
OS Support for General-Purpose Routers

Larry L. Peterson, Scott C. Karlin, and Kai Li
Department of Computer Science

Princeton University

Abstract
This paper argues that there is a need for routers to move
from being closed, special-purpose network devices to be-
ing open, general-purpose computing/communication sys-
tems. The central challenge in making this shift is to si-
multaneously support increasing complex forwarding logic
and high performance, while using commercial hardware
components and open operating systems. This paper in-
troduces the hardware and software architecture for such a
general-purpose router. The architecture includes two key
innovations. First, it better integrates the router’s switch-
ing capacity and compute cycles. We expect this to result
in significantly better scaling properties, and an order of
magnitude improvement in performance for packets that
require only minimum processing cycles. Second, the ar-
chitecture supports a hierarchy of forwarding paths, rang-
ing from fast/fixed paths implemented entirely in hardware
to slow/programmable paths implemented entirely in soft-
ware, but also including intermediate paths that exploit the
improved integration of cycles and switching.

1 Introduction

Much of the success of the current Internet can be traced
to the elegance of its architecture: routers in the middle of
the network simply forward packets to implement a best-
effort delivery service, while hosts at the edges of the net-
work address the more complex end-to-end issues (e.g., re-
liability, ordered delivery, security), as well as implement
application programs. One consequence of this design is
that only those fields needed by routers to forward packets
are placed in the IP header; all other information is located
in higher-level headers (e.g., TCP, HTTP), and is ignored
by the routers. This allows routers to remain simple—they
only forward packets based on the destination address con-
tained in those packets.

Today, however, one does not have to look very hard to
find examples of where this architecture breaks down.

• Many routers sit at the boundary between different re-
gions of the Internet; for example, between a site and

an ISP, between a tethered network and a wireless net-
work, between an ISP and a dialup line, and so on. It
is often the case that different assumptions hold on
either side of such a router, and as a consequence, ad-
ditional functionality is loaded into the router to tran-
sition packets from one region to the other. For exam-
ple, a firewall is a boundary router that filters packets
that flow from an untrusted region to a trusted region;
a NAT translates from one address space to another; a
QoS broker translates between QoS reservations; and
a transcoder thins a data stream going from a high-
speed link to a low-speed link [1].

• A router might function as the front end to a scal-
able server. Such a router is asked to make complex
forwarding decisions based on application-specific
knowledge of the packet stream. In the case of a
scalable storage server, for example, the router might
stripe outgoing write-streams across a set of servers,
order incoming read-streams from a set of servers, and
cache meta objects [4]. In the case of a scalable web
server, the router might forward web requests to the
most appropriate server based on both load and server
cache affinity [9]. In the case of a scalable display
server, the router might partition a stream of graphic
directives or video macroblocks into packets that go
to different frame buffers.

• A router might implement an entire LAN. Such a
router would offer the performance advantages of a
switched network, but also be able to serve as an inter-
nal firewall that protects hosts within a site from each
other. This would be necessary to protect hosts from
mobile code that has been imported into the site, or
to isolate portions of a company’s computing infras-
tructure. Such a router might enforce access control,
much like a traditional firewall, but it would also au-
thenticate users and hosts. Moreover, since all traffic
flows through such router, it has the opportunity to log
usage and implement intrusion detection.

One can argue with our calling nodes that implement



these functions “routers”; perhaps they are better called
application gateways, proxies, or even topology-aware
servers. Whatever they are called, however, we recognize a
general trend: the logic that decides how to process packets
has grown more and more complex over time. It is our con-
tention that the potential for this trend to continue is almost
unlimited. Taking this trend to its logical conclusion, one
might argue that packets should be allowed to carry code
that defines how they are to be processed by the routers
they visit; this is the vision of active networks [3].

