Minimum Spanning Trees

- weighted graph API
- cycles and cuts
- Kruskal’s algorithm
- Prim’s algorithm
- advanced topics

References:
Algorithms in Java, Chapter 20
http://www.cs.princeton.edu/introalgsds/54mst
Minimum Spanning Tree

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.
Minimum Spanning Tree

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

Brute force: Try all possible spanning trees
- problem 1: not so easy to implement
- problem 2: far too many of them

Ex: [Cayley, 1889]: V^2 spanning trees on the complete graph on V vertices.

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
MST Origin

Otakar Boruvka (1926).
• Electrical Power Company of Western Moravia in Brno.
• Most economical construction of electrical power network.
• Concrete engineering problem is now a cornerstone problem-solving model in combinatorial optimization.
Applications

MST is fundamental problem with diverse applications.

• Network design.
 telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.
 traveling salesperson problem, Steiner tree

• Indirect applications.
 max bottleneck paths
 LDPC codes for error correction
 image registration with Renyi entropy
 learning salient features for real-time face verification
 reducing data storage in sequencing amino acids in a protein
 model locality of particle interactions in turbulent fluid flows
 autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.
Medical Image Processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html
Two Greedy Algorithms

Kruskal’s algorithm. Consider edges in ascending order of cost. Add the next edge to \(T \) unless doing so would create a cycle.

Prim’s algorithm. Start with any vertex \(s \) and greedily grow a tree \(T \) from \(s \). At each step, add the cheapest edge to \(T \) that has exactly one endpoint in \(T \).

Proposition. Both greedy algorithms compute an MST.

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko
weighted graph API
- cycles and cuts
- Kruskal’s algorithm
- Prim’s algorithm
- advanced topics
Weighted Graph API

```java
public class WeightedGraph
{
    WeightedGraph(int V) // create an empty graph with V vertices
    void insert(Edge e) // insert edge e
    Iterable<Edge> adj(int v) // return an iterator over edges incident to v
    int V() // return the number of vertices
    String toString() // return a string representation
}
```

iterate through all edges (once in each direction)
Identical to `Graph.java` but use `Edge` adjacency sets instead of `int`.

```java
public class WeightedGraph {
    private int V;
    private SET<Edge>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (SET<Edge>[]) new SET[V];
        for (int v = 0; v < V; v++)
            adj[v] = new SET<Edge>();
    }

    public void addEdge(Edge e) {
        int v = e.v, w = e.w;
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<Edge> adj(int v) {
        return adj[v];
    }
}
```
public class Edge implements Comparable<Edge> {
 private final int v, int w;
 private final double weight;

 public Edge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either() { return v; }

 public int other(int vertex) {
 if (vertex == v) return w;
 else return v;
 }

 public int weight() { return weight; }

 // See next slide for edge compare methods.
}

Edge abstraction needed for weights

slightly tricky accessor methods (enables client code like this)

for (int v = 0; v < G.V(); v++) {
 for (Edge e : G.adj(v)) {
 int w = e.other(v);
 // edge v-w
 }
}
Weighted edge data type: compare methods

Two different compare methods for edges

- `compareTo()` so that edges are `Comparable` (for use in `SET`)
- `compare()` so that clients can compare edges by weight.

```java
public final static Comparator<Edge> BY_WEIGHT = new ByWeightComparator();

private static class ByWeightComparator implements Comparator<Edge> {
    public int compare(Edge e, Edge f) {
        if (e.weight < f.weight) return -1;
        if (e.weight > f.weight) return +1;
        return 0;
    }
}

public int compareTo(Edge that) {
    if (this.weight < that.weight) return -1;
    else if (this.weight > that.weight) return +1;
    else return 0;
}
```
weighted graph API
- cycles and cuts
- Kruskal’s algorithm
- Prim’s algorithm
- advanced topics
Spanning Tree

MST. Given connected graph \(G \) with positive edge weights, find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph \(G \) is a subgraph \(T \) that is connected and acyclic.

Property. MST of \(G \) is always a spanning tree.
Greedy Algorithms

Simplifying assumption. All edge weights w_e are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

![Diagram showing f is not in the MST and e is in the MST](image)
Cycle Property

Simplifying assumption. All edge weights \(w_e \) are distinct.

Cycle property. Let \(C \) be any cycle, and let \(f \) be the max cost edge belonging to \(C \). Then the MST \(T^* \) does not contain \(f \).

Pf. [by contradiction]
- Suppose \(f \) belongs to \(T^* \). Let’s see what happens.
- Deleting \(f \) from \(T^* \) disconnects \(T^* \). Let \(S \) be one side of the cut.
- Some other edge in \(C \), say \(e \), has exactly one endpoint in \(S \).
- \(T = T^* \cup \{ e \} - \{ f \} \) is also a spanning tree.
- Since \(c_e < c_f \), cost(\(T \)) < cost(\(T^* \)).
- Contradicts minimality of \(T^* \).

