
● Accepts incoming messages
from clients

● Assigns sequence IDs to
incoming messages 📶

● Dispatches messages to all
mailboxes 📫 as a transaction

● Tracks pending transactions

🦆 Gaggle: a Private and Consistent Communication Model
Shai Caspin, Natalie Popescu, and Amit Levy; Princeton University

Traditional application architecture is
unfit for protecting user privacy

👂 Interpret user-intraxns
🎨 Display UI

Server

💾 Store ground truth
👤 Authenticated identity
🛠 App logic
🚪 Access control
🌎 Consistency logic
🤼 Conflict resolution

RW
user
data

How can we achieve the same application
functionality without requiring server access to user
data and most metadata?

Gaggle: an alternative, private
architecture

Clients

Server

👂 Interpret user-intraxns
🎨 Display UI
💾 Store ground truth
👤 Authenticated identity
🛠 App logic
🚪 Access control
🌎 Consistency logic
🤼 Conflict resolution

📶 Message ordering
Shai’s Phone Server Natalie’s Tablet

🌎 Consistency protocol How does a data change on one client reach another?

Shai makes an update on the
Gaggle-based application

Gaggle updates local state

TI
M

E

The Gaggle architecture enables higher levels of
privacy for a wide range of applications

Gaggle adds update to uncommitted
local history
Gaggle determines that update
should also go to Natalie’s Tablet
Gaggle packages update as a
“message” and sends it to the server

Server generates a sequence ID
for the message
Server forwards message to
Natalie’s Tablet’s mailbox
Server sends ACK to Shai’s Phone with
the assigned sequence ID

Receives ACK, links sequence ID with
update, commits history up to and
including update, and clears
uncommitted history

Receives message from server

Gaggle compares message sequence
ID with the highest sequence ID in
uncommitted local history: if larger,
appends update to uncommitted
history; else, rollback uncommitted
history and re-apply updates in order of
increasing sequence ID

Gaggle updates local state

Natalie’s application view now reflects
Shai’s update

RW minimal
metadata

👥 Groups

🤼 Conflict Resolution

📱 Suitable Applications
User Devices Server

● Intraxns 👂
● UI 🎨
● App logic 🛠
● Data type

invariants

new_user()
new_device()
get()
set()
remove()
...

👥

🤼

● Authenticated identity 👤
● Access control 🚪
● Consistency Logic 🌎
● Conflict Resolution 🤼

The Gaggle Library

App

● Committed state 💾
● History of uncommitted

changes
● Groups 👥

Local Database
Stores all data and
metadata used by app
and Gaggle library

Lets app developers
easily use Gaggle’s
protocols for simple
cross-user sharing

App devs write local-
only app that plugs
into Gaggle and
automatically get:
- Cross-device sync
- E2E privacy

Ideal application properties:
1. The amount of data stored fits on a single device

Yes: text messaging, note taking, games
No: search engine

2. Users generate data
Yes: period tracker, fitness tracker
No: weather app, maps, streaming

3. Data is shared in “small” circles
Yes: book club app, medical communication,
financial tracking, neighborhood restaurant
recommendation, money transfer
No: social media

Anarchist Bookclub

Shai Natalie

DesktopTabletLaptopPhone

870253958101834073723615

Office Console

870054
Client
keys

App-level

write color=blue write color=purple

💙
First wins Last wins Transitive Other

💜

🧡

🤎 💚
➔ Message ordering from Gaggle server provides

strong consistency
➔ Sequence IDs enable deterministic conflict

resolution via developer-chosen techniques

➔ Gaggle enforces sharing policies via groups 🚪
➔ Composable
➔ Kept consistent just like any other data in Gaggle

Clients

API

📶

834073 23: y92dkf…nd2801

958101 28: xi3v6k…99f3g5,
39: lsih8g…eijr8h7

⠇ ⠇
870054 21: n4h30j…903bdj

Public Key
Directory

Encrypted
Mailboxes

Sequencer

Users

📫

