Combinatorial Search

- permutations
- backtracking
- counting
- subsets
- paths in a graph
Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating infeasible solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances.

Caveat to the caveat. Backtracking may prune search space to reasonable size, even for relatively large instances.
Warmup: enumerate N-bit strings

Problem: process all 2^N N-bit strings (stay tuned for applications).

Equivalent to counting in binary from 0 to $2^N - 1$.
- maintain $a[i]$ where $a[i]$ represents bit i
- initialize all bits to 0
- simple recursive method does the job
 (call `enumerate(0)`)

```java
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Invariant (prove by induction);
Enumerates all (N-k)-bit strings and cleans up after itself.
Warmup: enumerate N-bit strings (full implementation)

Equivalent to counting in binary from 0 to $2^N - 1$.

```java
public class Counter {
    private int N;   // number of bits
    private int[] a; // bits (0 or 1)

    public Counter(int N) {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = 0;
        enumerate(0);
    }

    private void enumerate(int k) {
        if (k == N)
            process(); return;
        enumerate(k+1);
        a[k] = 1;
        enumerate(k+1);
        a[k] = 0;
    }

    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Counter c = new Counter(N);
    }
}
```

private void process() {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]);
 StdOut.println();
}

% java Counter 4
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
permutations
backtracking
counting
subsets
paths in a graph
N-rooks Problem

How many ways are there to place
N rooks on an N-by-N board so that no rook can attack any other?

No two in the same row, so represent solution with an array
\(a[i] = \) column of rook in row \(i \).
No two in the same column, so array entries are all different
\(a[] \) is a permutation (rearrangement of 0, 1, ... N-1)

Answer: There are \(N! \) non mutually-attacking placements.

Challenge: Enumerate them all.
Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N:
- Start with 0 1 2 ... N-1.
- For each value of i
 - swap i into position 0
 - enumerate all (N-1)! arrangements of a[1..N-1]
 - clean up (swap i and 0 back into position)

Example showing cleanup swaps that bring perm back to original
N-rooks problem (enumerating all permutations): scaffolding

```java
class Rooks
{
    private int N;
    private int[] a;

    public Rooks(int N)
    {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = i;
        enumerate(0);
    }

    private void enumerate(int k)
    { /* See next slide. */ }

    private void exch(int i, int j)
    {  int t = a[i]; a[i] = a[j]; a[j] = t;  }

    private void process()
    {  for (int i = 0; i < N; i++)
        StdOut.print(a[i] + " ");
        StdOut.println();
    }

    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        Rooks t = new Rooks(N);
        t.enumerate(0);
    }
}
```

In the code, a[0..N-1] is initialized to 0..N-1.
private void enumerate(int k)
{
 if (k == N)
 {
 process();
 return;
 }
 for (int i = k; i < N; i++)
 {
 exch(a, k, i);
 enumerate(k+1);
 exch(a, k, i);
 }
}
4-Rooks search tree
N-rooks problem: back-of-envelope running time estimate

[Studying slow way to compute $N!$ but good warmup for calculations.]

% java Rooks 10
3628800 solutions → instant

% java Rooks 11
39916800 solutions → about 2 seconds

% java Rooks 12
479001600 solutions → about 24 seconds (checks with $N!$ hypothesis)

Hypothesis: Running time is about $2 \left(\frac{N!}{11!} \right) \text{ seconds.}$

% java Rooks 25

→ millions of centuries
• permutations
• backtracking
• counting
• subsets
• paths in a graph
How many ways are there to place
N queens on an N-by-N board so that no queen can attack any other?

Representation. Same as for rooks:
represent solution as a permutation: \(a[i] = \) column of queen in row \(i \).

Additional constraint: no diagonal attack is possible

Challenge: Enumerate (or even count) the solutions
4-Queens search tree
Iterate through elements of search space.
- when there are N possible choices, make one choice and recur.
- if the choice is a dead end, **backtrack** to previous choice, and make next available choice.

Identifying dead ends allows us to **prune** the search tree

For N queens:
- dead end: a diagonal conflict
- pruning: backtrack and try next row when diagonal conflict found

In general, improvements are possible:
- try to make an “intelligent” choice
- try to reduce cost of choosing/backtracking
4-Queens Search Tree (pruned)

Backtrack on diagonal conflicts

solutions
N-Queens: Backtracking solution

