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Abstract

Graph cuts is a popular algorithm for finding the MAP
assignment of many large-scale graphical models that are
common in computer vision. While graph cuts is powerful,
it does not provide information about the marginal proba-
bilities associated with the solution it finds. To assess uncer-
tainty, we are forced to fall back on less efficient and inexact
inference algorithms such as loopy belief propagation, or
use less principled surrogate representations of uncertainty
such as the min-marginal approach of Kohli & Torr [8].

In this work, we give new justification for using min-
marginals to compute the uncertainty in conditional ran-
dom fields, framing the min-marginal outputs as exact
marginals under a specially-chosen generative probabilis-
tic model. We leverage this view to learn properly cali-
brated marginal probabilities as the result of straightfor-
ward maximization of the training likelihood, showing that
the necessary subgradients can be computed efficiently us-
ing dynamic graph cut operations. We also show how this
approach can be extended to compute multi-label marginal
distributions, where again dynamic graph cuts enable ef-
ficient marginal inference and maximum likelihood learn-
ing. We demonstrate empirically that — after proper train-
ing — uncertainties based on min-marginals provide better-
calibrated probabilities than baselines and that these dis-
tributions can be exploited in a decision-theoretic way for
improved segmentation in low-level vision.

1. Introduction
Queries on random fields can be broadly classified into

two types: queries for an optimum (finding a mode), and
queries for a sum or integral (marginalization). In the first
case, one might ask for the most likely joint configuration
of the entire field. In the second class, one might ask for
the marginal probability of a single variable taking some
assignment. At first glance, these two types of queries may
appear computationally similar; indeed, on a tree-structured
graphical model they take the same amount of time. How-
ever, for some model classes there is a large discrepancy
between the computational complexities of these queries.

For example, when a graphical model is constrained to have
binary variables and submodular interactions, the mode can
be found in polynomial time using the graph cuts algorithm,
while marginalization is #P-complete [7].

In computer vision, this discrepancy has contributed to
a proliferation of optimization procedures centered around
the graph cuts algorithm. Graph cuts are used both as
a stand-alone procedure and as subroutine for algorithms
such as alpha expansion [2], the min-marginal uncertainty
of [8], the message passing of [5], and the Quadratic Pseudo
Boolean Optimization algorithm [9]. Particularly given the
efficient, freely available implementation of [1], graph cuts
could be considered one of the most practical and powerful
algorithms for inference in graphical models that is avail-
able to the computer vision practitioner.

Despite the successes of graph cuts, the algorithm is of
limited applicability to queries of the second broad type.
When viewed as a method for approximating the marginal
probability of a variable in a graphical model, we show
in the supplementary material that the min-marginal un-
certainty of [8] can be off by a factor that is exponen-
tially large in the number of variables in the model, and
we show empirically that learning using this method as ap-
proximate inference can lead to poorly calibrated estimates
of marginal probabilities. Marginal probabilities are impor-
tant in many applications, including interactive segmenta-
tion, active learning, and multilabel image segmentation.
They are perhaps even more important in low-level vision
tasks, as random field models are often only the first com-
ponent of a larger computer vision system. In this respect,
it is desirable to be able to provide higher-level modules
with properly calibrated probabilities, so that informed de-
cisions can be made in a well-founded decision-theoretic
framework.

To our knowledge, the only method for using graph cuts
to produce probabilistic marginals is based on the work of
Kohli & Torr (KT) [8]. In this paper, we hope to provide ad-
ditional insight into the practice of using graph cuts to con-
struct probabilistic models, by framing the method of KT
as exact marginal inference in a model that we will elabo-
rate on in later sections. Practically, our goal in this work
is to revisit the question of how graph cuts can be used to
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produce proper uncertainty in random field models. Per-
haps surprisingly, we will leave the test-time inference pro-
cedure of KT unchanged. develop a new training procedure
that directly considers the question of how to set parame-
ters so that the method of KT produces well-calibrated test-
time marginal probabilities. We will show that with this
new training procedure, graph cuts can be made to produce
very good measures of uncertainty. We then show how this
same concept enables us to generalize the binary graph cuts
model to multi-label data.

