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Abstract
We present a unified and complete account of maximum entropy density estimation subject to
constraints represented by convex potential functions or, alternatively, by convex regularization. We
provide fully general performance guarantees and an algorithm with a complete convergence proof.
As special cases, we easily derive performance guarantees for many known regularization types,
including `1, `2, `2

2, and `1+ `2
2 style regularization. We propose an algorithm solving a large and

general subclass of generalized maximum entropy problems, including all discussed in the paper,
and prove its convergence. Our approach generalizes and unifies techniques based on information
geometry and Bregman divergences as well as those based more directly on compactness. Our
work is motivated by a novel application of maximum entropy to species distribution modeling,
an important problem in conservation biology and ecology. In a set of experiments on real-world
data, we demonstrate the utility of maximum entropy in this setting. We explore effects of different
feature types, sample sizes, and regularization levels on the performance of maxent, and discuss
interpretability of the resulting models.

Keywords: maximum entropy, density estimation, regularization, iterative scaling, species distri-
bution modeling

1. Introduction

The maximum entropy (maxent) approach to density estimation was first proposed by Jaynes (1957),
and has since been used in many areas of computer science and statistical learning, especially natural
language processing (Berger et al., 1996; Della Pietra et al., 1997). In maxent, one is given a
set of samples from a target distribution over some space, and a set of known constraints on the
distribution. The distribution is then estimated by a distribution of maximum entropy satisfying
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Figure 1: Left to right: Yellow-throated Vireo training localities from the first random partition, an
example environmental variable (annual average temperature, higher values in red), max-
ent prediction using linear, quadratic and product features. Prediction strength is shown
as white (weakest) to red (strongest); reds could be interpreted as suitable conditions for
the species.

the given constraints. The constraints are often represented using a set of features (real-valued
functions) on the space, with the expectation of every feature required to match its empirical average.
By convex duality, this turns out to be the unique Gibbs distribution maximizing the likelihood of
the samples, or, equivalently, minimizing the empirical log loss. (Maxent and its dual are described
more rigorously in Section 2.)

The work in this paper was motivated by a new application of maxent to the problem of modeling
the distribution of a plant or animal species, a critical problem in conservation biology. Input data
for species distribution modeling consists of occurrence locations of a particular species in a region
and of environmental variables for that region. Environmental variables may include topographical
layers, such as elevation and aspect, meteorological layers, such as annual precipitation and average
temperature, as well as categorical layers, such as vegetation and soil type. Occurrence locations
are commonly derived from specimen collections in natural history museums and herbaria. In the
context of maxent, occurrences correspond to samples, the map divided into a finite number of cells
is the sample space, and environmental variables or functions derived from them are features (see
Figure 1 for an example). The number of occurrences for individual species is frequently quite small
by machine learning standards, for example, a hundred or less.

It should not be surprising that maxent can severely overfit training data when the constraints
on the output distribution are based on empirical averages, as described above, especially if there is
a very large number of features. For instance, in our application, we sometimes consider threshold
features for each environmental variable. These are binary features equal to one if an environmental
variable is larger than a fixed threshold and zero otherwise. Thus, there is a continuum of features for
each variable, and together they force the output distribution to be non-zero only at values achieved
by the samples. The problem is that in general, the empirical averages of features will almost never
be equal to their true expectations, so the target distribution itself does not satisfy the constraints
imposed on the output distribution. From the dual perspective, the family of Gibbs distributions is
too expressive and the algorithm overfits. Common approaches to counter overfitting are parameter
regularization (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005),
introduction of a prior (Williams, 1995; Goodman, 2004), feature selection (Berger et al., 1996;
Della Pietra et al., 1997), discounting (Lau, 1994; Rosenfeld, 1996; Chen and Rosenfeld, 2000)
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and constraint relaxation (Khudanpur, 1995; Kazama and Tsujii, 2003; Jedynak and Khudanpur,
2005). Thus, there are many ways of modifying maxent to control overfitting calling for a general
treatment.

In this work, we study a generalized form of maxent. Although mentioned by other authors
as fuzzy maxent (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001), we give
the first complete theoretical treatment of this very general framework, including fully general and
unified performance guarantees, algorithms, and convergence proofs. Independently, Altun and
Smola (2006) derive a different theoretical treatment (see discussion below).

As special cases, our results allow us to easily derive performance guarantees for many known
regularized formulations, including `1, `2, `2

2, and `1+ `2
2 regularizations. More specifically, we

derive guarantees on the performance of maxent solutions compared to the “best” Gibbs distribution
q? defined by a weight vector λ?. Our guarantees are derived by bounding deviations of empirical
feature averages from their expectations, a setting in which we can take advantage of a wide array
of uniform convergence results. For example, for a finite set of features bounded in [0,1], we can
use Hoeffding’s inequality and the union bound to show that the true log loss of the `1-regularized
maxent solution will be with high probability worse by no more than an additive O(‖λ?‖1

√
(lnn)/m)

compared with the log loss of the Gibbs distribution q?, where n is the number of features and m is
the number of samples. For an infinite set of binary features with VC-dimension d, the difference
between the `1-regularized maxent solution and q? is at most O(‖λ?‖1

√
d ln(m2/d)/m). Note that

these bounds drop quickly with an increasing number of samples and depend only moderately on the
number or complexity of the features, even admitting an extremely large number of features from
a class of bounded VC-dimension. For maxent with `2 and `2

2-style regularization, it is possible to
obtain bounds which are independent of the number of features, provided that the feature vector can
be bounded in the `2 norm.

In the second part, we propose algorithms solving a large and general subclass of generalized
maxent problems. We show convergence of our algorithms using a technique that unifies previous
approaches and extends them to a more general setting. Specifically, our unified approach general-
izes techniques based on information geometry and Bregman divergences (Della Pietra et al., 1997,
2001; Collins et al., 2002) as well as those based more directly on compactness. The main novel
ingredient is a modified definition of an auxiliary function, a customary measure of progress, which
we view as a surrogate for the difference between the primal and dual objective rather than a bound
on the change in the dual objective.

Standard maxent algorithms such as iterative scaling (Darroch and Ratcliff, 1972; Della Pietra
et al., 1997), gradient descent, Newton and quasi-Newton methods (Cesa-Bianchi et al., 1994; Mal-
ouf, 2002; Salakhutdinov et al., 2003), and their regularized versions (Lau, 1994; Williams, 1995;
Chen and Rosenfeld, 2000; Kazama and Tsujii, 2003; Goodman, 2004; Krishnapuram et al., 2005)
perform a sequence of feature weight updates until convergence. In each step, they update all fea-
ture weights. This is impractical when the number of features is very large. Instead, we propose a
sequential update algorithm that updates only one feature weight in each iteration, along the lines of
algorithms studied by Collins, Schapire, and Singer (2002), and Lebanon and Lafferty (2001). This
leads to a boosting-like approach permitting the selection of the best feature from a very large class.
For instance, for `1-regularized maxent, the best threshold feature associated with a single variable
can be found in a single linear pass through the (pre-sorted) data, even though conceptually we are
selecting from an infinite class of features. Other boosting-like approaches to density estimation
have been proposed by Welling, Zemel, and Hinton (2003), and Rosset and Segal (2003).
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For cases when the number of features is relatively small, yet we want to use benefits of regu-
larization to prevent overfitting on small sample sets, it might be more efficient to solve generalized
maxent by parallel updates. In Section 7, we give a parallel-update version of our algorithm with a
proof of convergence.

In the last section, we return to species distribution modeling, and use it as a setting to test our
ideas. In particular, we apply `1-regularized maxent to estimate distributions of bird species in North
America. We present learning curves for several different feature classes derived for four species
with a varying number of occurrence records. We also explore effects of regularization on the test
log loss and interpretability of the resulting models. A more comprehensive set of experiments is
evaluated by Phillips, Dudı́k, and Schapire (2004). The biological application is explored in more
detail by Phillips, Anderson, and Schapire (2006).

1.1 Previous Work

There have been many studies of maxent and logistic regression, which is a conditional version of
maxent, with `1-style regularization (Khudanpur, 1995; Williams, 1995; Kazama and Tsujii, 2003;
Ng, 2004; Goodman, 2004; Krishnapuram et al., 2005), `2

2-style regularization (Lau, 1994; Chen
and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005) as well as some other types of
regularization such as `1+ `2

2-style (Kazama and Tsujii, 2003), `2-style regularization (Newman,
1977) and a smoothed version of `1-style regularization (Dekel et al., 2003). In a recent work, Altun
and Smola (2006) derive duality and performance guarantees for settings in which the entropy is
replaced by an arbitrary Bregman or Csiszár divergence and regularization takes the form of a norm
raised to a power greater than one. With the exception of Altun and Smola’s work and Zhang’s
work, the previous studies do not give performance guarantees applicable to our case, although Kr-
ishnapuram et al. (2005) and Ng (2004) prove guarantees for `1-regularized logistic regression. Ng
also shows that `1-regularized logistic regression may be superior to the `2

2-regularized version in
a scenario when the number of features is large and only a small number of them is relevant. Our
results indicate a similar behavior for unconditional maxent.

In the context of linear models, `2
2, `1, and `1+ `2

2 regularization have been used under the
names ridge regression (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996), and elastic
nets (Zou and Hastie, 2005). Lasso regression, in particular, has provoked a lot of interest in recent
statistical theory and practice. The frequently mentioned benefit of the lasso is its bias toward sparse
solutions. The same bias is present also in `1-regularized maxent, but we do not analyze this bias
in detail. Our interest is in deriving performance guarantees. Similar guarantees were derived by
Donoho and Johnstone (1994) for linear models with the lasso penalty. The relationship between
the lasso approximation and the sparsest approximation is explored, for example, by Donoho and
Elad (2003).

Quite a number of approaches have been suggested for species distribution modeling, including
neural nets, nearest neighbors, genetic algorithms, generalized linear models, generalized additive
models, bioclimatic envelopes, boosted regression trees, and more; see Elith (2002) and Elith et al.
(2006) for a comprehensive comparison. The latter work evaluates `1-regularized maxent as one
of a group of twelve methods in the task of modeling species distributions. Maxent is among the
best methods alongside boosted decision trees (Schapire, 2002; Leathwick et al., 2006), general-
ized dissimilarity models (Ferrier et al., 2002) and multivariate adaptive regression splines with the
community level selection of basis functions (Moisen and Frescino, 2002; Leathwick et al., 2005).
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Among these, however, maxent is the only method designed for presence-only data. It comes with a
statistical interpretation that allows principled extensions, for example, to cases where the sampling
process is biased (Dudı́k et al., 2005).

2. Preliminaries

Our goal is to estimate an unknown density π over a sample space X which, for the purposes of this
paper, we assume to be finite.1 As empirical information, we are typically given a set of samples
x1, . . . ,xm drawn independently at random according to π. The corresponding empirical distribution
is denoted by π̃:

π̃(x) =
|{1≤ i≤ m : xi = x}|

m
.

We also are given a set of features f1, . . . , fn where f j : X → R. The vector of all n features is
denoted by f and the image of X under f, the feature space, is denoted by f(X ). For a distribution π
and function f , we write π[ f ] to denote the expected value of f under distribution π:

π[ f ] = ∑x∈X π(x) f (x) .

In general, π̃ may be quite distant, under any reasonable measure, from π. On the other hand,
for a given function f , we do expect π̃[ f ], the empirical average of f , to be rather close to its
true expectation π[ f ]. It is quite natural, therefore, to seek an approximation p under which f j’s
expectation is equal to π̃[ f j] for every f j. There will typically be many distributions satisfying these
constraints. The maximum entropy principle suggests that, from among all distributions satisfying
these constraints, we choose the one of maximum entropy, that is, the one that is closest to uniform.
Here, as usual, the entropy of a distribution p on X is defined to be H(p) =−∑x∈X p(x) ln p(x).

However, the default estimate of π, that is, the distribution we would choose if we had no sample
data, may be in some cases non-uniform. In a more general setup, we therefore seek a distribution
that minimizes entropy relative to the default estimate q0. The relative entropy, or Kullback-Leibler
divergence, is an information theoretic measure defined as

D(p ‖ q) = p[ln(p/q)] .

Minimizing entropy relative to q0 corresponds to choosing a distribution that is closest to q0. When
q0 is uniform then minimizing entropy relative to q0 is equivalent to maximizing entropy.

Instead of minimizing entropy relative to q0, we can consider all Gibbs distributions of the form

qλ(x) =
q0(x)eλ·f(x)

Zλ

where Zλ = ∑x∈X q0(x)eλ·f(x) is a normalizing constant, and λ ∈ R
n. It can be proved (Della Pietra

et al., 1997) that the maxent distribution is the same as the maximum likelihood distribution from
the closure of the set of Gibbs distributions, that is, the distribution q that achieves the supremum
of ∏m

i=1 qλ(xi) over all values of λ, or equivalently, the infimum of the empirical log loss (negative
normalized log likelihood)

Lπ̃(λ) =− 1
m

m

∑
i=1

lnqλ(xi) .

1. In this paper, we are concerned with densities relative to the counting measure on X . These correspond to probability
mass functions.
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The convex programs corresponding to the two optimization problems are

min
p∈∆

D(p ‖ q0) subject to p[f] = π̃[f] , (1)

inf
λ∈Rn

Lπ̃(λ) (2)

where ∆ is the simplex of probability distributions over X .
In general, we use

Lr(λ) =−r[lnqλ]

to denote the log loss of qλ relative to the distribution r. It differs from relative entropy D(r ‖ qλ)
only by the constant H(r). We will use the two interchangeably as objective functions.

3. Convex Analysis Background

Throughout this paper we make use of convex analysis. The necessary background is provided
in this section. For a more detailed exposition see for example Rockafellar (1970), or Boyd and
Vandenberghe (2004).

Consider a function ψ : R
n→ (−∞,∞]. The effective domain of ψ is the set domψ= {u ∈ R

n :
ψ(u) <∞}. A point u where ψ(u) <∞ is called feasible. The epigraph of ψ is the set of points
above its graph {(u, t) ∈ R

n×R : t ≥ ψ(u)}. We say that ψ is convex if its epigraph is a convex
set. A convex function is called proper if it is not uniformly equal to ∞. It is called closed if its
epigraph is closed. For a proper convex function, closedness is equivalent to lower semi-continuity
(ψ is lower semi-continuous if liminfu′→uψ(u′)≥ ψ(u) for all u).

