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Developing rigorous AI evaluation for trustworthy science and policy

AI evaluation is central to AI progress and policymaking. Yet, evaluations fail to measure what matters. Benchmarks reward
shortcuts over genuine capabilities, models learn spurious correlations instead of the underlying phenomena of interest, and
claimed breakthroughs in AI-based science fall apart under scrutiny. The gap between benchmarks and the real world
undermines scientific progress and public trust. I develop large-scale, holistic, and rigorous evaluations to answer
crucial questions about the societal impact of AI: What are the capabilities and risks of general-purpose AI? How
can we use evaluations to understand AI’s impact on science? How should policymakers assess and respond to AI’s societal
impact?

I have presented my research at 80+ invited talks across academia (including two oral presentations at ICML, paper awards
at ACM FAccT and ACM CSCW, and three keynotes), government (including to the U.S. federal government at the FTC,
CFPB, and NTIA), and the industry (including at Google, Meta, Snowflake, Mastercard, and Airbnb). My analysis of the
risks of open-weight AI models [1, 2] has informed the model release strategies of AI developers. My analysis of the state
of AI transparency has shaped companies’ disclosure practices [3, 4]. My work has been featured in 60+ press articles,
including the New York Times, Wall Street Journal, Washington Post, Financial Times, WIRED, and Nature.

I aim to ensure that my research informs policy and public discourse. I co-authored the book AI Snake Oil to help readers
understand which developments reflect genuine AI advances [5]. The book was named one of Nature’s 10 best books of 2024.
TIME Magazine included me in their inaugural list of the 100 Most Influential People in AI. Through my online newsletter,
which reaches 65,000+ readers, I translate technical insights into accessible guidance for journalists, policymakers, and the
public. I have written for prominent outlets, including WIRED and the Wall Street Journal. This commitment to bridging
research and practice has led me to teach AI to 100+ federal policymakers and 300+ state and local policymakers, brief
50+ congressional staffers on AI challenges, and testify before the New Jersey Assembly committee on Science, Innovation,
and Technology. My work has been cited 100+ times in federal and international policy documents, and I co-authored the
first International AI Safety Report with representatives from 33 countries and intergovernmental organizations [6].

Figure 1: A roadmap of my research.

My work spans three directions. (1) I develop new
evaluation methods for emerging paradigms
in AI. For example, one paradigm for improving the
capabilities of language models is inference scaling:
using more compute during inference to improve
model performance. I have theoretically proven
and empirically confirmed fundamental limits to the
efficacy of this approach that couldn’t be identi-
fied using previous evaluation methods [7]. I have
also developed evaluation methods for risks. Open
models such as Llama 4 and DeepSeek-R1, whose
weights were released publicly, have prompted con-
cerns about misuse risks, such as cybersecurity at-
tacks. I developed a framework for assessing the
risks of open models, which was cited dozens of times
in developing federal and state U.S. AI policy [1, 2].

Another area of research and product interest is
AI agents: systems that use LLMs with the abil-
ity to take action with limited human supervision.
Most existing agent evaluations don’t account for
agents’ behavior when solving a task. For exam-
ple, web agents often look up the answers to a
benchmark task online rather than correctly solv-
ing the task. I uncovered many such failures, which
would invalidate the results of prominent bench-
marks [8, 9, 10]. Existing systems for agent eval-
uations cannot address these concerns. (2) I build
systems to conduct large-scale agent evalu-
ation that address shortcomings of existing
evaluations [11]. These systems track accuracy,
cost, and agent actions to automatically uncover
concerning agent behavior. Through parallel orches-
tration across 100s of VMs, I reduced evaluation
time from weeks to hours while standardizing benchmark implementations to eliminate bugs. I validated the system
by conducting large-scale analysis involving over 20,000 tasks. This uncovered several counterintuitive results. For example,
using reasoning models with higher reasoning effort decreased accuracy on the majority of benchmark tasks.