We make several contributions:

• We develop theoretical underpinnings for the inference
procedure of KT, showing that there is a generative
probabilistic model for which their inference proce-
dure produces exact probabilistic marginals.

• We show how to efficiently train this new generative
model under the maximum likelihood objective, and
develop an algorithm for efficiently computing subgra-
dients using dynamic graph cuts.

• We develop a new model of multilabel data, where ex-
act marginals and subgradients can be computed effi-
ciently using dynamic graph cuts.

• We show empirically that our approach produces better
measures of uncertainty than the method of KT and
loopy belief propagation-based learning.

• We show our properly calibrated marginal proba-
bilities can be used in a decision theoretic frame-
work to approximately optimize test performance on
the intersection-over-union (∩∪ ) loss function, and we
show empirically that this improves test performance.

2. Background
Our task is to produce a distribution over a D-

dimensional space Y={1, . . . ,K}D in which each com-
ponent takes one of K discrete values. In particular, this
distribution should be conditioned upon a feature vector x,
which takes values in X . This is known as a conditional
random field (CRF) model. Our training data are N fea-
ture/label pairs, D={x(n),y(n)}Nn=1, y(n) ∈ Y . We will
proceed by constructing a model p(y |x,w) parameterized
by weights w. As is typical, we will assume that the y(n)

are independent of each other, given the x(n) and w. The
classical formulation of the CRF likelihood function in this
setting is to construct an energy function E(y ; x,w) and
use the Gibbs distribution:

p(y |w,x) =
1

Z(w,x)
exp {−E(y ; x,w)} (1)

Z(x,w) =
∑
y′∈Y

exp {−E(y′ ; x,w)} . (2)

One natural way to formulate the problem of learning an
appropriatew from the data is to maximize the the log like-
lihood of the training data,

L(w;D) =
1

N

N∑
n=1

log p(y(n) |x(n),w). (3)

Optimization of Eq. 3 is often difficult due to the fact
that the gradients require computing expectations which are
sums over an exponentially large set of states. Various ap-
proximation schemes (e.g., [12, 3]) have been developed to
attempt to grapple with this difficulty.

Given parameters, we then need to perform inference.
Even restricted to the case of graph-structured submodular
interactions over binary variables, computing exact proba-
bilistic marginals is intractable due to the difficulty of com-
puting the partition function [7]; however, MAP inference
can be performed exactly in low-order polynomial time us-
ing the graph cuts algorithm which reduces the problem to
the computation of maximum flow in a network [6].

In addition to the solution to the MAP inference prob-
lem, we will also make use of quantities known as min-
marginals. Whereas the value of the MAP solution is
minŷ∈Y E(ŷ ; x,w), min-marginals are defined as the
value of a constrained minimization problem where a sin-
gle variable yd is clamped to take on label k, then all other
variables are minimized out:

Φd(k) = min
ŷ∈Y,ŷd=k

E(ŷ ; x,w). (4)

This constrained minimization problem can also be solved
efficiently using graph cuts, and the set of all min-marginals
{Φd(k)}d=1:D,k=1:K can be computed in only slightly
more time than is required to solve a single graph cuts
problem, by using the dynamic graph cuts approach of [8].
Kohli and Torr [8] further suggest that min-marginals can
be used to produce a measure of uncertainty q by tak-
ing a softmax over the negative min-marginals: qd(k) =

exp{−Φd(k)}∑
k′ exp{−Φd(k′)} . Given these marginals, they further sug-

gest that a CRF model can be trained by replacing exact
marginals needed for the gradient with these approximate
marginals. We will evaluate this learning method in the ex-
periments section.

Finally, we will make use of assignments that we will
term argmin-marginals,

ηd(k) = arg min
ŷ∈Y,ŷd=k

E(ŷ ; x,w), (5)

which simply replaces the min in min-marginals with
arg min. These also can be computed efficiently using dy-
namic graph cuts.