We believe that active networks are a special case of ex-
tensible routers: the former support the dynamic loading of
untrusted mobile code, while dynamically loading trusted
native libraries or having a system administrator reconfig-
ure and reboot the kernel are equally viable alternatives to
extending the latter. The point is that being able to support
the dynamic loading of untrusted architecture-neutral code
(e.g., Java) may prove to be a useful capability—and an ex-
tensible router should be general enough to accommodate
such an extension—but extensibility does not directly de-
pend on nor require it. In any case, the issue is not so much
what types of extensions are allowed, but rather how effi-
ciently the router is able to apply the extensions to packets
that flow through it.

The paper argues that there is a need for routers to move
from being closed, special-purpose network devices to be-
ing open, general-purpose computing/communication sys-
tems. The central challenge in making this shift is to si-
multaneously support increasing complex forwarding logic
and high performance, while using commercial hardware
components and commercial operating systems. We briefly
sketch a hardware architecture that supports this goal, and
then describes the OS support required to make routers ex-
tensible.

2 Scalable Hardware

Many router hardware architectures are possible. At the
low-end, routers can be built using a standard worksta-
tion running a conventional operating system [10]. Be-
cause they are implemented in software, such routers can
(and have) been programmed to support nearly every imag-
inable function, but they offer very limited performance:
they can forward 10-100Kpps and support only a handful
of 100Mbps ports. At the high-end, routers are designed
around special-purpose hardware: they use a switched in-
terconnect (e.g., a crossbar) rather than a shared bus, and
they implement the performance-critical forwarding func-
tion in hardware (e.g., an ASIC) rather than software [2, 6].
As a consequence of this hardware-intensive design, high-
end switches are able to forward packets at a very high rate
(on the order of 1–10Mpps) and scale to fairly large sizes
(on the order of 128 100Mbps ports), but they provide vir-
tually no programmability.

In addition to the highly optimized forwarding path,

high-end routers also have a network processor—usually
connected to the one of the switch’s I/O ports—that handles
exceptional cases like IP options and routing updates. One
possibility is to implement the kinds of services outlined in
the previous section on this network processor. Such an ap-
proach admits that a network node has two halves—a router
half that forwards IP packets with hardware assistance, and
a server half that performs computation. These two halves
are not tightly integrated, but instead sit side-by-side, as
illustrated in Figure 1.

Router

uP uP

uP uP

Server

Figure 1: Extending a Conventional Router

The side-by-side design is sufficient if either (1) pack-
ets are passed to the server half in only rare cases, for ex-
ample, to process IP options; or (2) the server half imple-
ments functions in the control plane (i.e., flow setup) but
is not part of the data plane (i.e., packet forwarding). The
side-by-side architecture is less suitable when processing is
required on the data plane. This is because such an archi-
tecture does nothing to bring the cycles closer to the band-
width: ASICs that implement the IP forwarding path can-
not be extended in even the most trivial way, and the server
is connected by a narrow, high-latency pipe to the router’s
vast switching capacity.

We are designing an architecture that generalizes this
side-by-side architecture to include a hierarchy of proces-
sors and switching elements. This architecture better inte-
grates the cycles and the bandwidth, thereby providing a
continuum of possibilities between the fast/fixed path and
the slow/programmable path. The architecture has three
main attributes:

• It is designed around a tightly-coupled cluster of high-
end PC systems, where by tightly-coupled we mean
that the PCs connect to a very high-speed crossbar
switch via their internal system switch.

• Each PC system supports multiple line cards, each of
which is implemented by a network interface (NI) that
includes a microprocessor. Generally, we expect the
line card processors to be two or three generations be-
hind the main PC processors, or approximately four
times slower.

• The PC systems and line cards include logic that
allow packets to be moved from line card to line



Katmai

Katmai

KatmaiKatmai

Katmai

Katmai

CPU

CPU

Mem

CPU

NIC with uP

NIC with uP

NIC with uP

NIC with uP

NIC with uP

CPU

Mem

NIC with uP

NIC with uP

Mem

CPU

Mem

Mem

NIC with uP

NIC with uP

CPU

Mem

NIC with uP

NIC with uP

Switch
Crossbar

NIC with uP

200 Gbps

Figure 2: A Katmai-Based Implementation of the Scalable Hardware Architecture (240× 100Mbps ports).

card—either within the same PC or across the crossbar
switch—without the involvement of the main system
processor(s).