If ψ is a closed proper convex function then its conjugate ψ∗ : R
n→ (−∞,∞] is defined by

ψ∗(λ) = sup
u∈Rn

[λ ·u−ψ(u)] .

The conjugate provides an alternative description of ψ in terms of tangents of ψ’s epigraph. The
definition of the conjugate immediately yields Fenchel’s inequality

∀λ,u : λ ·u≤ ψ∗(λ)+ψ(u) .

In fact, ψ∗(λ) is defined to give the tightest bound of the form above. It turns out that ψ∗ is also a
closed proper convex function and ψ∗∗ = ψ (for a proof see Rockafellar, 1970, Corollary 12.2.1).

In this work we use several examples of closed proper convex functions. The first of them is
relative entropy, viewed as a function of its first argument and extended to R

X as follows:

ψ(p) =

{
D(p ‖ q0) if p ∈ ∆
∞ otherwise

where q0 ∈ ∆ is assumed fixed. The conjugate of relative entropy is the log partition function

ψ∗(r) = ln
(

∑x∈X q0(x)e
r(x)

)

where r ∈ R
X and its components are denoted by r(x).
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The second example is the unnormalized relative entropy

D̃(p ‖ q0) = ∑x∈X

[
p(x) ln

(
p(x)
q0(x)

)
− p(x)+q0(x)

]
.

Fixing q0 ∈ [0,∞)X , it can be extended to a closed proper convex function of its first argument:

ψ(p) =

{
D̃(p ‖ q0) if p(x)≥ 0 for all x ∈ X
∞ otherwise.

The conjugate of unnormalized relative entropy is a scaled exponential shifted to the origin:

ψ∗(r) = ∑x∈X q0(x)(e
r(x)−1) .

Both relative entropy and unnormalized relative entropy are examples of Bregman divergences
(Bregman, 1967) which generalize some common distance measures including the squared Eu-
clidean distance. We use two properties satisfied by any Bregman divergence B(· ‖ ·):
(B1) B(a ‖ b)≥ 0 ,
(B2) if B(at ‖ bt)→ 0 and bt → b? then at → b?.

It is not too difficult to check these properties explicitly both for relative entropy and unnormalized
relative entropy.

Another example of a closed proper convex function is an indicator function of a closed convex
set C ⊆ R

n, denoted by IC, which equals 0 when its argument lies in C and infinity otherwise. We
will also use I(u ∈C) to denote IC(u). The conjugate of an indicator function is a support function.
For C = {u0}, we obtain I∗{u0}(λ) = λ · u0. For a box R = {u : |u j| ≤ β j for all j}, we obtain an
`1-style conjugate I∗R(λ) = ∑ j β j|λ j|. For a Euclidean ball B = {u : ‖u‖2 ≤ β}, we obtain an `2-style
conjugate, I∗B(λ) = β‖λ‖2.

The final example is a square of the Euclidean norm ψ(u) = ‖u‖2
2/(2α), whose conjugate is also

a square of the Euclidean norm ψ∗(λ) = α‖λ‖2
2/2.

The following identities can be proved from the definition of the conjugate function:

if ϕ(u) = aψ(bu+ c) then ϕ∗(λ) = aψ∗(λ/(ab))−λ · c/b , (3)

if ϕ(u) = ∑ j ϕ j(u j) then ϕ∗(λ) = ∑ j ϕ
∗
j(λ j) (4)

where a > 0,b 6= 0 and c ∈ R
n are constants, and u j,λ j refer to the components of u,λ.

We conclude with a version of Fenchel’s Duality Theorem which relates a convex minimization
problem to a concave maximization problem using conjugates. The following result is essentially
Corollary 31.2.1 of Rockafellar (1970) under a stronger set of assumptions.

Theorem 1 (Fenchel’s Duality). Let ψ : R
n→ (−∞,∞] and ϕ : R

m→ (−∞,∞] be closed proper
convex functions and A a real-valued m×n matrix. Assume that domψ∗ = R

n or domϕ= R
m. Then

inf
u

[
ψ(u)+ϕ(Au)

]
= sup

λ

[
−ψ∗(A>λ)−ϕ∗(−λ)

]
.

We refer to the minimization over u as the primal problem and the maximization over λ as the
dual problem. When no ambiguity arises, we also refer to the minimization over λ of the negative
dual objective as the dual problem. We call u a primal feasible point if the primal objective is finite
at u and analogously define a dual feasible point.
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4. Generalized Maximum Entropy

In this paper we study a generalized maxent problem

P : min
p∈∆

[
D(p ‖ q0)+U(p[f])

]

where U : R
n→ (−∞,∞] is an arbitrary closed proper convex function. It is viewed as a potential

for the maxent problem. We further assume that q0 is positive on X , that is, D(p ‖ q0) is finite for
all p ∈ ∆ (otherwise we could restrict X to the support of q0), and there exists a distribution whose
vector of feature expectations is a feasible point of U (this is typically satisfied by the empirical
distribution). These two conditions imply that the problem P is feasible.

The definition of generalized maxent captures many cases of interest including basic maxent, `1-
regularized maxent and `2

2-regularized maxent. Basic maxent is obtained by using a point indicator
potential U(0)(u) = I(u = π̃[f]). The `1-regularized version of maxent, as shown by Kazama and
Tsujii (2003), corresponds to the relaxation of equality constraints to box constraints

|π̃[ f j]− p[ f j]| ≤ β j .

This choice can be motivated by an observation that we do not expect π̃[ f j] to be equal to π[ f j]
but only close to it. Box constraints are represented by the potential U(1)(u) = I(|π̃[ f j]− u j| ≤
β j for all j). Finally, as pointed out by Chen and Rosenfeld (2000) and Lebanon and Lafferty
(2001), `2

2-regularized maxent is obtained using the potential U(2)(u) = ‖π̃[f]− u‖2
2/(2α) which

incurs an `2
2-style penalty for deviating from empirical averages.

The primal objective of generalized maxent will be referred to as P:

P(p) = D(p ‖ q0)+U(p[f]) .

Note that P attains its minimum over ∆, because ∆ is compact and P is lower semi-continuous. The
minimizer of P is unique by strict convexity of D(p ‖ q0).

To derive the dual of P , define the matrix Fjx = f j(x) and use Fenchel’s duality:

min
p∈∆

[D(p ‖ q0)+U(p[f])] = min
p∈∆

[D(p ‖ q0)+U(Fp)]

= sup
λ∈Rn

[
− ln

(
∑x∈X q0(x)exp

{
(F>λ)x

})
−U∗(−λ)

]
(5)

= sup
λ∈Rn

[− lnZλ−U∗(−λ)] . (6)

In Equation (5), we apply Theorem 1. We use (F>λ)x to denote the entry of F>λ indexed by x.
In Equation (6), we note that (F>λ)x = λ · f(x) and thus the expression inside the logarithm is the
normalization constant of qλ. The dual objective will be referred to as Q:

Q(λ) =− lnZλ−U∗(−λ) .

There are two formal differences between generalized maxent and basic maxent. The first dif-
ference is that the constraints of the basic primal (1) are stated relative to the empirical expectations
whereas the potential of the generalized primal P makes no reference to π̃[f]. This difference is
only superficial. It is possible to “hard-wire” the distribution π̃ in the potential U, as we saw on
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potential (absolute and relative) conjugate potential
generalized maxent:

U(u) U(u) U∗(λ)
Ur(u) U(r[f]−u) U∗(−λ)+λ · r[f]
Uπ̃(u) U(π̃[f]−u) U∗(−λ)+λ · π̃[f]

basic constraints:
U(0)(u) I(u = π̃[f]) λ · π̃[f]
U(0)

r (u) I(u = r[f]− π̃[f]) λ · (r[f]− π̃[f])
U(0)

π̃ (u) I(u = 0) 0

box constraints:
U(1)(u) I(|π̃[ f j]−u j| ≤ β j for all j) λ · π̃[f]+∑ j β j|λ j|
U(1)

r (u) I(|u j− (r[ f j]− π̃[ f j])| ≤ β j for all j) λ · (r[f]− π̃[f])+ ∑ j β j|λ j|
U(1)

π̃ (u) I(|u j| ≤ β j for all j) ∑ j β j|λ j|
`2

2 penalty:
U(2)(u) ‖π̃[f]−u‖2

2/(2α) λ · π̃[f]+α‖λ‖2
2/2

U(2)
r (u) ‖u− (r[f]− π̃[f])‖2

2/(2α) λ · (r[f]− π̃[f])+α‖λ‖2
2/2

U(2)

π̃ (u) ‖u‖2
2/(2α) α‖λ‖2

2/2

Table 1: Absolute and relative potentials, and their conjugates for various versions of maxent.

the example of U(0). In the latter case, it would be more correct, but perhaps overly pedantic and
somewhat clumsy, to make the dependence of the potential on π̃ explicit and use the notation U(0),π̃.

The second difference, which seems more significant, is the difference between the duals. The
objective of the basic dual (2) equals the log loss relative to the empirical distribution π̃, but the log
loss does not appear in the generalized dual. However, we will see that the generalized dual can be
expressed in terms of the log loss. In fact, it can be expressed in terms of the log loss relative to an
arbitrary distribution, including the empirical distribution π̃ as well as the unknown distribution π.

We next describe shifting, the transformation of an “absolute” potential to a “relative” potential.
Shifting is a technical tool which will simplify some of the proofs in Sections 5 and 6, and will also
be used to rewrite the generalized dual in terms of the log loss.

4.1 Shifting

For an arbitrary distribution r and a potential U, let Ur denote the function

Ur(u) = U(r[f]−u) .

This function will be referred to as the potential relative to r or simply the relative potential. The
original potential U will be in contrast referred to as the absolute potential. In Table 1, we list
potentials discussed so far, alongside their versions relative to an arbitrary distribution r, and relative
to π̃ in particular.

From the definition of a relative potential, we see that the absolute potential can be expressed
as U(u) = Ur(r[f]−u). Thus, it is possible to implicitly define a potential U by defining a relative
potential Ur for a particular distribution r. The potentials U(0), U(1), U(2) of basic maxent, maxent with
box constraints, and maxent with `2

2 penalty could thus have been specified by defining U(0)

π̃ (u) =
I(u = 0), U(1)

π̃ (u) = I(|u j| ≤ β j for all j) and U(2)

π̃ (u) = ‖u‖2
2/(2α).
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The conjugate of a relative potential, the conjugate relative potential, is obtained, according
to Equation (3), by adding a linear function to the conjugate of U:

U∗r (λ) = U∗(−λ)+λ · r[f] . (7)

Table 1 lists U(0)∗, U(1)∗, U(2)∗, and the conjugates of the corresponding relative potentials.

4.2 The Generalized Dual as the Minimization of a Regularized Log Loss

We will now show how the dual objective Q(λ) can be expressed in terms of the log loss relative to
an arbitrary distribution r. This will highlight how the dual of the generalized maxent extends the
dual of the basic maxent. Using Equation (7), we rewrite Q(λ) as follows:

Q(λ) =− lnZλ−U∗(−λ) =− lnZλ−U∗r (λ)+λ · r[f]
=−r[lnq0]+ r[lnq0 +λ · f− lnZλ]−U∗r (λ)

= Lr(0)−Lr(λ)−U∗r (λ) . (8)

Since the first term in Equation (8) is a constant independent of λ, the maximization of Q(λ) is
equivalent to the minimization of Lr(λ)+ U∗r (λ). Setting r = π̃ we obtain a dual analogous to the
basic dual (2):

Qπ̃ : inf
λ∈Rn

[
Lπ̃(λ)+U∗π̃(λ)

]
.

From Equation (8), it follows that the λ minimizing Lr(λ) + U∗r (λ) does not depend on a partic-
ular choice of r. As a result, the minimizer of Qπ̃ is also the minimizer of Lπ(λ) + U∗π(λ). This
observation will be used in Section 5 to prove performance guarantees.

The objective of Qπ̃ has two terms. The first of them is the empirical log loss. The second
one is the regularization term penalizing “complex” solutions. The regularization term need not be
non-negative and it does not necessarily increase with any norm of λ. On the other hand, it is a
proper closed convex function and if π̃ is feasible then by Fenchel’s inequality the regularization is
bounded from below by −Uπ̃(0). From a Bayesian perspective, U∗π̃ corresponds to negative log of
the prior, and minimizing Lπ̃(λ)+U∗π̃(λ) is equivalent to maximizing the posterior.

In the case of basic maxent, we obtain U(0)∗
π̃ (λ) = 0 and recover the basic dual. For the box

potential, we obtain U(1)∗
π̃ (λ) = ∑ j β j|λ j|, which corresponds to an `1-style regularization and a

Laplace prior. For the `2
2 potential, we obtain U(2)∗

π̃ (λ) = α‖λ‖2
2/2, which corresponds to an `2

2-style
regularization and a Gaussian prior.

In all the cases discussed in this paper, it is natural to consider the dual objective relative to π̃
as we have seen in the previous examples. In other cases, the empirical distribution π̃ need not be
available, and there may be no natural distribution relative to which a potential could be specified,
yet it is possible to define a meaningful absolute potential (Dudı́k et al., 2005; Dudı́k and Schapire,
2006). To capture the more general case, we formulate the generalized maxent using the absolute
potential.

4.3 Maxent Duality

We know from Equation (6) that the generalized maxent primal and dual have equal values. In
this section, we show the equivalence of the primal and dual optimizers. Specifically, we show that
the maxent primal P is solved by the Gibbs distribution whose parameter vector λ solves the dual
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(possibly in a limit). This parallels the result of Della Pietra, Della Pietra, and Lafferty (1997) for
the basic maxent and gives additional motivation for the view of the dual objective as the regularized
log loss.