Limitations of Kohli-Torr. In the supplementary ma-
terial, we discuss the worst-case behavior of KT, showing

2



that even for pairwise graphical models, the KT-estimated
marginal can differ from the Gibbs distribution marginal by
a factor that has exponential dependence on the number of
variables in the model.

3. Our Model
In this paper, we avoid the problem of approximating

CRF marginals, and in fact avoid the problem of a compli-
cated partition function altogether. We do this by defining
the following generative model:

Φd(k;x,w) = min
ŷ∈Y,ŷd=k

E(ŷ ; x,w)

p(yd=k | {Φd(k′;x,w)}Kk′=1) =
e−Φd(k;x,w)∑K

k′=1 e
−Φd(k′;x,w)

.

We are here denoting the dth component of y and y′ by yd
and y′d, respectively. We then interpret the min-marginals
as providing a fully-factorized distribution on y given x.

In contrast to Gibbs-based energy models, this procedure
is truly generative: we compute the min-marginals and this
gives rise to local distributions over labels. The likelihood
for w is then given by

p({y(n)}Nn=1 |w,{x(n)}Nn=1) =

N∏
n=1

D∏
d=1

K∏
k=1

q
δ(y

(n)
d ,k)

ndk , (6)

where qndk =
exp

{
−Φ

(n)
d (k;x,w)

}
∑

k′ exp
{
−Φ

(n)
d (k′;x,w)

} , and δ(·, ·) is the

Kronecker delta function. This likelihood makes the na-
ture of the model clear: we are parameterizing a large set of
multinomial distributions with x and w. It simply happens
that the parameters of these multinomials are the result of
a set of constrained energy minima. Importantly, we can
compute q’s and thus compute these marginals efficiently
when E(y ; x,w) is a binary submodular energy function,
using the approach of Kohli & Torr.

For the binary model we use in much of this paper, we
will assume that the weightsw parameterize the energy via
a sum of weighted unary and pairwise potentials:

E(y;x,w) =
∑
f∈U

wfψf (y;x) +
∑
f∈P

wfψf (y;x), (7)

where U and P are the sets of unary and pairwise fea-
tures, respectively. The potentials are sums over all local
configurations: ψf (y;x) =

∑
d ψf,d(y;x) for f ∈ U and

ψf (y;x) =
∑

(d,d′) ψf,dd′(y;x) for f ∈ P; the local con-
figurations have the form:

ψf,d(y;x) =

{
αf,d(x) if yd = 1

0 otherwise (8)

ψf,dd′(y;x) =

{
βf,dd′(x) if yd 6= yd′

0 otherwise . (9)

Here, αf,d(x) (or βf,dd′(x)) are the result at location d (or
edge dd′) of running a predefined filter f on input x.

4. Maximum Likelihood Learning
As our goal is to produce well-calibrated conditional

probabilities for test data, the natural training objective is
to maximize the (possibly penalized) likelihood. That is,
given a set of observations D={x(n),y(n)}Nn=1, we wish
to find the MLE (or MAP) of the parameters w. In this
section, we show that subgradients of this objective can be
computed efficiently for any model where we have efficient
procedures for computing min-marginals.

In reality, images may be of different sizes. To remove
the bias that larger images have a larger effect on the learn-
ing than smaller images, we rescale likelihoods and instead
sum the average log likelihood of each instance. Note that
if all images are of the same size, optimizing this objective
is equivalent to optimizing the earlier objective Eq. 6. The
objective for the nth data instance can then be written as

L(n)(w) = − 1

D(n)

D(n)∑
d=1

[
Φd(y

(n)
d ;w,x(n))

+ log

K∑
k=1

exp
{
−Φd(k;w,x(n))

}]
. (10)

We are interested in the partial derivative with respect to
one parameter, say wf . Dropping superscripts n to reduce
notational clutter,

∂L(w)

∂wf
=

1

D

D∑
d=1

K∑
k=1

∂L(w)

∂Φd(k;w,x)

∂Φd(k;w,x)