To translate better evaluation methods and systems into actionable insights, (3) I evaluate applications of AI for
science to assess AI’s real-world impact. Scientific research is an exciting application of AI. But based on conversations
with researchers across fields, it is one of the biggest areas where expectations around the impact of AI are mismatched with
reality. Industry leaders claim AI will soon conduct autonomous research, but anecdotally, AI systems fail on far simpler
tasks, such as finding the correct reference to a paper. To accurately assess AI’s impact on science, we need trustworthy
evaluations. Unfortunately, I have found that evaluations of AI for science have severe shortcomings that undermine their
utility. In a study of civil war prediction papers published in top-10 political science journals, all papers claiming the
superior performance of complex models such as random forests compared to logistic regression failed to reproduce due
to incorrect evaluations. When corrected, complex models did not outperform decades-old logistic regression models. I
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expanded this study to other disciplines and found over 600 affected papers across 30+ fields, with the majority of papers
that used AI affected in some fields [12, 13, 14, 15]. Similar challenges affect evaluations of generative AI for science. Many
benchmarks for generative AI evaluation rely on unrealistic settings [16], such as using multiple-choice questions. But this
is uninformative about the real-world utility of AI for scientific tasks. Developing useful benchmarks requires curating tasks
that reflect real-world use and verifying them against human baselines. I built the first benchmark to evaluate whether
generative AI models can automatically reproduce scientific papers across fields [17].

1 Methods for better AI evaluation

Figure 2: When incorrect re-
sponses have negative costs,
inference scaling curves bend
downward. × marks the opti-
mal number of samples. For
cost/benefit = 8, it is optimal to
sample just once. Analysis on
coding benchmark HumanEval
using Llama-3.1-70B.

The AI community has made rapid progress by using existing evaluations as targets for
improving systems. But older evaluation methods can break down in the face of new
techniques, leading to the illusion of progress. This requires developing new evaluation
methods to understand the capabilities and risks of emerging paradigms.

Limits of inference scaling [7]. A prominent recent technique to improve language
models is inference scaling: using more compute to improve accuracy. Recent research
has generated hope that inference scaling, such as resampling solutions until they pass
verifiers like unit tests, could allow weaker models to match stronger ones. For exam-
ple, such methods are used in Anthropic’s “high compute” evaluations for Anthropic’s
Claude 4 and 4.5. Evidence of the efficacy of inference scaling with resampling relies
on metrics like accuracy. But this overlooks the cost of false positives: retried attempts
could “pass” unit tests despite being incorrect, with a higher likelihood of false posi-
tives with more retries. I theoretically proved and empirically confirmed that inference
scaling is fundamentally limited when imperfect verifiers have a non-zero probability of
producing false positives. Resampling cannot decrease this probability, so it imposes an
upper bound to the accuracy of resampling-based inference scaling, regardless of com-
pute budget [7]. Surprisingly, false positives were accompanied by regressions on other
(typically unmeasured) metrics such as code quality. This suggests that despite better
results on benchmarks, new AI techniques can have unintended regressions that can’t
be measured without new evaluation methods. An interesting implication of our result
is that in the presence of costs for incorrect responses (and not just benefits from correct ones), inference scaling curves
bend downwards—and for reasonable values of cost/benefit, it is often optimal to sample responses just once (see Figure 2),
challenging the field’s optimism about inference scaling with resampling.

Misuse risks of open-weight models [1, 2]. The release of capable open-weight models like Llama 4 and DeepSeek-R1
has been accompanied by intense policy debates about whether such models are too risky to be openly released. Once model
weights are released, developers relinquish control over their downstream use. For example, a series of studies claimed that
open-weight language models could provide information related to bioweapons, and could even lead to the next pandemic.
On the flip side, open-weight models enable broader access to AI and have been used by researchers to advance scientific
research. Restricting open models would impose a high cost to society, and should not be undertaken without rigorous
evidence of their risks. How should we evaluate the risks of releasing open-weight models? I led a collaboration of 25
researchers from civil society, industry, and academia to answer this. Concerns about open models most often stem from
amplifying existing risks (such as biosecurity, cybersecurity, and disinformation). But in many cases, existing technology
already provides the means to increase risk. For example, the same information claimed to increase the risk of pandemics
due to open-weight models was available on Wikipedia. Drawing from the practice of threat modeling in cybersecurity,
I proposed evaluations of marginal risk to assess the incremental risks of open-weight models compared to existing tools
(such as web search). This allows targeted interventions when marginal risks are high without foregoing other benefits of
open-weight models. This work was published in peer-reviewed papers in Science and ICML [1, 2]. AI companies adopted
it to make decisions about releasing open models. Federal, state, and international policymakers cited it 50+ times in
developing AI safety regulation.