![Diagram](image)
Cut Property

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of vertices, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. [by contradiction]
- Suppose e does not belong to T^*. Let’s see what happens.
- Adding e to T^* creates a (unique) cycle C in T^*.
- Some other edge in C, say f, has exactly one endpoint in S.
- $T = T^* \cup \{ e \} - \{ f \}$ is also a spanning tree.
- Since $c_e < c_f$, cost(T) < cost(T^*).
- Contradicts minimality of T^*.

\[\text{MST } T^* \]

\[\text{cycle } C \]

\[S \]

\[e \]

\[f \]
- weighted graph API
- cycles and cuts
- **Kruskal’s algorithm**
- Prim’s algorithm
- advanced algorithms
- clustering
Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order of cost. Add the next edge to T unless doing so would create a cycle.
Kruskal's algorithm example
Proposition. Kruskal’s algorithm computes the MST.

Pf. [case 1] Suppose that adding e to T creates a cycle C
• e is the max weight edge in C (weights come in increasing order)
• e is not in the MST (cycle property)
Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding $e = (v, w)$ to T does not create a cycle

- let S be the vertices in v's connected component
- w is not in S
- e is the min weight edge with exactly one endpoint in S
- e is in the MST (cut property)
Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A1. Naïve solution: use DFS.
 • $O(V)$ time per cycle check.
 • $O(EV)$ time overall.
Kruskal's algorithm implementation

Q. How to check if adding an edge to T would create a cycle?

A2. Use the union-find data structure from lecture 1 (!).
- Maintain a set for each connected component.
- If v and w are in same component, then adding v-w creates a cycle.
- To add v-w to T, merge sets containing v and w.

\[
\begin{align*}
\text{Case 1: adding v-w creates a cycle} & \quad \text{Case 2: add v-w to T and merge sets}
\end{align*}
\]
Kruskal's algorithm: Java implementation

```java
public class Kruskal
{
    private SET<Edge> mst = new SET<Edge>();

    public Kruskal(WeightedGraph G)
    {
        Edge[] edges = G.edges();
        Arrays.sort(edges, Edge.BY_WEIGHT);

        UnionFind uf = new UnionFind(G.V());
        for (Edge e : edges)
            if (!uf.find(e.either(), e.other()))
            {
                uf.unite(e.either(), e.other());
                mst.add(edge);
            }
    }

    public Iterable<Edge> mst()
    { return mst; } }
```

Easy speedup: Stop as soon as there are V-1 edges in MST.
Kruskal's algorithm running time

Kruskal running time: Dominated by the cost of the sort.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Frequency</th>
<th>Time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>1</td>
<td>$E \log E$</td>
</tr>
<tr>
<td>union</td>
<td>V</td>
<td>$\log^* V$ †</td>
</tr>
<tr>
<td>find</td>
<td>E</td>
<td>$\log^* V$ †</td>
</tr>
</tbody>
</table>

† amortized bound using weighted quick union with path compression

recall: $\log^* V \leq 5$ in this universe

Remark 1. If edges are already sorted, time is proportional to $E \log^* V$

Remark 2. Linear in practice with PQ or quicksort partitioning
(see book: don't need full sort)
weight graph API
cycles and cuts
Kruskal’s algorithm
Prim’s algorithm
advanced topics
Prim's algorithm example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
Start with vertex 0 and greedily grow tree T. At each step, add cheapest edge that has exactly one endpoint in T.
Prim's Algorithm example
Proposition. Prim's algorithm computes the MST.

Pf.
- Let S be the subset of vertices in current tree T.
- Prim adds the cheapest edge e with exactly one endpoint in S.
- e is in the MST (cut property)
Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A1. Brute force: try all edges.
- $O(E)$ time per spanning tree edge.
- $O(E V)$ time overall.
Prim's algorithm implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A2. Maintain a priority queue of vertices connected by an edge to S
- Delete min to determine next vertex v to add to S.
- Disregard v if already in S.
- Add to PQ any vertex brought closer to S by v.

Running time.
- $\log V$ steps per edge (using a binary heap).
- $E \log V$ steps overall.

Note: This is a lazy version of implementation in Algs in Java

- **Lazy:** put all adjacent vertices (that are not already in MST) on PQ
- **Eager:** first check whether vertex is already on PQ and decrease its key
Key-value priority queue

Associate a value with each key in a priority queue.

API:

```java
public class MinPQplus<Key extends Comparable<Key>, Value>

    MinPQplus() // create a key-value priority queue
    void put(Key key, Value val) // put key-value pair into the priority queue
    Value delMin() // return value paired with minimal key
    Key min() // return minimal key
```

Implementation:

- start with same code as standard heap-based priority queue
- use a parallel array `vals[]` (value associated with `keys[i]` is `vals[i]`)
- modify `exch()` to maintain parallel arrays (do `exch` in `vals[]`)
- modify `delMin()` to return `value`
- add `min()` (just returns `keys[1]`)
Lazy implementation of Prim's algorithm

```java
public class LazyPrim
{
    Edge[] pred = new Edge[G.V()];

    public LazyPrim(WeightedGraph G)
    {
        boolean[] marked = new boolean[G.V()];
        double[] dist = new double[G.V()];
        MinPQplus<Double, Integer> pq;
        pq = new MinPQplus<Double, Integer>();
        dist[s] = 0.0;
        marked[s] = true;
        pq.put(dist[s], s);
        while (!pq.isEmpty())
        {
            int v = pq.delMin();
            if (marked[v]) continue;
            marked(v) = true;
            for (Edge e : G.adj(v))
            {
                int w = e.other(v);
                if (!done[w] && (dist[w] > e.weight()))
                {
                    dist[w] = e.weight(); pred[w] = e;
                    pq.insert(dist[w], w);
                }
            }
        }
    }
}
```

- `pred[v]` is edge attaching `v` to MST
- Marks vertices in MST
- Distance to MST
- Key-value PQ
- Get next vertex
- Ignore if already in MST
- Add to PQ any vertices brought closer to S by v
Prim's algorithm (lazy) example

Priority queue **key** is distance (edge weight); **value** is vertex

Lazy version leaves obsolete entries in the PQ therefore may have multiple entries with same value

```
0-1 0.32
0-2 0.29
0-5 0.60
0-6 0.51
0-7 0.31
1-7 0.21
3-4 0.34
3-5 0.18
4-5 0.40
4-6 0.51
4-7 0.46
6-7 0.25
```
Eager implementation of Prim’s algorithm

Use indexed priority queue that supports
- contains: is there a key associated with value v in the priority queue?
- decrease key: decrease the key associated with value v

[more complicated data structure, see text]

Putative “benefit”: reduces PQ size guarantee from E to V
- not important for the huge sparse graphs found in practice
- PQ size is far smaller in practice
- widely used, but practical utility is debatable
Removing the distinct edge costs assumption

Simplifying assumption. All edge weights w_e are distinct.

Fact. Prim and Kruskal don't actually rely on the assumption (our proof of correctness does)

Suffices to introduce tie-breaking rule for `compare()`.

Approach 1:

```java
public int compare(Edge e, Edge f) {
    if (e.weight < f.weight) return -1;
    if (e.weight > f.weight) return +1;
    if (e.v < f.v) return -1;
    if (e.v > f.v) return +1;
    if (e.w < f.w) return -1;
    if (e.w > f.w) return +1;
    return 0;
}
```

Approach 2: add tiny random perturbation.
• weighted graph API
• cycles and cuts
• Kruskal’s algorithm
• Prim’s algorithm

• advanced topics
Advanced MST theorems: does an algorithm with a linear-time guarantee exist?

<table>
<thead>
<tr>
<th>Year</th>
<th>Worst Case</th>
<th>Discovered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$E \log \log V$</td>
<td>Yao</td>
</tr>
<tr>
<td>1976</td>
<td>$E \log \log V$</td>
<td>Cheriton-Tarjan</td>
</tr>
<tr>
<td>1984</td>
<td>$E \log^* V$, $E + V \log V$</td>
<td>Fredman-Tarjan</td>
</tr>
<tr>
<td>1986</td>
<td>$E \log (\log^* V)$</td>
<td>Gabow-Galil-Spencer-Tarjan</td>
</tr>
<tr>
<td>1997</td>
<td>$E \alpha(V) \log \alpha(V)$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2000</td>
<td>$E \alpha(V)$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2002</td>
<td>optimal</td>
<td>Pettie-Ramachandran</td>
</tr>
<tr>
<td>20xx</td>
<td>E</td>
<td>???</td>
</tr>
</tbody>
</table>

deterministic comparison based MST algorithms

<table>
<thead>
<tr>
<th>Year</th>
<th>Problem</th>
<th>Time</th>
<th>Discovered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Planar MST</td>
<td>E</td>
<td>Cheriton-Tarjan</td>
</tr>
<tr>
<td>1992</td>
<td>MST Verification</td>
<td>E</td>
<td>Dixon-Rauch-Tarjan</td>
</tr>
<tr>
<td>1995</td>
<td>Randomized MST</td>
<td>E</td>
<td>Karger-Klein-Tarjan</td>
</tr>
</tbody>
</table>

related problems
Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.
- Distances between point pairs are Euclidean distances.

Brute force. Compute $N^2 / 2$ distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in $O(N \log N)$
[stay tuned for geometric algorithms]
Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
distance function. numeric value specifying "closeness" of two objects.

Fundamental problem.
Divide into clusters so that points in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.

Outbreak of cholera deaths in London in 1850s. Reference: Nina Mishra, HP Labs
k-clustering of maximum spacing

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.

Given an integer k, find a k-clustering such that spacing is maximizing.
Single-link clustering algorithm

“Well-known” algorithm for single-link clustering:
• Form V clusters of one object each.
• Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
• Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm (stop when there are k connected components).

Property. Kruskal's algorithm finds a k-clustering of maximum spacing.
Clustering application: dendrograms

Dendrogram.
Scientific visualization of hypothetical sequence of evolutionary events.

- Leaves = genes.
- Internal nodes = hypothetical ancestors.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group