
 Appendix for the article AI leaderboards are no longer useful. It's time to switch to Pareto
 curves.

 Link to the post that introduces these results.
 Link to reproduction materials .

 Implementation details

 We used gpt-3.5-turbo-0125 for GPT-3.5 implementations and gpt-4-turbo-2024-04-09 for
 GPT -4 implementations. We describe all implementations in detail below.

 In addition to our analysis in the main text, we also conducted robustness checks with the
 June 2023 versions of GPT-3.5 and GPT-4 and found substantially similar results.

 We include four figures below: (i) The results of our HumanEval analysis along with error bars
 for accuracy and cost; (ii) The results of our HumanEval analysis with the y-axis from 0 to 1 (in
 other figures, the y-axis is clipped between 0.7 and 1 for clarity); (iii) the results of our
 robustness checks with the June 2023 versions of GPT-3.5 and GPT-4; (iv) results of the time
 vs. accuracy Pareto curve.

 In the figure reporting our results in the main text, we include the convex hull of points on the
 Pareto frontier because, given any two agents on the frontier, we can always choose a strategy
 that picks agent 1 with probability p and agent 2 with probability 1-p and to achieve any
 tradeoff represented by points on the convex hull .

 GPT-3.5 and GPT-4. We implement the model baselines using the simple (zero shot; without
 agent architecture) strategy provided with the LDB paper. This includes a text prompt and the
 example tests accompanying the HumanEval coding problem as inputs to the model.

 LDB . The LDB agent uses two language models: one for generating code and another for
 debugging. In all plots and throughout this post, we use the nomenclature “LDB (Generator ,
 Debugger)” to specify which models were used. If the same model served both functions, we
 list it only once within parentheses. We kept all parameters as specified in the code
 accompanying the original paper. In particular, this means that the maximum number of
 iterations is set to 10 and the temperature to zero.

 LATS . Based on correspondence with the authors, we set the maximum number of iterations
 to 8, the expansion factor to 3, and the temperature values for generating the function
 implementations to 0.8. The temperature for generating self-reflections and the internal unit

https://www.aisnakeoil.com/p/ai-leaderboards-are-no-longer-useful
https://github.com/benediktstroebl/agent-eval
https://github.com/FloridSleeves/LLMDebugger
https://github.com/andyz245/LanguageAgentTreeSearch

 tests was set to 0.2. The maximum number of internal test cases was set to 6 for runs with
 GPT-3.5 and 4 for runs using GPT-4. The difference in the number of internal test cases for
 GPT-3.5 and GPT-4 was not presented in the paper; we learned of this based on our
 correspondence with the authors after we shared an early draft of the blog post with them.

 Reflexion . We left all parameters unchanged from the ones provided in the original repository,
 setting the maximum number of iterations to 2, expansion factor to 3, and temperature to zero
 for generating function implementations. The temperature used for generating the internal tests
 and self-reflections is 0.2.

 Retry. This baseline uses the simple strategy implemented in the code accompanying the LDB
 agent for zero-shot evaluations of language models (i.e., there is no agent architecture). We
 used this strategy to repeatedly prompt the same language model, keeping all parameters
 equal across retrials, as long as the code outputted by the model failed at least one of the
 example tests. If at any point a solution passes the tests given in the HumanEval problem
 description, we evaluate this as the final solution of the agent for this problem. We repeated
 this procedure for up to 5 trials and stopped early if the code passed all the given tests. We set
 the temperature to zero.

 Warming. For the warming baseline, we modify the retry baseline by gradually increasing the
 temperature parameter across successive trials. Initially, the temperature was set at zero,
 mirroring the retry baseline. For the second and third trials, we raised the temperature to 0.3,
 and for the final two trials, we increased it further to 0.5. If at any point a solution passes the
 tests given in the HumanEval problem description, we evaluate this as the final solution of the
 agent for this problem.

 Escalation. We modify the simple strategy but switch the underlying model to a more
 expensive one if a proposed solution fails at least one of the example tests. We progressively
 escalated unsolved problems up a model chain of increasing cost (llama-3-8b-chat-hf,
 gpt-3.5-turbo-0125, llama-3-70b-chat-hf, gpt-4-turbo-2024-04-09). All other parameters are
 kept constant across trials – in particular, temperature is set to zero. If at any point a solution
 passes the tests given in the HumanEval problem description, we evaluate this as the final
 solution of the agent for this problem. This leads to slightly lower accuracy compared to GPT-4,
 since some solutions from cheaper models might pass the example tests but fail one of the
 evaluation tests.

https://github.com/noahshinn/reflexion

 Additional results

 Figure 1: Error bars for our HumanEval analysis in the main post

 The figure shows accuracy vs. API cost for the HumanEval results zoomed in on the y-axis
 (0.7-1). The error bars represent 95% confidence intervals (left/lower; brown) and the minimum
 and maximum values (right/upper; gray) of accuracy and total cost across 5 runs. To calculate
 the 95% confidence intervals, we used the Student’s t distribution given that we only have five
 runs per agent.

 Figure 2: HumanEval results with a complete x- and y-axis.

 The figure shows accuracy vs. API costs with a complete x- and y-axis. This plot showcases
 the wide range of costs associated with different approaches, especially when considering
 LATS.

 Figure 3: Accuracy vs. inference time curves for HumanEval

 This figure shows the accuracy vs. inference time results on a linear x-axis scale, with the
 y-axis clipped to 0.7-1 for clarity. Time measurements refer to the mean of the sum of inference
 times across all API calls made by the agent across the five runs.

 Figure 4: Robustness checks with June 2023 versions of GPT-4 models

 Figure 4a: Accuracy vs. inference cost. Figure 4b: Accuracy vs. inference time

 One concern with our analysis is that we use the latest versions of OpenAI's models, since
 later versions of GPT-3.5 and GPT-4 might have more scope for contamination. To address this,
 we conduct additional robustness checks with the June 2023 versions of GPT-3.5 and GPT-4.
 We find substantially similar results for this version: complex agents are no better than our
 simple agent baselines while cost orders of magnitude more in some cases. Note that the June
 2023 version of GPT-4 is much more expensive than the April 2024 version, leading to the big
 difference in inference cost.

 For the LATS agents, there are some significant outliers across tasks for both, LATS (GPT-4)
 and LATS (GPT-3.5), with some tasks requiring more than 2 hours to complete for GPT-3.5.
 Overall, there were more extreme outliers for LATS (GPT-3.5) than LATS (GPT-4). For the same
 reason, we had to exclude one task (i.e., HumanEval/83) from the analysis for LATS (GPT-3.5),
 which did not stop running even after 5 hours. We marked this task as incorrect and excluded
 the time and cost from the results shown above. HumanEval/83 was one of the tasks excluded
 from the subset of HumanEval that the authors evaluated the LATS agent on.