Theorem 2 (Maxent Duality). Let q0,U,P,Q be as above. Then

min
p∈∆

P(p) = sup
λ∈Rn

Q(λ) . (9)

Moreover, for a sequence λ1,λ2, . . . such that

lim
t→∞

Q(λt) = sup
λ∈Rn

Q(λ)

the sequence of qt = qλt has a limit and

P
(

lim
t→∞

qt

)
= min

p∈∆
P(p) . (10)

Proof. Equation (9) is a consequence of Fenchel’s duality as was shown earlier. It remains to prove
Equation (10). We will use an alternative expression for the dual objective. Let r be an arbitrary
distribution. Adding and subtracting H(r) from Equation (8) yields

Q(λ) =−D(r ‖ qλ)+D(r ‖ q0)−U∗r (λ) . (11)

Let p̂ be the minimizer of P and λ1,λ2, . . . maximize Q in the limit. Then

D(p̂ ‖ q0)+U p̂(0) = P(p̂) = sup
λ∈Rn

Q(λ) = lim
t→∞

Q(λt)

= lim
t→∞

[
−D(p̂ ‖ qt)+D(p̂ ‖ q0)−U∗p̂(λt)

]
.

Denoting terms with the limit 0 by o(1) and rearranging yields

U p̂(0)+U∗p̂(λt) =−D(p̂ ‖ qt)+o(1) .

The left-hand side is non-negative by Fenchel’s inequality, so D(p̂ ‖ qt)→ 0 by the non-negativity
of relative entropy. Therefore, by property (B2), every convergent subsequence of q1,q2, . . . has the
limit p̂. Since the qt’s come from the compact set ∆, we obtain qt → p̂.

Thus, in order to solve the primal, it suffices to find a sequence of λ’s maximizing the dual. This
will be the goal of algorithms in Sections 6 and 7.

5. Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of generalized maxent relative to the true
distribution π. That is, we are able to bound Lπ(λ̂) in terms of Lπ(λ?) when q

λ̂
maximizes the dual

objective Q and qλ? is either an arbitrary Gibbs distribution, or in some cases, a Gibbs distribution
with a bounded norm of λ?. In particular, bounds hold for the Gibbs distribution minimizing the true
loss (in some cases, among Gibbs distributions with a bounded norm of λ?). Note that D(π ‖ qλ)
differs from Lπ(λ) only by the constant term H(π), so identical bounds also hold for D(π ‖ q

λ̂
) in

terms of D(π ‖ qλ?).
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Our results are stated for the case when the supremum of Q is attained at λ̂ ∈R
n, but they easily

extend to the case when the supremum is only attained in a limit. The crux of our method is the
lemma below. Even though its proof is remarkably simple, it is sufficiently general to cover all the
cases of interest.

Lemma 3. Let λ̂ maximize Q. Then for an arbitrary Gibbs distribution qλ?

Lπ(λ̂)≤ Lπ(λ
?)+2U(π[f])+U∗(λ?)+U∗(−λ?) , (12)

Lπ(λ̂)≤ Lπ(λ
?)+2Uπ̃(π̃[f]−π[f])+U∗π̃(λ

?)+U∗π̃(−λ?) , (13)

Lπ(λ̂)≤ Lπ(λ
?)+(λ?− λ̂) · (π[f]− π̃[f])+U∗π̃(λ

?)−U∗π̃(λ̂) . (14)

Proof. Optimality of λ̂ with respect to Lπ(λ)+U∗π(λ) =−Q(λ)+ const. yields

Lπ(λ̂)≤ Lπ(λ
?)+U∗π(λ

?)−U∗π(λ̂)

≤ Lπ(λ
?)+(λ?− λ̂) ·π[f]+U∗(−λ?)−U∗(−λ̂) . (15)

In Equation (15), we express U∗π in terms of U∗ using Equation (7). Now Equation (12) is obtained
by applying Fenchel’s inequality to the second term of Equation (15):

(λ?− λ̂) ·π[f]≤ U∗(λ?)+U(π[f])+U∗(−λ̂)+U(π[f]) .

Equations (13) and (14) follow from Equations (12) and (15) by shifting potentials and their conju-
gates to π̃.

Remark. Notice that π and π̃ in the statement and the proof of the lemma can be replaced by arbitrary
distributions p1 and p2.

A special case which we discuss in more detail is when U is an indicator of a closed convex
set C, such as U(0) and U(1) of the previous section. In that case, the right hand side of Lemma 3.12
will be infinite unless π[f] lies in C. In order to apply Lemma 3.12, we ensure that π[f]∈C with high
probability. Therefore, we choose C as a confidence region for π[f]. If π[f] ∈C then for any Gibbs
distribution qλ?

Lπ(λ̂)≤ Lπ(λ
?)+ I∗C(λ?)+ I∗C(−λ?) . (16)

For a fixed λ? and a non-empty C, I∗C(λ?)+ I∗C(−λ?) is always non-negative and proportional to the
size of C’s projection onto a line in the direction λ?. Thus, smaller confidence regions yield better
performance guarantees.

A common method of obtaining confidence regions is to bound the difference between empirical
averages and true expectations. There exists a huge array of techniques to achieve this. Before
moving to specific examples, we state a general result which follows directly from Lemma 3.13
analogously to Equation (16).

Theorem 4. Assume that π̃[f]− π[f] ∈ C0 where C0 is a closed convex set symmetric around the
origin. Let λ̂ minimize Lπ̃(λ)+ I∗C0

(λ). Then for an arbitrary Gibbs distribution qλ?

Lπ(λ̂)≤ Lπ(λ
?)+2I∗C0

(λ?) .

Proof. Setting Uπ̃(u) = IC0(u) and assuming π̃[f]−π[f] ∈C0, we obtain by Lemma 3.13

Lπ(λ̂)≤ Lπ(λ
?)+ I∗C0

(λ?)+ I∗C0
(−λ?) .

The result now follows by the symmetry of C0, which implies the symmetry of IC0 , which in turn
implies the symmetry of I∗C0

.
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5.1 Maxent with `1 Regularization

We now apply the foregoing general results to some specific cases of interest. To begin, we consider
the box indicator U(1) of Section 4. In this case it suffices to bound |π̃[ f j]−π[ f j]| and use Theorem 4
to obtain a bound on the true loss Lπ(λ̂). For instance, when the features are bounded, we can prove
the following:

Corollary 5. Assume that features f1, . . . , fn are bounded in [0,1]. Let δ > 0 and let λ̂ minimize
Lπ̃(λ) + β‖λ‖1 with β =

√
ln(2n/δ)/(2m). Then with probability at least 1− δ, for every Gibbs

distribution qλ? ,

Lπ(λ̂)≤ Lπ(λ
?)+
‖λ?‖1√

m

√
2ln(2n/δ) .

Proof. By Hoeffding’s inequality, for a fixed j, the probability that |π̃[ f j]− π[ f j]| exceeds β is at
most 2e−2β2m = δ/n. By the union bound, the probability of this happening for any j is at most δ.
The claim now follows immediately from Theorem 4.

Similarly, when the f j’s are selected from a possibly larger class of binary features with VC-
dimension d, we can prove the following corollary. This will be the case, for instance, when using
threshold features on k variables, a class with VC-dimension O(lnk).

Corollary 6. Assume that features are binary with VC-dimension d. Let δ > 0 and let λ̂ minimize
Lπ̃(λ)+β‖λ‖1 with

β=

√
d ln(em2/d)+ ln(1/δ)+ ln(4e8)

2m
.

Then with probability at least 1−δ, for every Gibbs distribution qλ? ,

Lπ(λ̂)≤ Lπ(λ
?)+
‖λ?‖1√

m

√
2[d ln(em2/d)+ ln(1/δ)+ ln(4e8)] .

Proof. Here, a uniform-convergence result of Devroye (1982), combined with Sauer’s Lemma, can
be used to argue that |π̃[ f j]−π[ f j]| ≤ β for all f j simultaneously with probability at least 1−δ.

The final result for `1-regularized maxent is motivated by the Central Limit Theorem approx-
imation |π̃[ f j]− π[ f j]| = O(σ[ f j]/

√
m), where σ[ f j] is the standard deviation of f j under π. We

bound σ[ f j] from above using McDiarmid’s inequality for the empirical estimate of variance

σ̃2[ f j] =
m

(
π̃[ f 2

j ]− π̃[ f j]
2
)

m−1
,

and then obtain non-asymptotic bounds on |π̃[ f j]−π[ f j]| by Bernstein’s inequality (for a complete
proof see Appendix A).

We believe that this type of result may in practice be more useful than Corollaries 5 and 6,
because it allows differentiation between features depending on empirical error estimates computed
from the sample data. Motivated by Corollary 7 below, in Section 8 we describe experiments that
use β j = β0σ̃[ f j]/

√
m, where β0 is a single tuning constant. This approach is equivalent to using

features scaled to the unit sample variance, that is, features f ′j(x) = f j(x)/σ̃[ f j], and a regularization
parameter independent of features, β′j = β0/

√
m, as is a common practice in statistics. Corollary 7

justifies this practice and also suggests replacing the sample variance by a slightly larger value
σ̃2[ f j]+O(1/

√
m).
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Corollary 7. Assume that features f1, . . . , fn are bounded in [0,1]. Let δ > 0 and let λ̂ minimize
Lπ̃(λ)+∑ j β j|λ j| with

β j =

√
2ln(4n/δ)

m
·

√

σ̃2[ f j]+

√
ln(2n/δ)

2m
+

ln(4n/δ)

18m
+

ln(4n/δ)

3m
.

Then with probability at least 1−δ, for every Gibbs distribution qλ? ,

Lπ(λ̂)≤ Lπ(λ
?)+2∑ j β j|λ?

j | .

Corollaries of this section show that the difference in performance between the distribution
computed by minimizing `1-regularized log loss and the best Gibbs distribution becomes small
rapidly as the number of samples m increases. Note that this difference depends only moderately on
the number or complexity of features.

Another feature of `1 regularization is that it induces sparsity (Tibshirani, 1996). Note that a
maxent solution λ̂ is “truly” sparse, that is, some of its components are “truly” zero, only if they
remain zero under perturbations in the regularization parameters β j and the expectations π̃[ f j]; in
other words, the fact that the components of λ̂ are zero is not just a lucky coincidence. To see
how `1 regularization induces this property, notice that its partial derivatives are discontinuous at
λ j = 0. As a consequence, if the regularized log loss is uniquely minimized at a point where the
j0-th component λ̂ j0 equals zero, then the optimal λ̂ j0 will remain zero even if the parameters β j and
the expectations π̃[ f j] are slightly perturbed.

5.2 Maxent with Smoothed `1 Regularization

While the guarantees for `1-style regularization have many favorable properties, the fact that the `1

norm is not strictly convex and its first derivative is discontinuous at zero may sometimes be prob-
lematic. The lack of strict convexity may lead to infinitely many λ’s optimizing the dual objective,2

and the discontinuous derivatives may cause problems in certain convex optimization algorithms.
To prevent these problems, smooth approximations of `1 regularization may be necessary.

In this section, we analyze a smooth approximation similar to one used by Dekel, Shalev-
Shwartz, and Singer (2003):

U(≈1)∗
π̃ (λ) = ∑ jα jβ j lncosh(λ j/α j) = ∑ jα jβ j ln

(
eλ j/α j + e−λ j/α j

2

)
.

Constants α j > 0 control the tightness of fit to the `1 norm while constants β j ≥ 0 control scaling.
Note that coshx≤ e|x| hence

U(≈1)∗
π̃ (λ)≤ ∑ jα jβ j lne|λ j|/α j = ∑ jα jβ j|λ j|/α j = ∑ j β j|λ j| . (17)

The potential corresponding to U(≈1)∗
π̃ is

U(≈1)

π̃ (u) = ∑ jα jβ jD

(
1+u j/β j

2

∥∥∥∥
1
2

)

2. This may only happen if features are not linearly independent.
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where D(a ‖ b) is a shorthand for D((a,1−a) ‖ (b,1−b)) (for a derivation of U(≈1)

π̃ see Appendix B).
This potential can be viewed as a smooth upper bound on the box potential U(1)

π̃ in the sense that the
gradient of U(≈1)

π̃ is continuous on the interior of the effective domain of U(1)

π̃ and its norm approaches

∞ on the border. Note that if |u j| ≤ β j for all j then D
( 1+u j/β j

2

∥∥ 1
2

)
≤ D

(
0

∥∥ 1
2

)
= ln2 and hence

U(≈1)

π̃ (u)≤ (ln2)∑ jα jβ j . (18)

Applying bounds (17) and (18) in Lemma 3.13 we obtain an analog of Theorem 4.

Theorem 8. Assume that for each j, |π̃[ f j]− π[ f j]| ≤ β j. Let λ̂ minimize Lπ̃(λ)+ U(≈1)∗
π̃ (λ). Then

for an arbitrary Gibbs distribution qλ?

Lπ(λ̂)≤ Lπ(λ
?)+2∑ j β j|λ?

j |+(2ln2)∑ jα jβ j .

To obtain guarantees analogous to those of `1-regularized maxent, it suffices to choose suffi-
ciently small α j. For example, in order to perform well relative to distributions qλ? with ∑ j β j|λ?

j | ≤
L, it suffices to choose α j = (εL)/(nβ j ln2) and obtain

Lπ(λ̂)≤ Lπ(λ
?)+2(1+ε)L .

For example, we can derive an analog of Corollary 5. We relax the constraint that features are
bounded in [0,1] and, instead, provide a guarantee in terms of the `∞ diameter of the feature space.

Corollary 9. Let D∞ = supx,x′∈X ‖f(x)− f(x′)‖∞ be the `∞ diameter of f(X ). Let δ,ε,L1 > 0 and

let λ̂ minimize Lπ̃(λ)+αβ∑ j lncosh(λ j/α) with

α=
εL1

n ln2
, β= D∞

√
ln(2n/δ)

2m
.

Then with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ?‖1≤L1

Lπ(λ
?)+

(1+ε)L1D∞√
m

·
√

2ln(2n/δ) .

Thus, maxent with smoothed `1 regularization performs almost as well as `1-regularized maxent,
provided that we specify an upper bound on the `1 norm of λ? in advance. As a result of removing
discontinuities in the gradient, smoothed `1 regularization lacks the sparsity inducing properties of
`1 regularization.

As α→ 0, the guarantees for smoothed `1 regularization converge to those for `1 regularization,
but at the price of reducing smoothness of the objective in some regions and increasing its flatness
in others. For many methods of convex optimization, this leads to a worse runtime. For example,
the number of iterations of gradient descent increases with an increasing condition number of the
Hessian of the objective, which in our case grows as α→ 0. Similarly, the number of iterations of
Newton’s method depends both on the condition number and the Lipschitz constant of the Hessian,
both of which increase as α→ 0. Thus, in choosing α, we trade an improvement in performance
guarantees for an increase in runtime.
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5.3 Maxent with `2 Regularization

In some cases, tighter performance guarantees are obtained by using confidence regions which take
the shape of a Euclidean ball. More specifically, we consider the potential and conjugate

U(
√

2)

π̃ (u) =

{
0 if ‖u‖2 ≤ β
∞ otherwise

, U(
√

2)∗
π̃ (λ) = β‖λ‖2 .