This architecture has two advantages over the side-by-
side architecture shown in Figure 1. First, it has lower la-
tency in the case when one wants to apply a very trivial
operation (a handful of instructions) to each packet. This
is because such simple operations can be implemented on
the line cards rather than the server’s processors. This, in
turn, means that: (1) the I/O bus needs to be crossed once
instead of twice, and (2) a lower-overhead thread model
can be used. Lower latency translates into more packets
per second; we estimate an order of magnitude difference
in this case.

Second, while it is tempting to claim that our architec-
ture provides more bandwidth between the switching el-
ement and the processors than does the side-by-side archi-
tecture, this is not necessarily the case because it is possible
to connect the server half to the router half with multiple
I/O ports. The real argument in favor of our architecture
is that its throughput has better scaling properties—both in
the number of ports and in the number of compute cycles
available per port. This is because scaling the side-by-side
architecture requires buying a larger switch, while our ar-
chitecture can be grown to several hundred ports simply by
adding additional processors.

Figure 2 depicts an example implementation of our ar-
chitecture. It consists of multiple 500MHz – 1GHz Kat-
mai (next generation Pentium-II) systems connected by a
200Gbps crossbar switch. Each Katmai system can sup-
port four independent 32-bit standard PCI buses, each with
2 Gbps of bandwidth. Each bus is therefore able to support

ten full-duplex 100Mbps ethernet line cards or one 1Gbps
line card. The system uses bridge chips to connect these
buses, such that they can work simultaneously. Thus, as-
suming 100Mbps ethernet line cards, a single Katmai sys-
tem can support up to 40 ports. By cascading a collection of
crossbar switchs, we expect to have enough switching ca-
pacity to support up twelve PC systems, or 480× 100Mbps
ports. The configuration shown in Figure 2 uses a single
crossbar switch and supports up to 240× 100Mbps ports.

In addition to its switching capacity, the six-Katmai
configuration (when outfitted with a full complement of
100MHz line card processors) also has 27GHz of aggregate
computing capacity. Assuming 1KB packets, this means
that 240 separate 100Mbps flows through the router could
apply approximately 9,200 cycles to each packet. More
generally, we characterize the ratio between computing and
communication capacity in terms of cycles-per-word (per-
second) (CPW), with the hardware configuration shown in
Figure 2 having a CPW of 36.

3 OS Support

Our software architecture is based on the Scout operating
system [7]. Scout has two relevant attributes. First, it sup-
ports extensibility at multiple time scales. Different mod-
ules can be configured into the system either statically (re-
quiring reconfiguration and rebooting) or dynamically (ei-
ther as conventional dynamic libraries or by JIT-compiling
Java bytecodes) [5].

Second, Scout supports an explicit path abstraction.
Paths carry data from input device to output device—from
input port to output port—possibly computing on the data
along the way. Figure 3 illustrates two different configu-



rations of Scout paths. The example on the left shows a
path on a typical end-system: it delivers packets from a
network device (ETH) to a frame buffer (VGA), and ap-
plies the MPEG decompression algorithm (MPEG) to the
data that traverses it. The example on the right shows a
path that might run on a firewall: it moves packets between
network devices via a proxy (PROXY) that enforces some
security policy. In both cases, the path delivers data from
an input queue to an output queue (possibly in both direc-
tions) by executing a sequence of modules; the path labels
in the Figure identify the modules.