∂wf
. (11)

The first term is a standard softmax derivative:

∂L(w)

∂Φd(k)
= −δ(yd, k) +

exp{−Φd(k;w,x)}∑
k′ exp{−Φd(k′;w,x)}

. (12)

To compute the second term, first expand the definition of
Φd(k;w,x), then compute a subgradient:

∂Φd(k;w,x)

∂wf
=

∂

∂wf
min

ŷ∈Y,ŷd=k′

∑
f

wfψf (ŷ;x)

= ψf (ηdk;x), (13)

where recall ηdk = arg minŷ∈Y,ŷd=k E(ŷ ; x, θ) is the
argmin-marginal for yd = k. The total subgradient for one
instance is then

∂L(w)

∂wf
=

1

D

D∑
d=1

K∑
k=1

ψf (ηdk;x) [qndk − δ(yd, k)]. (14)

Using these gradients we can train the model to optimize
the likelihood of the training data.

3



5. Faster Computation of Subgradients
The subgradients in Eq. 14 naively take O(D2) time to

compute, which can be expensive for large images. In this
section, we show how to significantly reduce this time by (a)
leveraging the locality of changes within the dynamic graph
cuts procedure used to compute min-marginals; (b) reorder-
ing the computation of min-marginals; and (c) distributing
computation across many CPUs. The result of (a) is that
computation of gradients is only a constant factor slower
than computing min-marginals; (b) speeds up the computa-
tion of min-marginals and thus subgradients; and (c) allows
us to easily scale to large data sets, assuming we have access
to a large cluster of machines.

(a) Locality of Changes in Argmin Marginals. The
maxflow algorithm of [1] caches search trees from iteration
to iteration. The only nodes that can change are ones that
are “orphaned” (that is, their connection to the root of the
search tree is severed) after an edge capacity modification
or subsequent path augmentations. This list of potentially
changed nodes can be stored during the graph cuts proce-
dure (this option is available in the code of Kolmogorov
[1]), and it is typically much smaller than D. So in the in-
ner loop, we look only at potentially changed nodes.

This modification makes the subgradient computa-
tions equivalent in computational cost to computing min-
marginals, up to a constant factor, because the subgradient
computation only considers nodes that are processed in the
min-marginal computation. In Section 7, we compare the
time taken using our method to the time taken using only
min-marginals and confirm that this holds empirically.

(b) Ordering Min-marginal Computations. Comput-
ing min-marginals requires solving D + 1 graph cuts prob-
lems. The cost is greatly reduced by using dynamic graph
cuts, but we have found experimentally that the order of
problems can make a large difference in the time it takes to
compute min-marginals. The strategy we use is as follows:
first, compute the MAP; next, compute min-marginals for
variables that take on value 0 in the MAP assignment, iter-
ating over the variables in scanline ordering; finally, com-
pute min-marginals for variables that take on value 1 in the
MAP assignment, iterating over the variables in scanline or-
dering. The intuition for this order is dynamic graph cuts is
more efficient when the initial solution is closer to the final
solution. If after clamping a variable yd = 0, the neighbor-
ing variable yd′ is also clamped to 0, solutions will tend to
be more similar than if yd = 1. This effect tends to increase
as pairwise potentials become stronger.

(c) Distributed Computation. Gradients can be com-
puted for each image in parallel, enabling distribution of the
learning algorithm over multiple cores. In our implementa-
tion, we used C++ to build a distributed learning system
in which one master process communicates with the work-
ers via RPC or MPI. The master sends the workers a cur-

rent setting of weights, and each worker returns a vector of
gradients. The master accumulates the gradients, updates
weights, then sends out a new request. This process repeats
until termination. This parallelization resulted in an almost
linear speedup with the number of cores.