We first derive an `2 version of Hoeffding’s inequality (Lemma 10 below, proved in Appendix C)
and then use Theorem 4 to obtain performance guarantees.

Lemma 10. Let D2 = supx,x′∈X ‖f(x)− f(x′)‖2 be the `2 diameter of f(X ) and let δ> 0. Then with
probability at least 1−δ

‖π̃[f]−π[f]‖2 ≤
D2√
2m

[
1+

√
ln(1/δ)

]
.

Theorem 11. Let D2 be the `2 diameter of f(X ). Let δ > 0 and let λ̂ minimize Lπ̃(λ)+β‖λ‖2 with
β= D2

[
1+

√
ln(1/δ)

]
/
√

2m. Then with probability at least 1−δ, for every Gibbs distribution qλ? ,

Lπ(λ̂)≤ Lπ(λ
?)+
‖λ?‖2D2√

m

(√
2+

√
2ln(1/δ)

)
.

Unlike results of the previous sections, this bound does not explicitly depend on the number
of features and only grows with the `2 diameter of the feature space. The `2 diameter is small for
example when the feature space consists of sparse binary vectors.

An analogous bound can also be obtained for `1-regularized maxent in terms of the `∞ diameter
of the feature space (relaxing the requirement of Corollary 5 that features be bounded in [0,1]):

Lπ(λ̂)≤ Lπ(λ
?)+
‖λ?‖1D∞√

m

√
2ln(2n/δ) .

This bound increases with the `∞ diameter of the feature space and also grows slowly with the
number of features. It provides some insight for when we expect `1 regularization to perform better
than `2 regularization. For example, consider a scenario when the total number of features is large,
but the best approximation of π can be derived from a small number of relevant features. Increasing
the number of irrelevant features, we may keep ‖λ?‖1, ‖λ?‖2 and D∞ fixed while increasing D2 as
Ω(
√

n). The guarantee for `2-regularized maxent then grows as Ω(
√

n) while the guarantee for `1-
regularized maxent grows only asΩ(

√
lnn). Note, however, that in practice the distribution returned

by `2-regularized maxent may perform better than indicated by this guarantee. For a comparison of
`1 and `2

2 regularization in the context of logistic regression see Ng (2004).

5.4 Maxent with `2
2 Regularization

So far we have considered potentials that take the form of an indicator function or its smooth approx-
imation. In this section we present a result for the `2

2 potential U(2)

π̃ of Section 4 and the corresponding
conjugate U(2)∗

π̃ :

U(2)

π̃ (u) =
‖u‖2

2

2α
, U(2)∗

π̃ (λ) =
α‖λ‖2

2

2
.
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The potential U(2)

π̃ grows continuously with an increasing distance from empirical averages while
the conjugate U(2)∗

π̃ corresponds to `2
2 regularization.

In the case of `2
2-regularized maxent it is possible to derive guarantees on the expected per-

formance in addition to probabilistic guarantees. However, these guarantees require an a priori
bound on ‖λ?‖2 and thus are not entirely uniform. Our expectation guarantees are analogous to
those derived by Zhang (2005) for the conditional case. However, we are able to obtain a better
multiplicative constant.

Note that we could derive expectation guarantees by simply applying Lemma 3.13 and taking
the expectation over a random sample:

Lπ(λ̂)≤ Lπ(λ
?)+
‖π[f]− π̃[f]‖2

2

α
+α‖λ?‖2

2 (19)

E
[
Lπ(λ̂)

]
≤ Lπ(λ

?)+
trΣ
αm

+α‖λ?‖2
2 .

Here, Σ is the covariance matrix of features with respect to π and tr denotes the trace of a matrix.
We improve this guarantee by using Lemma 3.14 with qλ? chosen to minimize Lπ(λ)+U(2)∗

π̃ (λ), and
explicitly bounding (λ?− λ̂) · (π[f]− π̃[f]) using a stability result similarly to Zhang (2005).

Lemma 12. Let λ̂ minimize Lπ̃(λ)+α‖λ‖2
2/2 where α> 0. Then for every qλ?

Lπ(λ̂)≤ Lπ(λ
?)+
‖π[f]− π̃[f]‖2

2

α
+
α‖λ?‖2

2

2
.

Proof of Lemma 12 is given in Appendix D. Lemma 12 improves on (19) in the leading constant
of ‖λ?‖2

2 which is α/2 instead of α. Taking the expectation over a random sample and bounding the
trace of Σ in terms of the `2 diameter (see Lemma 22 of Appendix C), we obtain an expectation
guarantee. We can also use Lemma 10 to bound ‖π[f]− π̃[f]‖2

2 with high probability, and obtain a
probabilistic guarantee. The two results are presented in Theorem 13 with the tradeoff between the
guarantees controlled by the parameter s.

Theorem 13. Let D2 be the `2 diameter of f(X ) and let L2,s > 0. Let λ̂ minimize the `2
2-regularized

log loss Lπ̃(λ)+α‖λ‖2
2/2 with α= sD2/(L2

√
m). Then

E
[
Lπ(λ̂)

]
≤ inf
‖λ?‖2≤L2

Lπ(λ
?)+

L2D2√
m
· s+ s−1

2

and if δ> 0 then with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ?‖2≤L2

Lπ(λ
?)+

L2D2√
m
· s+ s−1

(
1+

√
ln(1/δ)

)2

2
.

The bounds of Theorem 13 have properties similar to probabilistic guarantees of `2-regularized
maxent. As mentioned earlier, they differ in the crucial fact that the norm ‖λ?‖2 needs to be bounded
a priori by a constant L2. It is this constant rather than a possibly smaller norm ‖λ?‖2 that enters the
bound.

Note that bounds of this section generalize to arbitrary quadratic potentials Uπ̃(u) = u>A−1u/2
and respective conjugates U∗π̃(λ) = λ>Aλ/2 where A is a symmetric positive definite matrix. Apply-
ing the transformation

f′(x) = α1/2A−1/2f(x) , λ
′ = α−1/2A1/2

λ
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where A1/2 is the unique symmetric positive definite matrix such that A1/2A1/2 = A, the guarantees
for quadratic-regularized maxent in terms of f(X ) and λ? reduce to the guarantees for `2

2-regularized
maxent in terms of f′(X ) and λ?′.

5.5 Maxent with `2 Regularization versus `2
2 Regularization

In the previous two sections we have seen that performance guarantees for maxent with `2 and `2
2

regularization differ whenever we require that β and α be fixed before running the algorithm. We
now show that if all possible values of β and α are considered then the sets of models generated by
the two maxent versions are the same.

Let Λ(
√

2),β and Λ(2),α denote the respective solution sets for maxent with `2 and `2
2 regularization:

Λ
(
√

2),β = arg min
λ∈Rn

[Lπ̃(λ)+β‖λ‖2] (20)

Λ
(2),α = arg min

λ∈Rn

[
Lπ̃(λ)+α‖λ‖2

2/2
]

. (21)

If β,α > 0 then Λ(
√

2),β and Λ(2),α are non-empty because the objectives are lower semi-continuous
and approach infinity as ‖λ‖2 increases. For β= 0 and α= 0, Equations (20) and (21) reduce to the
basic maxent. Thus, Λ(

√
2),0 and Λ(2),0 contain the λ’s for which qλ[f] = π̃[f]. This set will be empty if

the basic maxent solutions are attained only in a limit.

Theorem 14. Let Λ(
√

2) =
S

β∈[0,∞]Λ
(
√

2),β and Λ(2) =
S

α∈[0,∞]Λ
(2),α. Then Λ(

√
2) = Λ(2).

Proof. First note that Λ(
√

2),∞ =Λ(2),∞ = {0}. Next, we will show that Λ(
√

2) \{0}=Λ(2) \{0}. Taking
derivatives in Equations (20) and (21), we obtain that λ ∈ Λ(

√
2),β \{0} if and only if

λ 6= 0 and ∇Lπ̃(λ)+βλ/‖λ‖2 = 0 .

Similarly, λ ∈ Λ(2),α \{0} if and only if

λ 6= 0 and ∇Lπ̃(λ)+αλ= 0 .

Thus, any λ ∈ Λ(
√

2),β \{0} is also in the set Λ(2),β/‖λ‖2 \{0}, and conversely any λ ∈ Λ(2),α \{0} is also
in the set Λ(

√
2),α‖λ‖2 \{0}.

The proof of Theorem 14 rests on the fact that the contours of regularization functions ‖λ‖2

and ‖λ‖2
2 coincide. We could easily extend the proof to include the equivalence of Λ(

√
2), Λ(2) with

the set of solutions to min{Lπ̃(λ) : ‖λ‖2 ≤ 1/γ} where γ ∈ [0,∞]. Similarly, one could show the
equivalence of the solutions for regularizations β‖λ‖1, α‖λ‖2

1/2 and I(‖λ‖1 ≤ 1/γ).
The main implication of Theorem 14 is for maxent density estimation with model selection,

for example, by minimization of held-out or cross-validated empirical error. In those cases, maxent
versions with `2, `2

2 (and an `2-ball indicator) regularization yield the same solution. Thus, we prefer
to use the computationally least intensive method. This will typically be `2

2-regularized maxent
whose potential and regularization are smooth.

The solution sets Λ(
√

2),β and Λ(2),α differ in their “sparsity” properties. We put the sparsity inside
quotation marks because there are only two sparsity levels for `2 regularization: either all coordi-
nates of λ remain zero under perturbations, or none of them. This is because the sole discontinuity
of the gradient of the `2-regularized log loss is at λ = 0. On the other hand, `2

2 regularization is
smooth and therefore does not induce sparsity.
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5.6 Maxent with `1+ `2
2 Regularization

In this section, we consider regularization that has both `1-style and `2
2-style terms. To simplify the

discussion, we do not distinguish between coordinates and use a weighted sum of the `1 norm and
the square of the `2 norm:

U(1+2)∗
π̃ (λ) = β‖λ‖1 +

α‖λ‖2
2

2
, U(1+2)

π̃ (u) = ∑ j

∣∣|u j|−β
∣∣2
+

2α
.

Here α and β are positive constants, and |x|+ = max{0,x} denotes the positive part of x. For a
derivation of U(1+2)

π̃ see Appendix E.
For this type of regularization we are able to prove both probabilistic and expectation guarantees.

Using similar techniques as in the previous sections we can derive, for example, the following
theorem.

Theorem 15. Let D2,D∞ be the `2 and `∞ diameters of f(X ) respectively. Let δ,L2 > 0 and let λ̂
minimize Lπ̃(λ) + β‖λ‖1 + α‖λ‖2

2/2 with α = (D2 min{1/
√

2,
√

mδ})/(2L2
√

m) and β =
D∞

√
ln(2n/δ)/(2m). Then

E
[
Lπ(λ̂)

]
≤ inf
‖λ?‖2≤L2

[
Lπ(λ

?)+
D∞‖λ?‖1√

m

√
2ln(2n/δ)

]
+

D2L2√
m
·min

{
1√
2
,
√

mδ

}

and with probability at least 1−δ

Lπ(λ̂)≤ inf
‖λ?‖2≤L2

[
Lπ(λ

?)+
D∞‖λ?‖1√

m

√
2ln(2n/δ)

]
+

D2L2√
m
· 1

2
min

{
1√
2
,
√

mδ

}
.

Proof. We only need to bound U(1+2)

π̃ (π̃[f]− π[f]) and its expectation and use Lemma 3.14. By
Hoeffding’s inequality and the union bound, the potential is zero with probability at least 1− δ,
immediately yielding the second claim. Otherwise,

U(1+2)

π̃ (π̃[f]−π[f])≤ ‖π̃[f]−π[f]‖
2
2

2α
≤ D2

2

2α

hence E
[
U(1+2)

π̃ (π̃[f]−π[f])
]
≤ (δD2

2)/(2α). On the other hand, we can bound the trace of the feature
covariance matrix by Lemma 22 of Appendix C and obtain

E
[
U(1+2)

π̃ (π̃[f]−π[f])
]
≤ E

[
‖π̃[f]−π[f]‖2

2

]

2α
=

trΣ
2mα

≤ D2
2

4mα
.

Hence

E
[
U(1+2)

π̃ (π̃[f]−π[f])
]
≤ D2

2

2mα
·min

{
1
2
,mδ

}

and the first claim follows.

Setting δ = s/m, we bound the difference in performance between the maxent distribution and
any Gibbs distribution of a bounded weight vector by O

((
D∞‖λ?‖1

√
ln(2mn/s)+D2L2

√
s
)
/
√

m
)
.

Now the constant s can be tuned to achieve the optimal tradeoff between D∞‖λ?‖1 and D2L2. Notice
that the sparsity inducing properties of `1 regularization are preserved in `1+ `2

2 regularization,
because the partial derivatives of β‖λ‖1 +α‖λ‖2

2/2 are discontinuous at zero.

1235
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5.7 Extensions to Other Regularization Types

Regularizations explored in previous sections are derived from `1 and `2 norms. However, perfor-
mance guarantees easily extend to arbitrary norms using the corresponding concentration bounds
and conjugacy relationships in the spirit of (Altun and Smola, 2006).

For instance, for an arbitrary norm ‖·‖B∗ , the regularization function β‖λ‖B∗ corresponds to the
potential IB(u) where B = {‖u‖B ≤ β} and ‖·‖B is the dual norm of ‖·‖B∗ . Similarly, for a norm
‖·‖A∗ , the regularization function α‖λ‖2

A∗/2 corresponds to the potential ‖u‖2
A/(2α) where ‖·‖A

is the dual norm of ‖·‖A∗ . For the combined regularization U∗π̃(λ) = β‖λ‖B∗ +α‖λ‖2
A∗/2, we can

perform a similar analysis as for `1+ `2
2 regularization using the bound

Uπ̃(u)≤min{IB(u),‖u‖2
A/(2α)} .

Of course, the framework presented here is not limited to regularization functions derived from
norms; however, the corresponding concentration bounds are typically less readily available.