```java
private boolean backtrack(int k) {
    for (int i = 0; i < k; i++) {
        if ((a[i] - a[k]) == (k - i)) return true;
        if ((a[k] - a[i]) == (k - i)) return true;
    }
    return false;
}

private void enumerate(int k) {
    if (k == N) {
        process();
        return;
    }
    for (int i = k; i < N; i++) {
        exch(a, k, i);
        if (!backtrack(k)) enumerate(k+1);
        exch(a, k, i);
    }
}
```
Pruning the search tree leads to enormous time savings

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
<td>5</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>720</td>
<td>8</td>
<td>92</td>
<td>5,040</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

savings: factor of more than 1-million
N-Queens: How many solutions?

Answer to original question easy to obtain:

- add an instance variable to count solutions (initialized to 0)
- change process() to increment the counter
- add a method to return its value

% java Queens 4
2 solutions

% java Queens 8
92 solutions

% java Queens 16
14772512 solutions

Source: On-line encyclopedia of integer sequences, N. J. Sloane [sequence A000170]

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>40</td>
<td>92</td>
<td>352</td>
<td>724</td>
<td>2,680</td>
<td>14,200</td>
<td>73,712</td>
<td>365,596</td>
<td>2,279,184</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Q(N)</td>
<td></td>
<td>14,772,512</td>
<td>95,815,104</td>
<td>666,090,624</td>
<td>4,968,057,848</td>
<td>. . .</td>
<td>2,207,893,435,808,350</td>
<td>took 53 years of CPU time (2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N-queens problem: back-of-envelope running time estimate

Hypothesis: Running time is about \((N/2)!\) seconds.

```plaintext
% java Queens 13
73712 solutions
about a second

% java Queens 14
365596 solutions
about 7 seconds

% java Queens 15
2279184 solutions
about 49 seconds

% java Queens 16
14772512 solutions
about 360 seconds

% java Queens 25
about 54 years
```

<table>
<thead>
<tr>
<th>N</th>
<th>Solutions</th>
<th>Time</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>73712</td>
<td>about a second</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>365596</td>
<td>about 7 seconds</td>
<td>6.32</td>
</tr>
<tr>
<td>15</td>
<td>2279184</td>
<td>about 49 seconds</td>
<td>6.73</td>
</tr>
<tr>
<td>16</td>
<td>14772512</td>
<td>about 360 seconds</td>
<td>7.38</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>about 54 years</td>
<td></td>
</tr>
</tbody>
</table>

\(((25/2)! \text{ seconds in centuries} = 0.54204965 \text{ centuries}) \)
- permutations
- backtracking
- counting
- subsets
- paths in a graph
Problem: enumerate all N-digit base-R numbers

Solution: generalize binary counter in lecture warmup

enumerate N-digit base-R numbers

```java
private static void enumerate(int k) {
    if (k == N) {
        process(); return;
    }
    for (int n = 0; n < R; n++) {
        a[k] = n;
        enumerate(k + 1);
    }
    a[k] = 0;
}
```

example showing cleanups that zero out digits

<table>
<thead>
<tr>
<th>0 0 0</th>
<th>1 0 0</th>
<th>2 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1</td>
<td>1 0 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>0 0 2</td>
<td>1 0 2</td>
<td>2 0 2</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 1 0</td>
<td>2 1 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 1 1</td>
<td>2 1 1</td>
</tr>
<tr>
<td>0 1 2</td>
<td>1 1 2</td>
<td>2 1 2</td>
</tr>
<tr>
<td>0 2 0</td>
<td>1 2 0</td>
<td>2 2 0</td>
</tr>
<tr>
<td>0 2 1</td>
<td>1 2 1</td>
<td>2 2 1</td>
</tr>
<tr>
<td>0 2 2</td>
<td>1 2 2</td>
<td>2 2 2</td>
</tr>
<tr>
<td>0 2 0</td>
<td>1 2 2</td>
<td>2 2 2</td>
</tr>
</tbody>
</table>

enumerate binary numbers (from warmup)