2 Systems to conduct large-scale AI evaluation

Modern AI systems can generate millions of lines of text to solve a single task. In the process, they can fail in unpredictable
ways and lack reliability. This makes evaluating them challenging: how can we run evaluations at scale? How do we assess
if a system deviated from its specs? I have developed automated evaluation systems that assess AI across thousands of real-
world tasks. These systems can process billions of tokens from AI traces that were previously hard to analyze systematically,
reducing evaluation time by weeks of person-effort.

Shortcomings of AI agent evaluation [8, 10]. Recent research and product development has focused on building AI
agents that can plan and execute complex digital tasks with limited human input. Agent releases are typically accompanied
by benchmark evaluations to assess how well they work. But evaluation methods for language models are inadequate for
evaluating agents, since they can make sequences of decisions, interact with dynamic environments, and employ multiple
tools. As a result, impressive benchmark results fail to translate to real-world utility. It is no surprise that many deployed
agents have failed.

I have uncovered critical shortcomings in state-of-the-art AI agent evaluations [8, 10]. I employ different computational
methods in this research: reproducing papers claiming state-of-the-art performance, developing systems to collect detailed
logs of agents’ cost and behavior, and analyzing agent behavior rather than just benchmark accuracy. Some shortcomings
result from not following best practices for traditional evaluation. For example, many benchmarks lack a held-out test set.
Agent benchmarks lack standardized harnesses leading to drastically different scores owing to minor changes in setup. Other
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shortcomings are specific to agents. Agents can be much more costly than language models. But since agent leaderboards
don’t typically compare the cost of running agents, an agent could be 1% more accurate at 100x the cost while still topping
the leaderboard. This creates perverse incentives for agent developers, leading to benchmark-topping agents that are too
costly to deploy. Agents can output millions of tokens to solve a task, which makes it hard to verify if they take shortcuts.
For example, I found that web agents often searched for the benchmark on HuggingFace to look up the answer rather
than actually solving the task. Without analyzing the agent’s behavior logs, it is impossible to verify if it solved the task
correctly. Finally, owing to the complexity of the tasks that agent benchmarks require agents to solve (such as reproducing
entire research papers), each task can take hours to solve, and benchmarks often have hundreds of tasks—leading to weeks
of evaluation time for serial evaluations. As new benchmarks are released for testing AI agents, addressing these issues at
scale is crucial.

Systematic evaluation of AI agents [11]. To address these challenges, I built the Holistic Agent Leaderboard (HAL)
for trustworthy assessments of AI agents’ capabilities and risks [11]. I led a team of 30+ researchers in a large research and
engineering effort to improve agent evaluation by developing a standardized harness to reduce bugs and enable fair agent
comparison. HAL logs the cost of solving each task, enabling cost-controlled comparison. To cut down evaluation time, it
uses an orchestration system to enable parallel evaluation across hundreds of virtual machines. This reduced evaluation time
from weeks to hours. HAL processes and logs billions of tokens from agent executions, and allows researchers to conduct
LLM-aided analysis of agent behavior to detect if agents take shortcuts. I validated the system by conducting a large-scale
evaluation of 20,000+ agent rollouts on 9 benchmarks that cost over $40,000 to run. The vast majority of these evaluations
were missing from previous literature. For example, my analysis uncovered that higher reasoning effort decreased accuracy
in the majority of cases, contradicting assumptions about the role of reasoning effort in improving accuracy. Analysis of
the agent logs also yielded surprising insights that top-level accuracy metrics would miss. For example, agents frequently
gamed benchmarks by taking shortcuts rather than actually solving the task. Most concerningly, agents took actions that
would be catastrophic in deployment, such as using incorrect credit cards for flight bookings. Robust infrastructure for
agent evaluations is necessary to identify such agent failures hidden from top-level metrics. Systems such as HAL ensure
that AI agent evaluations incentivize agents that do well in the real world, not just on benchmarks. Results from HAL have
informed the analysis of leading models (such as GPT-5) published in Financial Times, WIRED, and MIT Tech Review.