6. Tractable Multilabel Model
In the multilabel setting, MAP inference becomes NP-

hard in most cases [2], so we cannot compute exact min-
marginals Φd(k;x, θ); thus, it appears that the model pre-
sented above cannot be applied. Notice, however, that
there is no requirement in our generative model that the
Φd(k;x, θ) values correspond to exact min-marginals. We
require only that they be a deterministic function of param-
eters, that they be efficiently computable, and that we can
compute subgradients of them with respect to model param-
eters. In this section, we replace the intractable multilabel
min-marginal calculations with a tractable surrogate.

For multilabel models, as is typical, we let there be a
separate set of weights for each feature f and class k, defin-
ing e.g., the unary potential for pixel d taking on label k
as θd(k) =

∑
f w

k
fψf,d(k;x). In this section, to represent

a multilabel assignment for pixel d, we will use K binary
variables, yd1, . . . , ydK . We then define separate energy
functions for each k ∈ {1, . . . ,K}:

Ek(y;x, θ) =
∑
d∈V

θkd(ydk) +
∑
dd′∈E

θkdd′(ydk, yd′k), (15)

where θkd(0) = 0, θkd(1) = θd(k), and θkdd′(ydk, yd′k) are
pairwise potentials with different parameters per k.

We can then define separate min-marginals Φkd(ydk) =
minŷd=ydk E

k(ŷ;x, θ). These can be computed exactly us-
ing a graph cuts min-marginals computation for each k. Fi-
nally, we define multilabel surrogate min-marginals to be
Φ̃d(k) = Φkd(1)−Φkd(0), then let qdk = exp{−Φ̃d(k)}∑

k̂ exp{−Φ̃d(k̂)}
be

the multilabel probability of pixel d taking label k.
These surrogate min-marginals then have the proper-

ties that we desire: they are deterministic, efficiently com-
putable, and we can (sub)differentiate through them. They
do not correspond to min-marginals for a CRF model, but
we can think of them as coming from a some other genera-
tive process where exact maximum likelihood learning and
marginal inference are tractable via graph cuts.

We have seen in the previous section how to derive ∂Φk
d

∂wf
.

To derive subgradients for the multilabel model, we simply
need to observe that ∂Φ̃d(k)

∂wf
=

∂Φk
d(1)

∂wf
− ∂Φk

d(0)
∂wf

. Focusing
on a single instance,

∂L(w)

∂wkf
=

1

D

∑
d,k′

∂L

∂Φ̃d(k′)

(
∂Φk

′

d (1)

∂wkf
− ∂Φk

′

d (0)

∂wkf

)
. (16)

The first term is a standard softmax derivative, just as be-
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fore. For both unary and pairwise features f ,

∂Φk
′

d (ydk′)

∂wkf
= 1{k=k′}ψf (ηk

′

d (ydk′);x), (17)

where ηkd(ydk) = arg minŷd=ydk E
k(ŷ;x, θ). These sub-

gradients can also be computed efficiently using the meth-
ods described in Section 5.

7. Experiments
Experimentally, we apply our models to image segmen-

tation tasks and investigate three main questions. The first
is how well our method can optimize the maximum likeli-
hood objective. We compare against the learning method
suggested by Kohli & Torr (KT), and against a logistic re-
gression baseline. Second, we look at the generalization
capabilities of our models — both the binary and multil-
abel variants. Our main evaluation measure is the probabil-
ity assigned to held-out test examples, but we also look at
hard predictive performance, measured in terms of test ac-
curacy and area under the ROC curve. Third, we investigate
the suitability of the marginals for driving decision theoretic
predictions in terms of expected loss.

We use 84 unary and 4 pairwise features. The unary fea-
tures are simple color-based and texture-based filters, run on
patches surrounding the pixel. One pairwise feature is uni-
formly set to 1, while the others are based on thresholded
responses of the pb boundary detector [10]. We emphasize
that these features include only low level cues.

For our experiments, we use a subset of the PASCAL
VOC Image Segmentation data. We build binary datasets
by considering only images containing a given object class
(e.g., airplane), then the task is to label the given object pix-
els as “figure” and all other pixels as “ground”. We build
multilabel datasets by taking a subset of classes and only
considering images that have at least one of the selected
classes present. Images are scaled so the minimum dimen-
sion is 100 pixels. We focused on Aeroplane, Car, Cow,
and Dog classes but expect results to be representative of
the case where unary information is fairly weak, due to the
simplicity of our input features. We believe to be a common
and important case to consider for low-level vision systems.