VGA

WIMP

MPEG

MFLOW

UDP

IP

ETH ETH ETH

IPIP

TCP

PROXY

TCP

Figure 3: Example Paths

The path configurations shown in Figure 3 run in a stand-
alone implementation of Scout on Pentium workstations.
In the case of the router, however, we are running a ver-
sion of Scout that has been integrated into the Linux ker-
nel. This allows us to leverage exisiting Unix server and
router code. When coupled with the hardware architecture
described in Section 2, this means that paths can run in one
of three different operating environments: (1) they run en-
tirely on the line cards; (2) they run entirely in Scout, in
kernel mode, on the Katmai processors; and (3) they run as
user processes on Linux. The latter two environments have
greater cycle bandwidth than the first (by a factor of four),
but incur a greater startup latency (by a factor of ten to a
hundred, respectively).

The environment in which a path executes is ony one di-
mension to the problem. In general, the challenge for the
OS is to support a rich hierarchy of paths, ranging from
fast/fixed paths to slow/programmable paths, with several
interesting design points in between. To better understand
the richness of this hierarchy, consider that there are two
types of computation performed on each packet: classifi-
cation and processing. The former determines which path
the packet should traverse, while the latter corresponds to
the processing that takes place along that path. Classifi-
cation must happen for every packet; processing may or
may not. Note, however, that classification and path execu-

tion are not completely independent. It may be necessary
to first partially classify the packet based on header fields,
thereby selecting a processing path. The processing path
might then inspect the packet data in order to fully clas-
sify it (i.e., determine how to forward it). The OS supports
both a classification hierarchy and a path hierarchy, each of
which we now describe in more detail.

3.1 Path Hierarchy

We have already seen that paths may run in one of three
different environments, each with different bandwidth and
latency properties. There are two additional dimensions
along which paths may differ. The first is how much effort
has been put into optimizing the path’s code. Possibilities
range from just-in-time (JIT) generated code to way-ahead-
of-time (WAT) generated code, with the latter more heav-
ily optimized for a particular processor. Coarser-grained
optimizations that exploit path-specific knowledge—e.g.,
eliminate redundant or unnecessary functionality—are also
possible.

The second dimension is the complexity of the service
provided by the path, which may range over the following:

• none (packet is forwarded from input port to output
port);

• trivial transformations of header fields;

• logically re-arrange data in packet (involves copying),
but no additional cycles per byte; and

• compute (multiple instructions) on every data byte.

Each of these two dimensions must be mapped onto one
or more operating environments. For example, our expe-
rience shows that it is possible to push the first two lev-
els of processing onto the line cards, but not the third and
fourth. Similarly, for security reasons, it is likely that JIT
code would be executed in user space, but WAT code could
statically loaded into the kernel.

To tie all three dimensions of path processing together,
consider Figure 4, which shows five different incarnations
of the same path on a router that implements firewall ex-
tensions. The outer path includes dynamically-loaded code
that implements a firewall proxy. It runs in user space. The
second path is the same proxy implemented in a statically
loaded module; it runs faster than the outer path since the
proxy code is more heavily optimized and it runs in the
kernel. The third path is an optimization of both of the first
two. It by-passes the proxy, and forwards packets directly
from the input device to the output device. This optimiza-
tion is allowed when the proxy needs to inspect the first
packet that flows through the path (e.g., to determine if the
request operation was allowed), but after that it simply for-
wards packets from the input to the output [8]. The third
path also runs in the kernel. The two inner-most paths run



HARDWARE

IP

OPT-PROXY

Output PortInput Port

TCP TCP

IPIP

JIT-PROXY

TCP TCP

IPIP

IP - -

Kernel

Line Card

(Scout)

User Space
(Unix Process)

Figure 4: Various levels of path optimization

entirely on the line cards. The one labelled “hardware” is
allowed only if packets can be forwarded without modifi-
cation; they require only classification. The one labelled
“IP – –” is more likely. It is an optimization of the third
path that trivially augments the common case path by mod-
ifying select TCP header fields.

Supporting such a hierarchy requires two things from the
OS. First, it must be possible to replace one representation
of a path with another, thereby making it possible to dy-
namically optimize a path. Scout already supports such a
feature. Second, it must be possible to load a path into a
particular processing environment. Scout supports such an
interface between user space and the kernel; we are cur-
rently developing a corresponding interface between the
kernel and the line cards.