6. Selective-Update Algorithm

In the previous section, we have discussed performance bounds of various types of regularization.
Now we turn our attention to algorithms for solving generalized maxent problems. In the present
and the following section, we propose two algorithms for generalized maxent with complete proofs
of convergence. Our algorithms cover a wide class of potentials including the basic, box and `2

2

potential. The `2-ball potential U(
√

2)

π̃ does not fall in this class, but we show that the corresponding
maxent problem can be reduced and our algorithms can still be applied.

There are a number of algorithms for finding the basic maxent distribution, especially iterative
scaling and its variants (Darroch and Ratcliff, 1972; Della Pietra et al., 1997). The Selective-Update
algorithm for MaximuM EnTropy (SUMMET) described in this section modifies one weight λ j

at a time, as explored by Collins, Schapire, and Singer (2002) in a similar setting. This style of
coordinate-wise descent is convenient when working with a very large (or infinite) number of fea-
tures. The original Darroch and Ratcliff algorithm also allows single-coordinate updates. Goodman
(2002) observes that this leads to a much faster convergence than with the parallel version. However,
updates are performed cyclically over all features, which renders the algorithm less practical with
a large number of irrelevant features. Similarly, the sequential-update algorithm of Krishnapuram
et al. (2005) requires a visitation schedule that updates each feature weight infinitely many times.

SUMMET differs since the weight to be updated is selected independently in each iteration.
Thus, the features whose optimal weights are zero may never be updated. This approach is particu-
larly useful in the context of `1-regularized maxent which often yields sparse solutions.

As explained in Section 4, the goal of the algorithm is to produce a sequence λ1,λ2, . . . maxi-
mizing the objective function Q in the limit. In this and the next section we assume that the potential
U is decomposable as defined below:

Definition 16. A potential U : R
n→ (−∞,∞] is called decomposable if it can be written as a sum of

coordinate potentials U(u) = ∑ j U j(u j), each of which is a closed proper convex function bounded
from below.

As a consequence of this definition, the conjugate potential U∗ equals the sum of conjugate
coordinate potentials U∗j , by Equation (4), and U∗j(0) = supu j

[−U j(u j)] is finite for all j.
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Input: finite domain X , default estimate q0

features f1, . . . , fn where f j : X → [0,1], f j(X ) 6= {0} and f j(X ) 6= {1}
decomposable potential U where domU j ∩ [0,1] 6= {0} and domU j ∩ [0,1] 6= {1}

Output: λ1,λ2, . . . maximizing Q

Let λ1 = 0
For t = 1,2, . . . :

• let ( j?,δ?) = argmax
( j,δ)

[
− ln

(
1+(eδ−1)qλ[ f j]

)
−U∗j(−λ j−δ)+U∗j(−λ j)

]

• λt+1, j =

{
λt, j? +δ? if j = j?

λt, j otherwise

Figure 2: Selective-Update algorithm for MaximuM EnTropy (SUMMET).

Throughout this section we assume that values of features f j lie in the interval [0,1] and that
features and coordinate potentials are non-degenerate in the sense that ranges f j(X ) and intersec-
tions domU j ∩ [0,1] differ from {0} and {1}. In Appendix G we show that a generalized maxent
problem with a decomposable potential can always be reduced to the non-degenerate form.

Our algorithm works by iteratively adjusting the single weight λ j that maximizes (an approx-
imation of) the change in Q. To be more precise, suppose we add δ to λ j. Let λ′ be the resulting
vector of weights, identical to λ except that λ′j = λ j +δ. Then the change in the objective is

Q(λ′)−Q(λ) =− lnZλ′−U∗(−λ′)+ lnZλ+U∗(−λ)
=− ln(qλ

[
eδ f j

]
)−∑ j′ [U

∗
j′(−λ′j′)−U∗j′(−λ j′)] (22)

≥− ln(qλ
[
1+(eδ−1) f j

]
)−U∗j(−λ j−δ)+U∗j(−λ j) (23)

=− ln
(
1+(eδ−1)qλ[ f j]

)
−U∗j(−λ j−δ)+U∗j(−λ j) . (24)

Equation (22) uses
Zλ′ = ∑

x∈X
q0(x)e

λ·f(x)+δ j f j(x) = Zλ ∑
x∈X

qλ(x)e
δ j f j(x) . (25)

Equation (23) is because eδx ≤ 1+(eδ−1)x for x ∈ [0,1] by convexity.
Let Fj(λ,δ) denote the expression in (24):

Fj(λ,δ) =− ln
(
1+(eδ−1)qλ[ f j]

)
−U∗j(−λ j−δ)+U∗j(−λ j) .

Our algorithm, shown in Figure 2, on each iteration, maximizes this lower bound over all choices
of ( j,δ) and for the maximizing j adds the corresponding δ to λ j. We assume that for each j the
maximizing δ is finite. This will be the case if the potential and features are non-degenerate (see
Appendix G). Note that Fj(λ,δ) is strictly concave in δ so we can use any of a number of search
methods to find the optimal δ.

Solving `1-Regularized Maxent. For maxent with box constraints (which subsumes the basic
maxent), the optimizing δ can be derived explicitly. First note that

F (1)

j (λ,δ) =− ln
(
1+(eδ−1)qλ[ f j]

)
−U(1)∗

j (−λ j−δ)+U(1)∗
j (−λ j)

=− ln
(
1+(eδ−1)qλ[ f j]

)
+δπ̃[ f j]−β j(|λ j +δ|− |λ j|)
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Input: finite domain X , default estimate q0

examples x1, . . . ,xm ∈ X
features f1, . . . , fn where f j : X → [0,1], f j(X ) 6= {0} and f j(X ) 6= {1}
non-negative regularization parameters β1, . . . ,βn where β j > 0 if π̃[ f j] ∈ {0,1}

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑ j β j|λ j|
Let λ1 = 0
For t = 1,2, . . . :

• ( j?,δ?) = argmax
( j,δ)

[
− ln

(
1+(eδ−1)qt [ f j]

)
+ π̃[ f j]δ−β j(|λt, j +δ|− |λt, j|)

]

for each j it suffices to consider the following possibilities (whenever defined)

δ+ = ln

(
(π̃[ f j]−β j)(1−qt [ f j])

(1− π̃[ f j]+β j)qt [ f j]

)
, δ0 =−λt, j , δ− = ln

(
(π̃[ f j]+β j)(1−qt [ f j])

(1− π̃[ f j]−β j)qt [ f j]

)

and choose δ+ if λt, j +δ+ > 0, δ− if λt, j +δ−< 0, and δ0 otherwise

• λt+1, j =

{
λt, j? +δ? if j = j?

λt, j otherwise

Figure 3: Selective-update algorithm for `1-regularized maxent (`1-SUMMET).

since

U(1)∗
j (−µ j) = U(1)∗

π̃, j (µ j)−µ jπ̃[ f j] = β j|µ j|−µ jπ̃[ f j] .

The optimum δ can be obtained for each j via a simple case analysis on the sign of λ j + δ. In
particular, using calculus, we see that we only need consider the possibility that δ=−λ j or that δ is
equal to

ln

(
(π̃[ f j]−β j)(1−qλ[ f j])

(1− π̃[ f j]+β j)qλ[ f j]

)
or ln

(
(π̃[ f j]+β j)(1−qλ[ f j])

(1− π̃[ f j]−β j)qλ[ f j]

)

where the first and second of these can be valid only if λ j +δ≥ 0 and λ j +δ≤ 0, respectively. The
complete algorithm, `1-SUMMET, is shown in Figure 3.

Solving `2-Regularized Maxent. The `2-ball potential U(
√

2)

π̃ is not decomposable. In order to
reduce `2-regularized maxent to maxent with a decomposable potential, we replace the constraint
‖π̃[f]− p[f]‖2 ≤ β by ‖π̃[f]− p[f]‖2

2 ≤ β2 which yields an equivalent primal:

P ′ : min
p∈∆

D(p ‖ q0) subject to ‖π̃[f]− p[f]‖2
2 ≤ β2 .

If β> 0 then, by the Lagrange duality and Slater’s conditions (Boyd and Vandenberghe, 2004), there
exists µ≥ 0 such that the solution of P ′ is the same as the solution of

P ′′ : min
p∈∆

[
D(p ‖ q0)+µ

(
‖π̃[f]− p[f]‖2

2−β2)] .

The sought-after µ is the one which maximizes the value of P ′′. Since the value of P ′′ is concave in µ,
we can employ a range of search techniques to find the optimal µ, using SUMMET (or PLUMMET
of the next section) with `2

2 regularization in each iteration.
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6.1 Convergence

In order to prove convergence of SUMMET, we will measure its progress towards solving the
primal and dual. One measure of progress is the difference between the primal evaluated at qλ and
the dual evaluated at λ:

P(qλ)−Q(λ) = [D(qλ ‖ q0)+U(qλ[f])]− [− lnZλ−U∗(−λ)]
= qλ[λ · f− lnZλ]+U(qλ[f])+qλ[lnZλ]+U∗(−λ)
= U(qλ[f])+U∗(−λ)+λ ·qλ[f] .

By Theorem 1, this difference is non-negative and equals zero exactly when qλ solves primal and λ
solves the dual.

For a decomposable potential, Fenchel’s inequality in each coordinate implies that the difference
is zero exactly when

U j(qλ[ f j])+U∗j(−λ j)+λ jqλ[ f j] = 0

for all j. This characterization corresponds to the Kuhn-Tucker conditions (Rockafellar, 1970) in
the case when coordinate potentials express equality and inequality constraints.

For many potentials of interest, including equality and inequality constraints, the difference
between primal and dual may remain infinite throughout the computation. Therefore, we propose
to use an auxiliary function as a surrogate for this difference. The auxiliary function is defined,
somewhat non-standardly, as follows:

Definition 17. A function A : R
n×R

n→ (−∞,∞] is called an auxiliary function if

A(λ,a) = U(a)+U∗(−λ)+λ ·a+B(a ‖ qλ[f])

where B(· ‖ ·) : R
n×R

n→ (−∞,∞] satisfies conditions (B1) and (B2).

The interpretation of an auxiliary function as a surrogate for the difference between primal
and dual objectives is novel. Unlike previous applications of auxiliary functions (Della Pietra et al.,
1997, 2001; Collins et al., 2002), we do not assume that A(λ,a) bounds a change in the dual objective
and we also make no continuity assumptions. The reason for the former is technical: we need to
allow a more flexible relationship between A and a change in the dual objective to accommodate
algorithms both with single-coordinate and parallel updates. The absence of continuity assumptions
is, however, crucial in order to allow arbitrary (decomposable) potentials. The continuity is replaced
by the property (B2). On the other hand, our form of auxiliary function is more restrictive as the
only flexibility is in choosing B, which is a function of qλ[f] rather than qλ.

The auxiliary function is always non-negative since U(a) + U∗(−λ) ≥ −λ · a by Fenchel’s
inequality and hence A(λ,a) ≥ B(a ‖ qλ[f]) ≥ 0. Moreover, if A(λ,a) = 0 then qλ[f] = a and
A(λ,a) = P(qλ)−Q(λ) = 0, that is, by maxent duality, qλ solves the primal and λ solves the dual.

It turns out, as we show in Lemma 19 below, that the optimality property generalizes to the case
when A(λt ,at)→ 0 provided that Q(λt) has a finite limit. In particular, it suffices to find a suitable
sequence of at’s for λt’s produced by an algorithm to show its convergence. Note that the optimality
in the limit trivially holds when λt’s and at’s come from a compact set, because A(λ̂, â) = 0 at a
cluster point of {(λt ,at)} by the lower semi-continuity of U and U∗.

In a general case, we follow the technique used by Della Pietra, Della Pietra, and Lafferty
(1997) for the basic maxent: we consider a cluster point q̂ of {qλt} and show that (i) q̂ is primal
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feasible and (ii) the difference P(q̂)−Q(λt) approaches zero. In the case of the basic maxent,
A(λ,a) = B(π̃[f] ‖ qλ[f]) whenever finite. Thus, (i) is obtained by (B2), and noting that P(q̂)−
Q(λ) = D(q̂ ‖ qλ) yields (ii). For a general potential, however, claims (i) and (ii) seem to require
a novel approach. In both steps, we use decomposability and the technical Lemma 18 (proved in
Appendix F). Thus compactness or decomposability seem to be crucial in the present approach.

Lemma 18. Let Ur be a decomposable potential relative to a feasible point r. Let S = domUr =
{u ∈ R

n : Ur(u) <∞} and Tc = {λ ∈ R
n : U∗r (λ) ≤ c}. Then there exists αc ≥ 0 such that λ ·u ≤

αc‖u‖1 for all u ∈ S,λ ∈ Tc.

Lemma 19. Let λ1,λ2, . . . ∈ R
n, a1,a2, . . . ∈ R

n be sequences such that Q(λt) has a finite limit and
A(λt ,at)→ 0 as t→∞. Then limt→∞Q(λt) = supλQ(λ).

Proof. Let qt denote qλt . Distributions qt come from the compact set ∆, so we can choose a con-
vergent subsequence. We index this subsequence by τ and denote its limit by q̂. We assume that
the subsequence was chosen in such a manner that values A(λτ,aτ) and Q(λτ) are finite. We do
this without loss of generality because limits of A(λτ,aτ) and Q(λτ) are finite. We will show that
limτ→∞Q(λτ) = supλQ(λ). The result will then follow since limτ→∞Q(λτ) = limt→∞Q(λt).

As noted earlier, A(λ,a) ≥ B(a ‖ qλ[f]). Since B(aτ ‖ qτ[f]) is non-negative and A(λτ,aτ)→
0, we obtain B(aτ ‖ qτ[f])→ 0. Thus, aτ → q̂[f] by the property (B2). Rewriting A in terms of
the potential and the conjugate potential relative to an arbitrary feasible point r (which exists by
assumption), we obtain

A(λτ,aτ) = Ur(r[f]−aτ)+U∗r (λτ)−λτ · (r[f]−aτ)+B(aτ ‖ qτ[f]) . (26)

Rearrange terms, noting that A(λτ,aτ)→ 0 and B(aτ ‖ qτ[f])→ 0:

Ur(r[f]−aτ) =−U∗r (λτ)+λτ · (r[f]−aτ)+o(1) . (27)

We use Equation (27) to prove first the feasibility and then the optimality of q̂.

