equal to its packet-per-
second X cost-per-packet product. Flow 13 represents an
aggregate of Best-Effort traffic. The system administrator
allocates 3% of the CPU to it, regardless of its per-packet-
cost. We leave the per-packet-cost of Flow 13 to be a pa-
rameter that varies for this series of experiments, thereby
varying the pressure exerted on the CPU.

During the test, each flow is generating evenly spaced
packets according to its packet rate. The results are based
on data collected during a 0.1 second period. Within this pe-
riod, the router receives 500 packets from Flow 1, 1000 pack-
ets from Flow 2, ..., and 10000 packets from Flow 13. The
number of buffers allocated to each flow is set to 128, unless
stated otherwise. The average context switch cost is mod-
eled to be 3 us. We evaluate three mechanisms that control
the level of batching: (1) simple batching using a predefined

limit (Figure 6); (2) timeslice (Figure 8); and (3) batching
throttle.

4.3.1 Fixed Batching

In the first series of experiments we set the batch limit to
be 1,8, 16,32 and 64, respectively. For each batch limit, we
repeat the test with 3 us, 10 us, and 30 us as Flow 13’s per-
packet-cost. We measured the system’s efficiency, packets
dropped from Flow 13 and maximum queue size seen by
each flow. The results are summarized in Figures 10, 11
and 12.
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Figure 11: Flow 13’s packets dropped for simple
batching.

We see the number of drops decreases as the batch limit
increases. For a fixed batch limit, FE also increases as we
increase Flow 13’s per-packet-cost. These results are not
surprising as the number of context-switches are reduced.

The results in Figure 12 deserves more explanation (We
use Flow 6 as an example, the results for other flow are all
similar). When we set the batch limit to 1 (no batching),
Flow 6 drops packets (the dot-dashed line in Figure 12 in-
dicates the number of buffers allocated to each flow). How-
ever, as we increase Flow 13’s per-packet-cost, the drop-
ping stops. This result can be explained by the increase
in E, as shown in Figure 10. A more detailed explanation
is that when the processing of every packet has to be fol-
lowed by a context switch, the system does not have enough
cycles to service flows at their reserved rate. The signifi-
cant scheduling overhead overloads the system, even though
the allocated shares only add up to 62.5% of total capacity.
Since the context switch cost isn’t charged to anyone, the
shares each flow actually receives is less than what it should
get. In all the experiments, the actual cycles consumed by
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Figure 12: Maximum queue length seen by Flow 6

Flow 13 are approximately the same, but the scheduling
overhead associated with Flow 13 is much higher for the
less expensive packets. As Flow 13’s packets becomes more
computationally expensive, the system delivers the same cy-
cle rate to it with less context switches, meaning more cycles
available for the other 12 flows. The scenario suggests it is
important to keep track of the scheduling overhead because
it can substantially inflate actual per-packet-cost, thereby
over-subscribing the system. Fortunately, with the batching
throttle, such functionality can be easily integrated into the
admission control mechanism.

As we increase the batch limit, the maximum queue length
(and therefore the latency) each flow experiences goes up.
However, the latency is also sensitive to the load imposed
by Flow 13, which is illustrated by the gap between the 3us,
10us, and 30us curves in Figure 12. This is a drawback of
simple batching: it does not provide an upper bound on
the scheduler’s granularity. As a consequence, a change in
the input workload can have a great impact on both E and
latency each flow experiences, which makes it hard to reason
about the system’s behavior. Suppose Flow 6 only has 32
buffers, it will drop packets when Flow 13 per-packet-cost
increases to 30us. This confirms the problem we saw earlier
in Figure 6.

4.3.2 Enforcing Timeslice

Recognizing the problem of setting a meaningful batch
limit, we rerun the experiments with a timeslice enforced on
every flow, as we did in Figure 8. The timeslices we chose are
30us, 150ps, 300pus, 500us and 1000us, respectively. The
results are shown in Figures 13, 14 and 15.

Comparing these graphs with the ones presented in the
previous section, the most notable change is that the curves
in Figures 13 and 15 stay much closer as the load imposed
by Flow 13 varies. This means both E and the latency a
flow experiences are now dominated by the timeslice, rather
than the load from other flows. This is a good property as
the system behavior becomes more predictable. Figure 13
exhibits the tradeoff between efficiency and fine-grained con-
trol: in order to reach a good E we have to use a very large
timeslice. For example, to make the system 84% efficient
when Flow 13’s per-packet-cost is 30us, we have to use a
timeslice of 500us, whereas in Figure 10 setting batch limit
to 8 will accomplish this goal. In the latter case, the max-
imum timeslice is only 8 x 30 = 240us, and the maximum
queue length seen by Flows 6 is 8. In contrast, enforcing a
500ps timeslice nearly triples the latency. Even with a large
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Figure 14: Flow 13’s packets dropped when using
timeslice.

timeslice, only those flows with high packet arrival rate en-
joy the benefit. In this set of experiments only Flow 13 is
able to use the full timeslice. Flow 6 never uses more than
16% of its timeslice.

There is one problem common to both the batching limit
and the timeslice: the system does not have active control on
the level of batching. Both mechanisms respond to workload
passively in that they provide only an upper bound. The ac-
tual level of batching achieved depends mainly on the flow’s
packet rate and current load. Another drawback associated
with these two mechanisms is that QoS and BE flows are
treated equally. Ideally, we want to process BE packets in a
large batch so to achieve higher efficiency, and at the same
time schedule QoS flows at a finer granularity. This is en-
abled by the batching throttle.