3.2 Classification Hierarchy

To support fast forwarding of most packets and complex
routing (at lower speeds) of some packets, we use a hierar-
chy of packet classifiers to identify which path to invoke for
a given packet. Packets start at the lowest level in the hier-
archy where relatively simple and fast algorithms attempt
to classify the packet. If a level fails to classify a packet, it
is handed off to a higher level in the hierarchy. The higher
levels perform more complex and more complete routing
decisions than do lower levels. When the proper path has
been identified for a given packet, classification completes
and that path is invoked.

Figure 5 depicts one level of the classification hierarchy.
The level is invoked when a lower level is not able to clas-
sify the packet. The lower level passes up a Packet De-
scription Record (PDR) for the packet. The PDR includes
the packet header, the address of the packet data, and inter-
mediate results for the classification processing done so far.
If the classifier is successful, it invokes the resulting path.
If not, it passes the PDR (possibly modified with interme-
diate results) to the next higher level classifier. Because the
routing tables are dynamic—and lower levels often cache

recently used information—higher levels of the classifica-
tion hierarchy are allowed to load new state into a particu-
lar classification level. This is indicated by “Classifier Up-
dates” in Figure 5.

Packet
Classification

PDR from
previous level

Modified PDR
to next level

Invoke
Path

Classifier
Updates

Success

Failure

Figure 5: A Classification Level.

In order to constrain the maximum latency and the min-
imum bandwidth of the system, each classification level is
given a cycle budget for each packet. For mature classifi-
cation algorithms, there will be known checkpoints in the
algorithm where the amount of time between these points
will be known to some degree of certainty. When the algo-
rithm itself determines that it will exceed the cycle budget,
the classification is aborted and spills to the next level. The
cycle budget can be capped by the use a watchdog timer
to prevent experimental classification algorithms from mo-
nopolizing the CPU resource.

The classification hierarchy ranges over the following
possibilities:

• cache of recent routes;

• pattern-based classification using one or more header
fields;

• arbitrary classification code, but limited to header
fields; and



• complex classification based on packet data.

Note that the last case is implemented by path; a partial
classification of the packet selects this path for execution.
We expect the first level to be implemented on the line
cards, with the higher levels implemented on the Katmai
processors.

References

[1] A. Fox, et. al. Adapting to Network and Client Vari-
ability via On-Demand Dynamic Distillation. In Pro-
ceedings of ASPLOS-VII, pages 160–170, Oct. 1996.

[2] C. Partridge, et. al. A 50-Gb/s IP Router. IEEE/ACM
Transactions on Networking, 6(3), June 1998.

[3] D. Tennenhouse, et. al. A Survey of Active Network
Research. IEEE Communications, pages 80–86, Jan.
1997.

[4] G. Gibson, et. al. A Cost-Effective, High-Bandwidth
Storage Architecture. In Proceedings of ASPLOS-
VIII, pages 92–103, Oct. 1998.

[5] J. Hartman, et. al. Joust: A Platform for Liquid Soft-
ware. IEEE Computer, April 1999.

[6] N. McKeown. Fast Switched Backplane for a Giga-
bit Switched Router. Technical Report Unpublished
whitepaper, Cicso, 1998.

[7] D. Mosberger and L. Peterson. Making Paths Explicit
in the Scout Operating System. In Proceedings of the
2nd OSDI Symposium, pages 153–167, Oct. 1996.

[8] O. Spatscheck, et. al. Optimizing TCP Forwarder Per-
formance. Technical Report TR98-01, Department of
Computer Science, University of Arizona, Feb. 1998.

[9] V. Pai, et. al. Locality-Aware Request Distribution
in Cluster-based Network Servers. In Proceedings of
ASPLOS-VIII, pages 205–216, Oct. 1998.

[10] S. Walton, A. Hutton, and J. Touch. High-Speed
Data Paths in Host-Based Routers. IEEE Computer,
30(11):46–52, Nov. 1998.