3 Application: AI for science

A promising application of AI is in aiding scientific research. AI adoption for scientific research is rapid: between 2012 and
2022, the use of AI quadrupled across scientific fields [18]. This was before the release of ChatGPT and the accompanying
increase in generative AI use. As a result, AI for science could serve as a leading indicator of the evaluation challenges
accompanying AI adoption across domains. Assessing the impact of AI on science requires trustworthy evaluations. My
evaluations of AI for science have revealed critical shortcomings. I documented how the rush to adopt AI in science has
led to methodological flaws affecting the vast majority of papers in some fields. To foster the potential of AI for improving
reproducibility, I developed a benchmark to assess if AI agents can automate the process of reproducing papers across
medicine, social sciences, and computer science [17]. I also wrote about the dangers of overreliance on AI for science in the
journal Nature [19].

Uncovering and addressing the reproducibility crisis in AI-based science [12, 13]. My work has shown that the
rush to adopt AI in science has created a reproducibility crisis. My investigation began with the use of complex models such
as random forests in political science, where studies claimed over 90% AUC score at predicting civil wars, a suspiciously high
number given the general difficulty of predicting the future. When I reproduced these papers, I found that their impressive
results stemmed from evaluation errors rather than genuine predictive accuracy. Traditional peer review is unequipped to
uncover such errors because they can be extremely subtle. In one paper, the error resulted from a single incorrect parameter
in one line of code in a 10,000+ line code repository. This discovery led me to survey AI use across science, uncovering
similar errors in over 600 papers across 30 fields, including medicine, computer security, and mining [12]. In many areas,
the majority of AI-for-science research that was surveyed contained fundamental flaws. To address this crisis systematically,
I led a collaboration of 19 researchers across computer science, data science, social sciences, mathematics, and biomedical
research to develop the REFORMS checklist to help researchers avoid common pitfalls when using AI [13], published in
Science Advances. The checklist provides field-agnostic guidelines that have been adopted by researchers across fields to
improve the reliability of AI-based science.

Building benchmarks and agents to improve computational reproducibility [17]. This experience showed me the
dire need to scale reproducibility verification. AI has become more useful at solving computational tasks such as writing
and editing code. Could AI agents help verify the reproducibility of computational papers? Progress in AI is measured by
benchmarks. Yet, most previous benchmarks either measured if AI systems have the knowledge to answer questions across
scientific domains (but not if they can solve tasks in these fields), or if AI can solve tasks related to AI research (but not
research across scientific fields).

I built CORE-Bench [17], the first benchmark to evaluate AI’s ability to reproduce research across fields. The benchmark
consists of 90 papers from computer science, medicine, and social science, each manually reproduced and annotated with
verification questions. On the hardest version of the benchmark, which closely mirrors real-world reproduction attempts,
the best available agent achieved only 7% accuracy. However, the benchmark also revealed opportunities for progress.
I built a specialized agent for improving reproducibility by analyzing failures of the baseline agent, adding guardrails to
address dependency failures, and developing programmatic validation of the agent’s outputs. This more than tripled baseline
performance on the test set. Since releasing CORE-Bench, the state-of-the-art accuracy has increased from about 20% to
over 50%. Progress on CORE-Bench shows that focused evaluation can accelerate progress on well-defined scientific tasks.
Tools to automate well-defined scientific tasks, such as computational reproducibility, could save researchers millions of
hours annually, helping redirect this effort toward creative scientific work. Follow-up work has built on this idea to propose
benchmarks for other scientific fields.
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4 Future vision

Figure 3: General-purpose technologies such as AI go through
the phases of invention, innovation, and adoption. My re-
search will develop rigorous AI evaluation across these phases.

AI is a general-purpose technology that will transform many
industries [20]. Like other general-purpose technologies,
such as the internet, AI’s impact will be realized as it is
broadly adopted across society [21]. This process usually
has three phases: the invention of new technology, comple-
mentary innovations built using the general-purpose tech-
nology, and finally, the adoption of these innovations across
sectors of the economy (Figure 3). But this implies evaluat-
ing AI models is only part of the story; we must also assess
how they impact the world. Evaluations are critical in shep-
herding the AI community and fostering progress [22]. The
computer science community has poured enormous resources into building evaluations for models, but we have not investi-
gated how these models are adopted with the same rigor. This is like pharmaceutical companies developing better drugs in
the lab, but not investing in clinical trials to see if they are effective in the real world.

My research will develop the foundations of the science of AI evaluation across AI’s lifecycle, from invention
to innovation to adoption. I will continue building evaluations to make AI more reliable, foster the development of
practical applications of AI for science, and develop methods to track how AI actually gets adopted in the real world to
inform labor policy.