Feasibility. We bound the right hand site of Equation (27) and take limits to show that Ur(r[f]−
q̂[f]) is also finite. The first term is bounded by Fenchel’s inequality:

−U∗r (λτ)≤−λτ ·0+Ur(0) = Ur(0) , (28)

which is finite by the feasibility of r. In order to bound λτ · (r[f]− aτ), the second term of Equa-
tion (27), we use Lemma 18. First note that r[f]− aτ is a feasible point of Ur for all τ by Equa-
tion (26) and the finiteness of A(λτ,aτ). Next, from Equation (11):

U∗r (λτ) =−Q(λτ)−D(r ‖ qτ)+D(r ‖ q0) ,

which is bounded above by some constant c independent of τ because −Q(λτ) has a finite limit
and is thus bounded above, −D(r ‖ qτ) is non-positive, and D(r ‖ q0) is a finite constant. Hence by
Lemma 18

λτ · (r[f]−aτ)≤ αr‖r[f]−aτ‖1 (29)

for some constant αr independent of τ. Plugging Equations (28) and (29) in Equation (27) and
taking limits, we obtain by lower semi-continuity of Ur

Ur(r[f]− q̂[f])≤ Ur(0)+αr‖r[f]− q̂[f]‖1 .

Thus q̂ is primal feasible.
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Optimality. Since the foregoing holds for any primal feasible r, we can set r = q̂ and obtain

Uq̂(q̂[f]−aτ) =−U∗q̂(λτ)+λτ · (q̂[f]−aτ)+o(1) (30)

≤−U∗q̂(λτ)+αq̂‖q̂[f]−aτ‖1 +o(1) . (31)

Equation (30) follows from Equation (27). Equation (31) follows from Equation (29). Taking limits,
we obtain

Uq̂(0)≤ lim
τ→∞

[
−U∗q̂(λτ)

]
. (32)

Now we are ready to show that Q(λτ) maximizes the dual in the limit:

P(q̂) = D(q̂ ‖ q0)+Uq̂(0)

≤ D(q̂ ‖ q0)+ lim
τ→∞

[
−U∗q̂(λτ)

]
(33)

= lim
τ→∞

[
D(q̂ ‖ q0)−D(q̂ ‖ qτ)−U∗q̂(λτ)

]
(34)

= lim
τ→∞

Q(λτ) . (35)

Equation (33) follows from Equation (32). Equation (34) follows from the continuity of relative
entropy since qτ→ q̂. Equation (35) follows from Equation (11). Finally, combining Equations (33–
35), we obtain by maxent duality that q̂ minimizes the primal and λτ maximizes the dual as τ→∞.

Theorem 20. SUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt) = sup
λ

Q(λ) .

Proof. It suffices to show that Q(λt) has a finite limit and present an auxiliary function A and a
sequence a1,a2, . . . for which A(λt ,at)→ 0.

Note that Q(λ1) = Q(0) = −U∗(0) is finite by the decomposability of the potential, and Q
is bounded above by the feasibility of the primal. Let Ft, j = maxδFj(λt ,δ). Note that Ft, j is non-
negative since Fj(λt ,0) = 0. Since Ft, j bounds change in the objective from below, the dual objective
Q(λt) is non-decreasing and thus has a finite limit.

In each step
Q(λt+1)−Q(λt)≥ Ft, j ≥ 0 .

Since Q has a finite limit, differences Q(λt+1)−Q(λt) converge to zero and thus Ft, j → 0. We use
Ft, j to define an auxiliary function. To begin, we rewrite Ft, j using Fenchel’s duality:

Ft, j = max
δ

[
− ln(1+(eδ−1)qt [ f j])−U∗j(−λt, j−δ)+U∗j(−λt, j)

]

= max
δ

[
− ln

{(
1−qt [ f j]

)
e0·δ+qt [ f j]e

1·δ}−U′∗j (−δ)
]
+U∗j(−λt, j) (36)

= min
a′,a

[
D

(
(a′,a)

∥∥ (1−qt [ f j],qt [ f j])
)
+U′j(0 ·a′+1 ·a)

]
+U∗j(−λt, j) (37)

= min
0≤a≤1

[
D(a ‖ qt [ f j])+U j(a)+λt, j ·a

]
+U∗j(−λt, j) . (38)
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Input: finite domain X , default estimate q0

features f1, . . . , fn where f j : X → [0,1], f j(X ) 6= {0} and ∑ j f j(x)≤ 1 for all x ∈ X
decomposable potential U where domU j ∩ [0,1] 6= {0}

Output: λ1,λ2, . . . maximizing Q(λ)

Let λ1 = 0
For t = 1,2, . . . :
• for each j, let

δ j = argmax
δ

[
−qt [ f j](e

δ−1)−U∗j(−λt, j−δ)+U∗j(−λt, j)
]

• update λt+1 = λt +δ

Figure 4: ParalleL-Update algorithm for MaximuM EnTropy (PLUMMET).

In Equation (36), we rearranged terms inside the logarithm so they would take the form of a partition
function. We write U′∗j (u) for U∗j(u−λt, j). In Equation (37), we applied Theorem 1, noting that the
conjugate of the log partition function is the relative entropy (see Section 3). The value of relative
entropy D((a′,a) ‖ (1−qt [ f j],qt [ f j])) is infinite whenever (a′,a) is not a probability distribution, so
it suffices to consider pairs where 0≤ a≤ 1 and a′ = 1−a. In Equation (38), we use D(a ‖ qt [ f j])
as a shorthand for D((1−a,a) ‖ (1−qt [ f j],qt [ f j])). We use Equation (3) to convert U′j into U j:

U′j(0 ·a′+1 ·a) = U′j(a) = U j(a)+λt, j ·a .

The minimum in Equation (38) is always attained because a comes from a compact set and the
minimized expression is lower semi-continuous in a. We use at, j to denote a value attaining this
minimum. Thus

Ft, j = U j(at, j)+U∗j(−λt, j)+λt, jat, j +D(at, j ‖ qt [ f j]) .

Note that D(a ‖ b) satisfies conditions (B1) and (B2) hence the sum B(a ‖ b) = ∑ j D(a j ‖ b j) also
satisfies (B1) and (B2). We use this to derive the auxiliary function

A(λ,a) = ∑ j

[
U j(a j)+U∗j(−λ j)+λ ja j +D(a j ‖ qλ[ f j])

]
.

Now A(λt ,at) = ∑ j Ft, j→ 0, and the result follows by Lemma 19.

7. Parallel-Update Algorithm

Much of this paper has tried to be relevant to the case in which we are faced with a very large
number of features. However, when the number of features is relatively small, it may be reasonable
to maximize Q using an algorithm that updates all features simultaneously on every iteration. In this
section, we describe a variant of generalized iterative scaling (Darroch and Ratcliff, 1972) applicable
to generalized maxent with an arbitrary decomposable potential and prove its convergence. Note
that gradient-based or Newton methods may be faster in practice.

Throughout this section, we make the assumption (without loss of generality) that, for all x∈ X ,
f j(x) ≥ 0 and ∑ j f j(x) ≤ 1 and features and coordinate potentials are non-degenerate in the sense
that feature ranges f j(X ) and intersections domU j ∩ [0,1] differ from {0}. Note that this differs
from the notion of degeneracy in SUMMET.
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Input: finite domain X , default estimate q0

examples x1, . . . ,xm ∈ X
features f1, . . . , fn where f j : X → [0,1], f j(X ) 6= {0} and ∑ j f j(x)≤ 1 for all x ∈ X
nonnegative regularization parameters β1, . . . ,βn where β j > 0 if π̃[ f j] = 0

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑ j β j|λ j|
Let λ1 = 0
For t = 1,2, . . . :
• for each j, let

δ j = argmax
δ

[
−qt [ f j](e

δ−1)+δπ̃[ f j]−β j(|λt, j +δ|− |λt, j|)
]

it suffices to consider the following possibilities (whenever defined)

δ+ = ln

(
π̃[ f j]−β j

qt [ f j]

)
, δ0 =−λt, j , δ− = ln

(
π̃[ f j]+β j

qt [ f j]

)

and choose δ+ if λt, j +δ+ > 0, δ− if λt, j +δ−< 0, and δ0 otherwise

• update λt+1 = λt +δ

Figure 5: Parallel-update algorithm for `1-regularized maxent (`1-PLUMMET).

Similarly to SUMMET, our ParalleL-Update algorithm for MaximuM EnTropy (PLUM-
MET) is based on an approximation of the change in the objective function Q, in this case the
following, where λ′ = λ+δ:

Q(λ′)−Q(λ) =− lnZλ′−U∗(−λ′)+ lnZλ+U∗(−λ)
=− lnqλ

[
eδ·f

]
−U∗(−λ−δ)+U∗(−λ) (39)

≥∑
j

[
−qλ[ f j](e

δ j −1)−U∗j(−λ j−δ j)+U∗j(−λ j)
]

. (40)

Equation (39) uses Equation (25). For Equation (40), note first that if x j ∈ R and p j ≥ 0 with
∑ j p j ≤ 1 then

exp
(
∑ j p jx j

)
−1≤ ∑ j p j(e

x j −1) .

(See Collins, Schapire, and Singer, 2002, for a proof.) Thus,

lnqλ
[
exp

(
∑ j δ j f j

)]
≤ lnqλ

[
1+∑ j f j(e

δ j −1)
]

= ln
(
1+∑ j qλ[ f j](e

δ j −1)
)

≤ ∑ j qλ[ f j](e
δ j −1)

since ln(1+ x)≤ x for all x >−1.
PLUMMET, shown in Figure 4, on each iteration, maximizes Equation (40) over all choices

of the δ j’s. For the basic potential U(0), this algorithm reduces to generalized iterative scaling
of Darroch and Ratcliff (1972). For `1-style regularization, the maximizing δ can be calculated
explicitly (see algorithm `1-PLUMMET in Figure 5). Again, it turns out that all the components of
the maximizing δ are finite as long as features and potentials are non-degenerate (see Appendix G).
As before, we can prove the convergence of PLUMMET, and thus also of `1-PLUMMET.
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Theorem 21. PLUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt) = sup
λ

Q(λ) .

Proof. The proof mostly follows the same lines as the proof of Theorem 20. Here we sketch the
main differences.

Let qt denote qλt and Ft denote the lower bound on the change in the objective:

Ft = sup
δ

∑
j

[
−qt [ f j](e

δ j −1)−U∗j(−λt, j−δ j)+U∗j(−λt, j)
]

.

As before, Q(λt) has a finite limit and Ft → 0. We can rewrite Ft using Fenchel’s duality:

Ft = sup
δ

∑
j

[
−qt [ f j](e

δ j −1)−U′∗j (−δ j)
]
+U∗(−λt) (41)

= inf
a≥0

∑
j

[
D̃(a j ‖ qt [ f j])+U′j(a j)

]
+U∗(−λt) (42)

= inf
a≥0

[
D̃(a ‖ qt [f])+U(a)+λt ·a+U∗(−λt)

]
. (43)

In Equation (41) we write U′∗j (u) for U∗j(u−λt, j). In Equation (42) we use Theorem 1, noting that
the conjugate of u0(eu− 1) is the unnormalized relative entropy. In Equation (43) we convert U′j
back into U j and take the sum over j. Note that D̃(a ‖ qt [f]) increases without bound if ‖a‖∞→∞
and, by Fenchel’s inequality,

U(a)+λt ·a+U∗(−λt)≥ 0

so in Equation (43) it suffices to take an infimum over the a’s of a bounded norm, that is, over a
compact set. By lower semi-continuity we thus obtain that the infimum is attained at some point at

and
Ft = D̃(at ‖ qt [f])+U(at)+U∗(−λt)+λt ·at .

Since D̃(a ‖ b) satisfies conditions (B1) and (B2), we obtain that

A(λ,a) = D̃(a ‖ qλ[f])+U(a)+U∗(−λ)+λ ·a

is an auxiliary function. Noting that A(λt ,at) = Ft → 0 and using Lemma 19 yields the result.

8. Species Distribution Modeling Experiments

In this section we study how generalized maxent can be applied to the problem of modeling ge-
ographic distributions of species. This is a critical topic in ecology and conservation biology: to
protect a threatened species, one first needs to know its environmental requirements, that is, its
ecological niche (Hutchinson, 1957). A model of the ecological niche can further be used to pre-
dict the set of locations with sufficient conditions for the species to persist, that is, the potential
distribution of the species (Anderson and Martı́nez-Meyer, 2004; Phillips et al., 2006), or the set
of locations where conditions may become suitable under future climate conditions (Hannah et al.,
2005). Ecological niche models are also useful for predicting the spread of invasive species and in-
fectious diseases (Welk et al., 2002; Peterson and Shaw, 2003), as well as understanding ecological
processes such as speciation (Graham et al., 2006).
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As mentioned earlier, the input for species distribution modeling typically consists of a list of
georeferenced occurrence localities as well as data on a number of environmental variables which
have been measured or estimated across a geographic region of interest. The most basic goal is
to predict which areas within the region are within the species’ potential distribution. The poten-
tial distribution can be used to estimate the species’ realized distribution, for example by removing
areas where the species is known to be absent because of deforestation or other habitat destruc-
tion. Although a species’ realized distribution may exhibit some spatial correlation, the potential
distribution does not, so considering spatial correlation is not necessarily desirable during species
distribution modeling.

It is often the case that only presence data is available indicating the occurrence of the species.
Natural history museum and herbarium collections constitute the richest source of occurrence lo-
calities (Ponder et al., 2001; Stockwell and Peterson, 2002). Their collections typically have no
information about the failure to observe the species at any given location; in addition, many loca-
tions have not been surveyed. In the lingo of machine learning, this means that we have only positive
examples and no negative examples from which to learn. Moreover, the number of sightings (train-
ing examples) will often be very small by machine learning standards, for example, a hundred, ten,
or even less. Thus, species distribution modeling is an example of a scientifically important problem
which presents a challenging area for study by the machine learning community.

To explore the utility of generalized maxent and effects of regularization, we used `1-regularized
maxent to model distributions of bird species, based on occurrence records in the North Ameri-
can Breeding Bird Survey (Sauer et al., 2001), an extensive data set consisting of thousands of
occurrence localities for North American birds and used previously for species distribution mod-
eling (Peterson, 2001). A preliminary version of these experiments and others was evaluated by
Phillips, Dudı́k, and Schapire (2004).