```java
private void enumerate(int k) {
    if (k == N) {
        process(); return;
    }
    enumerate(k + 1);
    a[k] = 1;
    enumerate(k + 1);
    a[k] = 0;
}
```

clean up not needed: Why?
Counting application: Sudoku

Problem:
Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Remark: Natural generalization is NP-hard.
Counting application: Sudoku

Problem:
Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Solution: Enumerate all 81-digit base-9 numbers (with backtracking).
Sudoku: Backtracking solution

Iterate through elements of search space.
- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

Improvements are possible.
- try to make an “intelligent” choice
- try to reduce cost of choosing/backtracking
Sudoku: Java implementation

```java
private static void solve(int cell)
{
    if (cell == 81)
        { show(board); return;  }

    if (board[cell] != 0)
        { solve(cell + 1); return;  }

    for (int n = 1; n <= 9; n++)
    {      if (! backtrack(cell, n))
    {         board[cell] = n;         solve(cell + 1);      }   }

    board[cell] = 0;
}
```

Works remarkably well (plenty of constraints). Try it!
permutations
backtracking
counting
subsets
paths in a graph
Enumerating subsets: natural binary encoding

Given n items, enumerate all \(2^n\) subsets.
- count in binary from 0 to \(2^n - 1\).
- bit i represents item i
- if 0, in subset; if 1, not in subset

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^N subsets.

- count in binary from 0 to $2^N - 1$.
- maintain $a[i]$ where $a[i]$ represents item i
- if 0, $a[i]$ in subset; if 1, $a[i]$ not in subset

Binary counter from warmup does the job

```java
private void enumerate(int k)
{
    if (k == N)
    {    process(); return;    }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0011</td>
<td>21</td>
<td>enter 2</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>exit 1</td>
</tr>
<tr>
<td>0110</td>
<td>32</td>
<td>enter 3</td>
</tr>
<tr>
<td>0111</td>
<td>321</td>
<td>enter 1</td>
</tr>
<tr>
<td>0101</td>
<td>31</td>
<td>exit 2</td>
</tr>
<tr>
<td>0100</td>
<td>3</td>
<td>exit 1</td>
</tr>
<tr>
<td>1100</td>
<td>43</td>
<td>enter 4</td>
</tr>
<tr>
<td>1101</td>
<td>431</td>
<td>enter 1</td>
</tr>
<tr>
<td>1111</td>
<td>4321</td>
<td>enter 2</td>
</tr>
<tr>
<td>1110</td>
<td>432</td>
<td>exit 1</td>
</tr>
<tr>
<td>1010</td>
<td>42</td>
<td>exit 3</td>
</tr>
<tr>
<td>1011</td>
<td>421</td>
<td>enter 1</td>
</tr>
<tr>
<td>1001</td>
<td>41</td>
<td>exit 2</td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>exit 1</td>
</tr>
</tbody>
</table>

ruler function
The n-bit binary reflected Gray code is:
- the (n-1) bit code with a 0 prepended to each word, followed by
- the (n-1) bit code in reverse order, with a 1 prepended to each word.
public static void moves(int n, boolean enter) {
 if (n == 0) return;
 moves(n-1, true);
 if (enter) System.out.println("enter " + n);
 else System.out.println("exit " + n);
 moves(n-1, false);
}
More Applications of Gray Codes

- 3-bit rotary encoder
- 8-bit rotary encoder
- Towers of Hanoi
- Chinese ring puzzle
Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
• flip $a[k]$ instead of setting it to 1
• eliminate cleanup