Engineering reliable AI agents. Despite their impressive capabilities, today’s AI agents are fundamentally unreliable.
This slows AI adoption, since users cannot trust the outputs of stochastic AI systems. One reason for failures is that
benchmarks don’t incentivize reliability. For example, web benchmarks don’t distinguish between abstention and incorrect
responses. A web agent that books the wrong flight gets the same score as a web agent that doesn’t book anything. I want
to spur the development of AI systems that can guarantee “five nines of reliability”, the standard in many applications in
fields like aerospace and nuclear engineering. I plan to pursue three concrete directions to make this possible. First, I will
build evaluations that account for the cost of errors. Booking the wrong flight or leaking a user’s credit card online is far
worse than not booking a flight at all, yet today’s benchmarks treat all errors equally—simply because verifying the final
answer is easier than evaluating an agent based on behavior logs. Building on the agent behavior analysis tools I developed
for HAL, I will develop evaluations that penalize costly errors to foster the development of reliable agents. Second, I aim
to develop infrastructure to prevent reliability failures before they occur. I will build systems identifying which agents will
likely exhibit failures before deployment. This includes creating stress tests (such as high-reliability verifiers) that specifically
probe for unreliable actions and performance degradation in out-of-distribution settings. Third, I propose creating methods
to determine optimal reliability-cost tradeoffs. For many applications, human oversight at 95% reliability is more cost-
effective than pursuing 99.999%, or “five nines” of reliability. My goal is to design graceful degradation strategies that
ensure agents fail safely and hand control to humans when they cannot meet reliability thresholds. We can move from
impressive demos to deployable systems by making reliability measurable and economically grounded.

Evaluations and tools to accelerate scientific progress. I aim to foster the development and adoption of AI for sci-
ence tools that will save scientists’ time by augmenting their expertise. Today, there is a gap between companies’ claims
that AI will soon automate key scientific tasks, and the real world, where AI often struggles with basic tasks. My work on
CORE-Bench showed that building evaluations for targeted applications of AI for science can foster progress on those tasks.
I will extend this approach to other scientific bottlenecks where AI tools could save millions of researcher hours by creating
evaluations that double as goals for the AI community. For example, today’s peer review system is ill-equipped to catch
subtle bugs in computational research. Can we develop AI systems to catch errors in all published scientific research and
review millions of lines of public code for bugs? Evaluations for such targeted applications will foster progress on routine
(but highly consequential) scientific tasks while driving advances in AI capabilities.

Methods to evaluate AI adoption and its labor impacts. The labor impacts of AI are a critical issue in AI policy.
Yet, the final phase of the AI lifecycle, adoption, remains poorly understood. When OpenAI announced that GPT-4 scored
in the 90th percentile on the bar exam [23], many concluded that AI would soon replace lawyers. Two years later, lawyers
still have jobs—not because AI lacks many capabilities required for legal work, but because integrating AI into professional
work is far more complex than benchmarks capture [16]. Today’s AI evaluations often overlook the slow and messy process
of adoption [21]. Benchmarks can measure GPT-4’s bar exam scores, but not whether it makes lawyers more productive,
whether it will automate or augment the work of lawyers, or how it changes the skills lawyers need. I aim to develop
methods to track AI adoption in professional settings to answer these questions. One way to conduct such evaluations is
to build interactive systems that can be used by professionals to carry out work-related tasks, which would double as rich
sources of evaluation data. This requires collaboration with domain experts to build systems and run large-scale evaluation
studies. Over the course of my Ph.D., I have productively collaborated with experts across domains, including lawyers, social
scientists, and security researchers. I will build on these collaborations to create domain-specific interactive evaluations in
settings such as law, cybersecurity, healthcare, and education.

Alongside my technical research, I will continue my direct policy engagement, working with federal and state legislators
as they draft and implement AI regulation. Technical details matter enormously for policy, such as understanding how
evaluation requirements in AI regulation can be gamed, but few policymakers can access unbiased, non-partisan technical
expertise. I will continue to provide this expertise through testimony, briefings, and feedback on draft legislation.

As AI is developed and adopted broadly across society, the AI community faces a stark choice: continue celebrating
benchmark results while real-world deployments fail, or pivot and start making AI work better for humanity. The driving
force for my work is to steer AI development and deployment towards the latter path by conducting deeply technical research
that informs our assessments of AI progress, AI for science, and AI policy.
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