In modeling species distributions from presence-only data, sample selection bias may hinder
accurate prediction. Sample selection bias refers to the fact that observations are typically more
likely in places that are easier to access, such as areas close to towns, roads, airports, or waterways.
The impact of sample selection bias on maxent models, and various ways of coping with it are
explored by Dudı́k, Schapire, and Phillips (2005). Here, we assume that the bias is not significant.

A comprehensive comparison of maxent and other species distribution modeling techniques
was carried out by Elith et al. (2006) on a different data set than analyzed here. In that comparison,
maxent is in the group of the best-performing methods. Here, we do not perform comparison with
other approaches. We use species modeling as a setting to explore various aspects of `1-regularized
maxent.

From the North American Breeding Bird Survey, we selected four species with a varying num-
ber of occurrence records: Hutton’s Vireo (198 occurrences), Blue-headed Vireo (973 occurrences),
Yellow-throated Vireo (1611 occurrences) and Loggerhead Shrike (1850 occurrences). The occur-
rence data of each species was divided into ten random partitions: in each partition, 50% of the
occurrence localities were randomly selected for the training set, while the remaining 50% were
set aside for testing. The environmental variables (coverages) use a North American grid with 0.2
degree square cells. We used seven coverages: elevation, aspect, slope, annual precipitation, num-
ber of wet days, average daily temperature and temperature range. The first three derive from a
digital elevation model for North America (USGS, 2001), and the remaining four were interpolated
from weather station readings (New et al., 1999). Each coverage is defined over a 386 × 286 grid,
of which 58,065 points have data for all coverages. In addition to threshold features derived from
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Figure 6: Learning curves. Log loss averaged over 10 partitions as a function of the number of
training examples. Numbers of training examples are plotted on a logarithmic scale.

all environmental variables, we also used raw environmental variables (linear features), squares
of environmental variables (quadratic features), and products of pairs of environmental variables
(product features). Maxent with linear features finds the distribution of maximum entropy that
matches empirical means of environmental variables; maxent with linear and quadratic features
matches empirical means and variances; and maxent with linear, quadratic, and product features
matches empirical means, variances, and covariances.

Recall that threshold features derived from a particular environmental variable are binary fea-
tures equal to one if the variable is greater than a specified threshold and equal to zero otherwise.
Formally, we consider a continuum of threshold features for each variable. In practice, it suffices to
consider a single threshold between each pair of consecutive values appearing in the sample space;
thus, in our data set we consider up to 58,064 threshold features for each variable. Given enough
data, threshold features across all variables can model arbitrary additive responses in the exponent
of the Gibbs distribution. Because of their expressivity, we expect that the danger of overfitting will
be the most severe and regularization necessary.

In our experiments, we used `1-SUMMET of Section 6. All features are scaled to the interval
[0,1]. Motivated by Corollary 7, we reduced the β j’s to a single regularization parameter β0 by using
β j = β0σ̃[ f j]/

√
m. According to the bounds of Section 5.2, we expect that β0 will depend on the

number and complexity of features. Therefore, we expect that different values of β0 will be optimal
for different combinations of the feature types.

On each training set, we ran maxent with four different subsets of the feature types: linear (L);
linear and quadratic (LQ); linear, quadratic and product (LQP); and threshold (T). We ran two types
of experiments. First, we ran maxent on increasing subsets of the training data and evaluated log
loss on the test data. We took an average over ten partitions and plotted the log loss as a function
of the number of training examples. These plots are referred to as learning curves. Second, we
also varied the regularization parameter β0 and plotted the log loss for fixed numbers of training
examples as functions of β0. These curves are referred to as sensitivity curves.

In addition to these curves, we show how Gibbs distributions returned by maxent can be inter-
preted in terms of contribution of individual environmental variables to the exponent. The corre-
sponding plots are called feature profiles. We give examples of feature profiles returned by maxent
with and without regularization.
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Figure 7: Sensitivity curves. Log loss averaged over 10 partitions as a function of β0 for a varying
number of training examples. For a fixed value of β0, maxent finds better solutions (with
smaller log loss) as the number of examples grows. Values of β0 are plotted on a log
scale.

Figure 6 shows learning curves for the four studied species. We set β0 = 0.1 in L, LQ and
LQP runs and β0 = 1.0 in T runs. This choice is justified by the sensitivity curve experiments
described below. In all cases, the performance improves as more samples become available. This is
especially striking in the case of threshold features. In the absence of regularization, maxent would
exactly fit the training data with delta functions around sample values of the environmental variables
which would result in severe overfitting even when the number of training examples is large. As the
learning curves show, regularized maxent does not exhibit this behavior.

Note the heavy overfitting of LQ and LQP features on the smallest sample sizes of Blue-headed
Vireo and Loggerhead Shrike. A more detailed analysis of the sensitivity curves suggests that this
overfitting could be alleviated by using larger values of β0, resulting in curves qualitatively similar
to those of other species. Similarly, performance of linear features, especially for larger feature
sizes, could be somewhat improved using smaller regularization values.

Figure 7 shows the sensitivity of maxent to the regularization value β0 for LQP and T versions
of maxent. Results for L and LQ versions are similar to those for the LQP version. Note the
remarkably consistent minimum at β0 ≈ 1.0 for threshold feature curves across different species,
especially for larger sample sizes. It suggests that for the purposes of `1 regularization, σ̃[ f j]/

√
m

are good estimates of |π̃[ f j]−π[ f j]| for threshold features. For LQP runs, the minima are much less
pronounced as the number of samples increases and do not appear at the same value of β0 across
different species nor for different sizes of the same species. Benefits of regularization in LQP runs
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Figure 8: Feature profiles learned on the first partition of the Yellow-throated Vireo. For every
environmental variable, its additive contribution to the exponent of the Gibbs distribution
is given as a function of its value. Profiles have been shifted for clarity. This corresponds
to adding a constant in the exponent, which has no effect on the resulting models since
constants in the exponent cancel out with the normalization factor.

diminish as the number of training examples increases (this is even more so for LQ and L runs, not
presented here). One possible explanation is that the relatively small number of features (compared
with threshold features) prevents overfitting for large training sets.

To derive feature profiles, recall that maxent with a uniform default distribution returns the
Gibbs distribution qλ(x) = eλ·f(x)/Zλ minimizing the regularized log loss. For L, LQ, and T runs,
the exponent is additive in contributions of individual environmental variables. Plotting this con-
tribution as a function of the corresponding environmental variable we obtain feature profiles for
the respective variables. Note that adding a constant to a profile has no impact on the resulting
distribution as constants in the exponent cancel out with Zλ. For L models profiles are linear func-
tions, for LQ models profiles are quadratic functions, and for T models profiles can be arbitrary
piecewise constant functions. These profiles provide an easier to understand characterization of the
distribution than the vector λ.

Figure 8 shows feature profiles for an LQ run on the first partition of the Yellow-throated Vireo
and two T runs with different values of β0. The value of β0 = 0.01 only prevents components
of λ from becoming extremely large, but it does little to prevent heavy overfitting with numerous
peaks capturing single training examples. Raising β0 to 1.0 completely eliminates these peaks. This
is especially prominent for the aspect variable where the regularized T as well as the LQ model
show no dependence while the insufficiently regularized T model overfits heavily. Note the rough
agreement between LQ profiles and regularized T profiles. Peaks in these profiles can be interpreted
as intervals of environmental conditions favored by a species.3

3. Such interpretations should be made with caution as the objective of maxent is based solely on the predictive perfor-
mance. In the extreme case, consider two identical environmental variables, only one of which has a causal effect on
the species. Maxent has no knowledge which of the two variables is truly relevant, and may easily pick the wrong
one, leaving the profile of the relevant one flat. Thus, interpretability is affected by correlations between variables.
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9. Conclusion and Future Research Directions

The maximum entropy principle is a widely used method of density estimation. When the number
of features is large, overfitting needs to be prevented by measures such as feature selection, reg-
ularization, discounting, or introduction of priors. In this work, we have provided a unified and
complete account of maxent with generalized regularization. We have proved general performance
guarantees and proposed versions of iterative scaling that incorporate regularization.

We have carried out analysis of several regularization types and presented scenarios in which
these regularizations may be useful. In our experiments, we have shown how the principled `1 regu-
larization facilitates learning. Further empirical study is needed to verify whether the theory derived
for other regularization types corresponds to their performance. Generalizing the present analysis
could help design task-specific regularization functions based on some prior information (for exam-
ple properties of the feature space such as diameters with respect to various norms). Note that the
quality of a regularization function can be assessed from two different perspectives: performance
over test data and running time. The tradeoff between statistical guarantees and computational effi-
ciency remains open for future research. In particular, convergence rates of algorithms presented in
this paper are not known.

We have explored one direction of generalizing maxent: replacing equality constraints by an
arbitrary convex potential in the primal or, equivalently, adding a convex regularization term to
the maximum likelihood estimation in the dual. An alternative line of generalizations arises by
replacing relative entropy in the primal objective by an arbitrary Bregman or Csiszár divergence
along the lines of Altun and Smola (2006), and Collins, Schapire, and Singer (2002). Modified
duality results and modified algorithms apply in the new setting, but performance guarantees do not
directly translate to the case when divergences are derived from samples. Divergences of this kind
are used in many cases of interest such as logistic regression (a conditional version of maxent) and
boosting. In future work, we would like to generalize performance guarantees to these settings.

Finally, we have demonstrated the utility of generalized maxent in a novel application to species
distribution modeling. We believe it is a scientifically important area that deserves the attention
of the machine learning community while presenting some interesting challenges. Even though
maxent fits the problem of species distribution modeling cleanly and effectively, there are many
other techniques that could be used such as Markov random fields or mixture models. We leave
the question of alternative machine learning approaches to species distribution modeling open for
future research.
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Appendix A. Proof of Corollary 7

Proof of Corollary 7. Let

β′j =

√
ln(4n/δ)

3m
·
√

6σ2[ f j]+
ln(4n/δ)

3m
+

ln(4n/δ)

3m
.
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We will show that |π̃[ f j]−π[ f j]|> β′j with probability at most δ/2n, and also β′j≥ β j with probability
at most δ/2n. Then by the union bound, we obtain that

|π̃[ f j]−π[ f j]| ≤ β′j ≤ β j

for all j with probability at least 1−δ.
Consider a fixed j and let ε= ln(4n/δ)/3m. Thus,

β′j =
√
ε

(√
6σ2[ f j]+ε+

√
ε

)

β j =
√

6ε

√

σ̃2[ f j]+

√
ln(2n/δ)

2m
+
ε

6
+ε

=
√
ε

(√
6
[
σ̃2[ f j]+

√
ln(2n/δ)/(2m)

]
+ε+

√
ε

)
.

By Bernstein’s inequality (Bernstein, 1946)

Pr
[
|π̃[ f j]−π[ f j]|> β′j

]
≤ 2exp

{
−

3mβ′2j
6σ2[ f j]+2β′j

}

= 2exp



−

3mε
(

6σ2[ f j]+ε+2
√
ε
√

6σ2[ f j]+ε+ε

)

6σ2[ f j]+2
√
ε
√

6σ2[ f j]+ε+2ε





= 2exp{−3mε}= 2exp{− ln(4n/δ)}= δ/2n .

To bound the probability that β′j ≥ β j, it suffices to bound the probability of

σ2[ f j]≥ σ̃2[ f j]+

√
ln(2n/δ)

2m
.

We will use McDiarmid’s inequality (McDiarmid, 1989) for the function

s(y1,y2, . . . ,ym) =
∑m

i=1 y2
i

m−1
− (∑m

i=1 yi)
2

m(m−1)
.

Note that σ̃2[ f j] = s( f j(x1), f j(x2), . . . , f j(xm)) and E
[
σ̃2[ f j]

]
= σ2[ f j]. By a simple case analysis,

sup
y1,...,ym,y′i∈[0,1]

|s(y1, . . . ,ym)− s(y1, . . . ,yi−1,y
′
i,yi+1, . . . ,ym)| ≤ 1

m

for all i. Thus,

Pr

[
σ2[ f j]≥ σ̃2[ f j]+

√
ln(2n/δ)

2m

]
≤ exp

{
−2 ·

[
ln(2n/δ)/2m

]

m · (1/m)2

}

= exp{− ln(2n/δ)}= δ/2n .

Hence also β′j ≥ β j with probability at most δ/2n.
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Appendix B. Derivation of U(≈1)

π̃

It suffices to derive a single coordinate potential U(≈1)

π̃, j :

U(≈1)

π̃, j (u j) = sup
λ j

[
u jλ j−α jβ j ln

(
eλ j/α j + e−λ j/α j

2

)]

= α jβ j sup
λ j

[
u j ·

λ j

α jβ j
− ln

(
1
2

exp

{
β j ·

λ j

α jβ j

}
+

1
2

exp

{
−β j ·

λ j

α jβ j

})]

= α jβ j sup
λ′j:=λ j/α jβ j

[
u jλ
′
j− ln

(
1
2

eβ jλ
′
j +

1
2

e−β jλ
′
j

)]
(44)

= α jβ j D

((
1+u j/β j

2
,
1−u j/β j

2

) ∥∥∥∥
(

1
2
,
1
2

))
(45)

Equation (44) follows by change of variables. Note that the supremum in Equation (44) takes
form of a dual objective in a basic maxent over a two-sample space, say X = {0,1}, with a single
feature f (0) = β j, f (1) = −β j, and the empirical expectation π̃[ f ] = u j. Thus, by maxent duality,
the value of the supremum equals D(p ‖ (1/2,1/2)), where p comes from a closure of the set of
Gibbs distribution and p[ f ] = u j. However, the only distribution on X that satisfies the expectation
constraint is

p(0) =
1+u j/β j

2
, p(1) =

1−u j/β j

2
.

Thus, we obtain Equation (45).

Appendix C. Proof of Lemma 10

Before we proceed with the proof of Lemma 10, we show how the trace of the feature covariance
matrix can be bounded in terms of the `2 diameter of the feature space.

Lemma 22. Let D2 = supx,x′∈X ‖f(x)− f(x′)‖2 be the `2 diameter of f(X ) and let Σ = E
[
(f(X)−

π[f])(f(X)− π[f])>
]
, where X is distributed according to π, denote the feature covariance matrix.

Then trΣ≤ D2
2/2.