4.3.3 Batching Throttle

We test the batching throttle with five (T, G) tuples: (30%,
10ps), (20%, 15us), (10%, 30us), (5%, 60us) and (2%, 150us).
For each T, G is the minimum value satisfying Formula 1.
Figures 16, 17 and 18 summarize the results. In Figure 18
we also plot Flow 3 and 9. Compared to Flow 6, Flow 3
has the same packet rate but less expensive packets; Flow 9
has the same specification, except it is allowed to timeout.
These figures clearly demonstrate the three advantages of
the batching throttle:

1. It achieves high efficiency by actively delaying process-
ing of inefficient flows. It can produce better through-
put even with a small granularity. With the same
timeslice, the E in Figure 16 is much higher than those
in Figure 13. In figure 17, when we use (10%, 30us) or
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(5%, 60us) as the parameters, the system successfully
forwards all of Flow 13’s packets with a 3us per-packet-
cost. There are no packet dropped from other flows,
either. Note when T is further lowered to 2%, we again
start to see drops even though the E is higher. The
reason is such a low T makes the system non-work-
conserving. The calculation of E does not include idle
time.

2. It explicitly controls the scheduler’s granularity, there-
fore it can provide stable delay bound and through-
put. In Figure 18, the curves corresponding to one
flow nearly overlap (the same in Figure 16), meaning
that change in workload has little effect on the mea-
sured efficiency or the delay experienced by flows.

3. It considers the requirements of latency-sensitive QoS
flows. In Figure 18, when T = 2%, G = 150us, both
Flow 3 and Flow 6 suffer long delay. Flow 3 even expe-
riences packet loss. In contrast, Flow 9 (with a 500us
timeout) enjoys better latency because it is scheduled
more frequently.

In summary, the batching throttle exposes more “control
knobs” to the system administrator. How to configure these
parameters depends on local policy. The throttle mecha-
nism also provides valuable information that can be used by
the admission control module to adjust the system’s behav-
ior and/or to counter the side effects of the throttle itself.
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Taking Flow 3 as an example, when T = 2%, the number of
packets required to make it efficient is 150, which exceeds the
number of its buffers, so it can be foreseen that Flow 3 will
drop packets. As a compensation, the system could either
allocate more buffers to the flow, thereby trading memory
for CPU efficiency, or allow the flow to timeout. We reran
the experiments with these two modifications. In the first
case, Flow 3’s buffer is doubled to 256, and all of its packets
got through. In the second case, we gave Flow 3 a delay
threshold of 500us. As a result, packet drops are also elimi-
nated without any noticeable effects on other aspects of the
system.

5. RELATED WORK

There have recently been several efforts to define extensi-
ble architectures for network routers [1, 4, 12, 15, 16, 18], al-
though none have directly addressed the issue how the router
should schedule these computations. Of these, our approach
to scheduling would apply most naturally to router plugins
[4] and active flows [16], both of which segregate work early.
With router plugins, for example, it would be very straight-
forward to run all the plugins that implement a particular
flow in a single forwarding process. In contrast, it is not clear
how Click [12] modules would be efficiently broken into pro-
cesses since Click has no notion of a per-flow switching path
through the router. Support for flow isolation seems to be
the critical requirement for our approach.



As mentioned in the introduction, the only work that has
addressed the issue of scheduling a router’s CPU cycles is
a study of livelock conducted by Mogul and Ramakrishnan
[11]; Druschel and Banga make similar observations about
network servers [5] and Smith and Traw [17] discuss tech-
niques for reducing the overhead of receiving interrupts. Our
work goes beyond the issue of livelock by also considering the
implications of meeting QoS obligations. Our use of a pro-
portional share scheduler goes directly to this point. Both
our work and Mogul-Ramakrishnan cite the importance of
keeping the input-forwarding-output pipeline balanced, but
we offer a general approach that combines proportional share
and the batching throttle.

There has been considerable work on packet scheduling
[3, 7], and some of the algorithms developed for this pur-
pose have also been applied to CPU scheduling [2, 6]. How-
ever, none of these efforts demonstrate how a programmable
router might exploit these algorithms to balance concerns
about guarantees versus efficiency when one has to worry
about scheduling cycles and bandwidth simultaneously. We
leverage this algorithmic work, and in fact, we use an im-
plementation of WF2Q+ [3] in our prototype.

6. CONCLUSIONS

This paper explores the design space for scheduling the
CPU on a software-based router. The router has three over-
riding goals: (1) maximize the throughput of best effort
packets while providing different levels of service to QoS
packets; (2) exhibit robust behavior in the presence of vary-
ing workloads, including packet flooding denial-of-service at-
tacks; and (3) support switching paths of varying computa-
tional costs. The strategy we propose first divides the for-
warding path into a processing pipeline (thereby exposing
the critical scheduling decisions), and then applies a com-
bination of two mechanisms: a proportional share sched-
uler and the batching throttle. Experiments with a proto-
type implementation verify the effectiveness of the resulting
framework.

Although we have established a sound starting point, much
work remains to be done. For example, we need to either
verify our assertion that the cycle rate required by QoS flows
can be derived empirically from a specified bit rate, or else
develop a signalling protocol by which an application re-
serves a particular cycle rate. We also need to experiment
with the router under a wider range of workloads, partic-
ularly those involving data-dependent costs. We plan to
integrate the scheduling framework on a router architecture
that includes both PCs and programmable line cards.
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