Gray code enumeration

```
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1 - a[k];
    enumerate(k+1);
}
```

standard binary (from warmup)

```
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Advantage (same as Beckett): only one item changes subsets
Scheduling (set partitioning). Given n jobs of varying length, divide among two machines to minimize the time the last job finishes.

<table>
<thead>
<tr>
<th>job</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Remark: NP-hard.

public double[] finish(int[] a)
{
 double[] time = new double[2];
 time[0] = 0.0; time[1] = 0.0;
 for (int i = 0; i < N; i++)
 time[a[i]] += jobs[i];
 return time;
}

private double cost(int[] a)
{
 double[] time = finish(a);
 return Math.abs(time[0] - time[1]);
}

<table>
<thead>
<tr>
<th>i</th>
<th>a[]</th>
<th>time[0]</th>
<th>time[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1 1 0</td>
<td>1.41</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 0</td>
<td>1.41</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>0 1 1 0</td>
<td>1.41</td>
<td>3.73</td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 0</td>
<td>3.64</td>
<td>3.73</td>
</tr>
</tbody>
</table>

cost: .09
Scheduling (full implementation)

```java
public class Scheduler {
    int N;          // Number of jobs.
    int[] a;        // Subset assignments.
    int[] b;        // Best assignment.
    double[] jobs;  // Job lengths.

    public Scheduler(double[] jobs) {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];      b = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = 0;
        for (int i = 0; i < N; i++)
            b[i] = a[i];      enumerate(0);
    }

    public int[] best() {
        return b;
    }

    private void enumerate(int k) {
        /* Gray code enumeration. */
    }

    private void process() {
        if (cost(a) < cost(b))
            for (int i = 0; i < N; i++)
                b[i] = a[i];
    }

    public static void main(String[] args) {
        /* Create Scheduler, print result. */
    }
}
```

```plaintext
% java Scheduler 4 < jobs.txt
```

<table>
<thead>
<tr>
<th>a[]</th>
<th>finish times</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>7.38</td>
<td>0.00</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>5.15</td>
<td>2.24</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3.15</td>
<td>4.24</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>5.38</td>
<td>2.00</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3.65</td>
<td>3.73</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1.41</td>
<td>5.97</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3.41</td>
<td>3.97</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>5.65</td>
<td>1.73</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4.24</td>
<td>3.15</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>2.00</td>
<td>5.38</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0.00</td>
<td>7.38</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>2.24</td>
<td>5.15</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>3.97</td>
<td>3.41</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1.73</td>
<td>5.65</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>3.73</td>
<td>3.65</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>5.97</td>
<td>1.41</td>
</tr>
</tbody>
</table>

MACHINE 0 MACHINE 1
1.4142135624 1.7320508076
2.0000000000 2.2360679775

3.6502815399 3.7320508076
```
Large number of subsets leads to remarkably low cost
Scheduling: improvements

Many opportunities (details omitted)
- fix last job on machine 0 (quick factor-of-two improvement)
- backtrack when partial schedule cannot beat best known
  (check total against goal: half of total job times)

```java
private void enumerate(int k)
{
 if (k == N-1)
 { process(); return; }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

- process all $2^k$ subsets of last k jobs, keep results in memory,
  (reduces time to $2^{N-k}$ when $2^k$ memory available).
Backtracking summary

N-Queens: permutations with backtracking
Sudoku: counting with backtracking
Scheduling: subsets with backtracking
permutations
backtracking
counting
subsets
paths in a graph
Hamilton Path

**Hamilton path.** Find a simple path that visits every vertex exactly once.

**Remark.** Euler path easy, but Hamilton path is NP-complete.
Knight's Tour

**Knight's tour.** Find a sequence of moves for a knight so that, starting from any square, it visits every square on a chessboard exactly once.

**Solution.** Find a Hamilton path in knight's graph.
Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at $v$:

- Add $v$ to current path.
- For each vertex $w$ adjacent to $v$
  
  find a simple path starting at $w$ using all remaining vertices
- Remove $v$ from current path.

How to implement?
Add cleanup to DFS (!!)
public class HamiltonPath {
    private boolean[] marked;
    private int count;

    public HamiltonPath(Graph G) {
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            dfs(G, v, 1);
        count = 0;
    }

    private void dfs(Graph G, int v, int depth) {
        marked[v] = true;
        if (depth == G.V()) count++;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w, depth+1);
        marked[v] = false;
    }
}

Easy exercise: Modify this code to find and print the longest path
The Longest Path

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.