Proof. Consider independent random variables X ,X ′ distributed according to π. Let f, f′ denote the
random variables f(X) and f(X ′). Then

E
[
‖f− f′‖2

2

]
= E

[
f · f

]
−2E

[
f
]
·E

[
f′
]
+E

[
f′ · f′

]

= 2E
[
f · f

]
−2E

[
f
]
·E

[
f
]

= 2∑ j

[
E
[

f 2
j

]
− (E

[
f j

]
)2] = 2trΣ .

Since ‖f− f′‖2 ≤ D2, we obtain trΣ≤ D2
2/2.

Proof of Lemma 10. Consider independent samples X1, . . . ,Xm distributed according to π and the
random variable v(X1, . . . ,Xm) = ∑i(f(Xi)−π[f]) = m(π̃[f]−π[f]). We will bound E

[
‖v‖2

]
and use

McDiarmid’s inequality (McDiarmid, 1989) to show that

Pr
[
‖v‖2−E

[
‖v‖2

]
≥ D2

√
m ln(1/δ)/2

]
≤ δ . (46)
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By Jensen’s inequality and Lemma 22, we obtain

E
[
‖v‖2

]
≤

√
E
[
‖v‖2

2

]
=
√

m trΣ≤ D2

√
m/2 .

Now, by the triangle inequality,

sup
X1,...,Xm,X ′i

∣∣∣
∥∥v(X1, . . . ,Xm)

∥∥
2−

∥∥v(X1, . . . ,Xi−1,X
′
i ,Xi+1, . . . ,Xm)

∥∥
2

∣∣∣

≤ sup
Xi,X ′i

‖f(Xi)− f(X ′i )‖2 ≤ D2 ,

and Equation (46) follows by McDiarmid’s inequality.

Appendix D. Proof of Lemma 12

Proof of Lemma 12. Let

λ
?? = argmin

λ

[
Lπ(λ)+

α‖λ‖2
2

2

]

λ̂= argmin
λ

[
Lπ̃(λ)+

α‖λ‖2
2

2

]
.

As the first step, we show that

∥∥λ??− λ̂
∥∥

2 ≤
‖π[f]− π̃[f]‖2

α
. (47)

Assume that λ?? 6= λ̂ (otherwise Equation (47) holds). Let g(λ) denote lnZλ. This is the cumulant or
log partition function of the family of Gibbs distributions. It is well known (and not difficult to show
by calculus) that this function is convex in λ. By the convexity of g(λ) and α‖λ‖2

2/2, the gradients
of

Lπ(λ)+
α‖λ‖2

2

2
= lnZλ−λ ·π[f]+

α‖λ‖2
2

2

Lπ̃(λ)+
α‖λ‖2

2

2
= lnZλ−λ · π̃[f]+

α‖λ‖2
2

2

at their respective minima must equal zero:

∇g(λ??)−π[f]+αλ?? = 0

∇g(λ̂)− π̃[f]+αλ̂= 0 .

Taking the difference yields

α(λ??− λ̂) =−(∇g(λ??)−∇g(λ̂))+(π[f]− π̃[f]) .

Multiplying both sides by (λ??− λ̂), we obtain

α‖λ??− λ̂‖2
2 =−(λ??− λ̂) · (∇g(λ??)−∇g(λ̂))+(λ??− λ̂) · (π[f]− π̃[f])
≤ (λ??− λ̂) · (π[f]− π̃[f]) (48)

≤ ‖λ??− λ̂‖2‖π[f]− π̃[f]‖2 . (49)
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Equation (48) follows because by convexity of g(λ) for all λ1,λ2

(∇g(λ2)−∇g(λ1)) · (λ2−λ1)≥ 0 .

Equation (49) follows by the Cauchy-Schwartz inequality. Dividing (49) by α‖λ??− λ̂‖2 we ob-
tain Equation (47). Now, by Lemma 3.13, the Cauchy-Schwartz inequality, Equation (47) and the
optimality of λ?? we obtain

Lπ(λ̂)≤ Lπ(λ
??)+(λ??− λ̂) · (π[f]− π̃[f])+U(2)∗

π̃ (λ??)−U(2)∗
π̃ (λ̂)

≤ Lπ(λ
??)+‖λ??− λ̂‖2‖π[f]− π̃[f]‖2 +

α‖λ??‖2
2

2
− α‖λ̂‖2

2

2

≤ Lπ(λ
??)+

‖π[f]− π̃[f]‖2
2

α
+
α‖λ??‖2

2

2

≤ Lπ(λ
?)+
‖π[f]− π̃[f]‖2

2

α
+
α‖λ?‖2

2

2
.

Appendix E. Derivation of U(1+2)

π̃

It suffices to derive a single coordinate potential U(1+2)

π̃, j :

U(1+2)

π̃, j (u j) = sup
λ j

(
u jλ j−β|λ j|−

αλ2
j

2

)

= sup
λ j: u jλ j=|u j||λ j|

(
α

2
· |λ j| ·

[
2(|u j|−β)

α
−|λ j|

])
. (50)

In Equation (50) we note that for each pair ±λ j, it suffices to consider the value whose sign agrees
with u j. Next, if |u j| ≤ β then the bracketed expression is non-positive, hence the supremum is
attained at λ j = 0 and its value equals 0. For |u j| > β, the supremum is attained when |λ j| =
(|u j|−β)/α, in which case its value equals (|u j|−β)2/(2α).

Appendix F. Proof of Lemma 18

We will first prove a single coordinate version of Lemma 18 and then turn to the general case.

Lemma 23. Let ψ : R→ (−∞,∞] be a proper closed convex function. Let S = domψ = {u ∈ R :
ψ(u) < ∞} and Tc = {v ∈ R : ψ∗(v) ≤ c}. Then there exists αc ≥ 0 such that uv ≤ αc|u| for all
u ∈ S,v ∈ Tc.

Proof. Inequality uv≤ αc|u| holds for an arbitrary αc if u = 0. We determine αc separately for cases
u ∈ S+ = S∩ (0,∞) and u ∈ S− = S∩ (−∞,0) and choose the maximum.

Assume S+ 6= /0 and pick an arbitrary u+ ∈ S+. Then for any v ∈ Tc by Fenchel’s inequality

u+v≤ ψ(u+)+ψ∗(v)≤ ψ(u+)+ c

and thus

v≤ ψ(u+)+ c
u+

.
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Now for any u ∈ S+

uv≤ u · ψ(u+)+ c
u+

≤ |u| ·
∣∣∣∣
ψ(u+)+ c

u+

∣∣∣∣ .

Similarly, if S− 6= /0 then we can choose an arbitrary u− ∈ S− and obtain for all u ∈ S−

uv≤ |u| ·
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣ .

To complete the proof we choose

αc = max

{∣∣∣∣
ψ(u+)+ c

u+

∣∣∣∣ ,
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣
}

setting the respective terms to 0 if S+ or S− is empty.

Proof of Lemma 18. Assume that Ur(u) <∞ and thus by decomposability Ur, j(u j) <∞ for all j.
Also assume that U∗r (λ) = ∑ j U∗r, j(λ j) < c. By Fenchel’s inequality U∗r, j(λ j) ≥ −Ur, j(0) which
is finite by the feasibility of r. Since the sum of U∗r, j(λ j) is bounded above by c and individual
functions are bounded below by constants, they must also be bounded above by some constants c j.
By Lemma 23 applied to coordinate potentials, we obtain that u jλ j ≤ α j|u j| for some constants
α1, . . . ,αn. The conclusion follows by taking αc = max jα j.

Appendix G. Ensuring Finite Updates

In this appendix, we discuss how to ensure that features and coordinate potentials are non-degenerate
in SUMMET and PLUMMET, and show that non-degeneracy implies that updates in both algo-
rithms are always finite.

G.1 Non-degeneracy in SUMMET

In SUMMET, we assume that f j(X )⊆ [0,1]. In context of this algorithm, a feature f j is degenerate
if f j(X ) = {0} or f j(X ) = {1} and a coordinate potential U j is degenerate if domU j ∩ [0,1] = {0}
or domU j ∩ [0,1] = {1}. In order to obtain non-degenerate features and coordinate potentials, it
suffices to preprocess the sample space X and the feature set as follows:

1. For all j: if domU j ∩ [0,1] = {0} then X ←{x ∈ X : f j(x) = 0}.
2. For all j: if domU j ∩ [0,1] = {1} then X ←{x ∈ X : f j(x) = 1}.
3. For all j: if f j(x) = 0 for all x ∈ X then remove feature f j.
4. For all j: if f j(x) = 1 for all x ∈ X then remove feature f j.

Whenever U j is degenerate, steps 1–2 guarantee that f j will be eventually removed in steps 3–4.
While f j could be removed immediately in steps 1–2, note that steps 3–4 are still necessary since
features may be degenerate even when potentials are not. Also note that steps 1–2 must precede
steps 3–4 since restricting X may introduce new degenerate features.

The preprocessing described above yields an equivalent form of the primal. By restricting the
sample space in steps 1–2, we effectively eliminate distributions that are nonzero outside the re-
stricted sample set. Note that those distributions are infeasible because their feature means lie
outside domU. In steps 3–4, we simply remove constant terms of the potential function.
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Theorem 24. Let λ and Q(λ) be finite and f j,U j non-degenerate. Then Fj(λ,δ) is maximized by a
finite δ.

Proof. We will show that Fj(λ,δ)→−∞ if δ→±∞. Thus, it suffices to consider δ from a compact
interval and the result follows by upper semi-continuity of Fj. First, consider the case δ→∞. Let r
be an arbitrary feasible distribution. Rewrite Fj(λ,δ) as follows:

Fj(λ,δ) =− ln
(
1+(eδ−1)qλ[ f j]

)
−U∗j(−λ j−δ)+U∗j(−λ j)

=− ln
{

eδ
[
e−δ(1−qλ[ f j])+qλ[ f j]

]}
+δr[ f j]−U∗r, j(λ j +δ)+U∗r, j(λ j)

=− ln
[
e−δ(1−qλ[ f j])+qλ[ f j]

]
−δ(1− r[ f j])−U∗r, j(λ j +δ)+U∗r, j(λ j). (51)

Suppose that r[ f j] < 1. Then Fj(λ,δ)→−∞: the first term of (51) is bounded above by− ln(qλ[ f j])
which is finite by non-degeneracy of f j; the second term decreases without bound; the third term is
bounded above by Ur, j(0) by Fenchel’s inequality; and the fourth term is a finite constant because
Q(λ) is finite. In case r[ f j] = 1, the second term equals zero, but the third term decreases without
bound because by non-degeneracy of U j there exists ε > 0 such that Ur, j(ε) = U j(1− ε) <∞ and
hence by Fenchel’s inequality −U∗r, j(λ j +δ)≤−(λ j +δ)ε+Ur, j(ε).

Now consider δ→−∞ and rewrite Fj(λ,δ) as follows:

Fj(λ,δ) =− ln
(
(1−qλ[ f j])+ eδqλ[ f j]

)
+δr[ f j]−U∗r, j(λ j +δ)+U∗r, j(λ j) .

Assuming that r[ f j] > 0, the second term decreases without bound and the remaining terms are
bounded above. If r[ f j] = 0 then the third term decreases without bound because by non-degeneracy
of U j there exists ε> 0 such that Ur, j(−ε) = U j(ε) <∞ and thus by Fenchel’s inequality−U∗r, j(λ j +
δ)≤ (λ j +δ)ε+Ur, j(−ε).

Corollary 25. Updates of SUMMET are always finite.

Proof. We proceed by induction. In the first step, both λ1 and Q(λ1) are finite (see proof of Theo-
rem 20). Now suppose that in step t, λt and Q(λt) are finite. Then by Theorem 24, all considered
coordinate updates will be finite, so λt+1 will be finite too. Since Q(λt+1) ≥ Q(λt) and Q(λ) is
bounded above (see proof of Theorem 20), we obtain that Q(λt+1) is finite.

G.2 Non-degeneracy in PLUMMET

In this case, we assume that f j(x)≥ 0 and ∑ j f j(x)≤ 1 for all x∈ X . We call a feature f j degenerate
if f j(X ) = {0} and a coordinate potential U j degenerate if domU j ∩ [0,1] = {0}. To obtain non-
degenerate features and coordinate potentials, it suffices to preprocess the sample space X and the
feature set as follows:

1. For all j: if domU j ∩ [0,1] = {0} then X ←{x ∈ X : f j(x) = 0}.
2. For all j: if f j(x) = 0 for all x ∈ X then remove feature f j.

Similarly to SUMMET, this preprocessing derives an equivalent form of the primal. Using anal-
ogous reasoning as in Theorem 24, we show below that non-degeneracy implies finite updates in
PLUMMET.
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In each iteration of the algorithm we determine updates δ j by maximizing

Fj(λ,δ) =−qλ[ f j](e
δ−1)−U∗j(−λ j−δ)+U∗j(−λ j)

=−qλ[ f j](e
δ−1)+δr[ f j]−U∗r, j(λ j +δ)+U∗r, j(λ j) .

It suffices to prove that Fj(λ,δ)→−∞ if δ→±∞ given that Q(λ) and λ j are finite and f j,U j are
non-degenerate.

First, we rewrite Fj as follows:

Fj(λ,δ) =−eδ
[
qλ[ f j]− e−δqλ[ f j]− e−δδr[ f j]

]
−U∗r, j(λ j +δ)+U∗r, j(λ j) .

If δ→∞ then the expression in the brackets approaches qλ[ f j], which is positive by non-degeneracy
of f j. Thus the first term decreases without bound while the second and third terms are bounded
from above. Next, rewrite Fj as

Fj(λ,δ) = δ

[
r[ f j]−

eδ

δ
qλ[ f j]+

1
δ

qλ[ f j]

]
−U∗r, j(λ j +δ)+U∗r, j(λ j) .

If δ→−∞ then the expression in the brackets approaches r[ f j]. Thus, if r[ f j] > 0 then the first term
decreases without bound and the other two terms are bounded above. If r[ f j] = 0 then the first term
approaches qλ[ f j] and the second term decreases without bound because, by non-degeneracy of U j,
there exists ε > 0 such that Ur, j(−ε) = U j(ε) <∞ and hence by Fenchel’s inequality −U∗r, j(λ j +
δ)≤ (λ j +δ)ε+Ur, j(−ε).
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