7.1. Evaluation of Binary Model Optimization
Recall that the test-time procedures for our method and

KT are identical. Consequently, we can compare the ef-
fectiveness of training the model described in Section 3 us-
ing softmaxed negative min-marginals as approximate gra-
dients (as in [8]) versus exact subgradients (our method).
We also consider a baseline with no pairwise potentials. The
likelihood evaluations of these models are focused on the
case where the goal at test time is to produce a pixel-wise
measure of uncertainty, as would be appropriate in e.g., in-

(a) (b)
Figure 1. Comparison of training negative log likelihoods achieved
by our method (y-axis) versus (a) logistic regression, and (b) the
KT method (x-axis). There is one marker for each of 30 images,
which were optimized independently. In all cases, we achieve bet-
ter training likelihoods than the alternative methods.

teractive image segmentation, multiscale segmentation, and
in the decision-theoretic prediction setting of Section 7.2.

Single Image Datasets. For the first experiment, we
considered 30 data sets, each with a single aeroplane in-
stance. We optimized the logistic regression model to con-
vergence using gradient ascent, then we initialized the other
two methods with the result, initially setting all pairwise
weights to zero. We then ran gradient-based optimiza-
tion using the (sub)gradients computed by the two meth-
ods and recorded the best objective achieved. For KT, we
followed [8] and used a fixed step size that was tuned by
hand but left fixed across experiments. For our method, we
used a dynamic step size decay schedule, which we found
in practice to outperform various static decay schedules: we
maintain a quantity f (t)

best = mint′∈{1,...,t} f(θt′), where f
is the negative average log likelihood objective function.
We then use λ · f (t)

best as an estimate of the optimal value f∗

at iteration t and perform a Polyak-like update, setting step
size ϕt = (f(θt)− λf (t)

best)/||g||2, where g is the subgradi-
ent. We chose λ = 0.95 and left it fixed across experiments.
(We also experimented with dynamic step size decay sched-
ules for the KT gradients, but we could not get them to out-
perform the fixed update schedule.) Results are shown in
Fig. 1. While KT always produces better likelihoods than a
unary-only (logistic regression) model, its gradients are not
directly optimizing this quantity (and indeed, it is unclear
that there is any quantity being exactly optimized with the
KT approach). When the correct gradients are used (our
method), we achieve much better training likelihoods.

Full Datasets. Next, we focused on the comparison to
KT and experimented with larger data sets. For each class,
we constructed a training set with 48 images, and paral-
lelized the optimizations over 17 CPUs (1 master, 16 work-
ers). In Fig. 2, we show the best training objective achieved
as a function of wall-clock time. An iteration of KT is
faster than an iteration of our method (due to the fact that
we need to compute argmin-marginals in addition to min-
marginals), but within 1000 seconds, our method overtakes
KT, and then always leads to better training likelihoods.
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Figure 2. fbest versus time for learning on full training sets.

7.2. Evaluation of Binary Model
We then compare the results of our optimization to that

of KT in terms of performance as a model of segmentation
data. We constructed a test set with the remaining images
(roughly 50 per class) not used for training. We observed
that KT tended towards a set of weights that were different
from the weights that achieved the best performance under
the maximum likelihood objective. To give a better repre-
sentation of the behavior, we report results for the model at
two points: first, KT-fbest takes the weights that achieve the
best training likelihood objective. Second, we let the model
run for longer and took a set of weights from the point that
it seemed to converge to. We call this KT-final.

Train and Test Performance. In the first set of eval-
uations, we report training and test performance according
to three measures: average pixel likelihood, 0-1 pixel accu-
racy, and area under the ROC curve (AUC). Our approach
is consistently best on the likelihood and AUC measures,
which are the ones where a good measure of uncertainty
is required, and it is competitive on pixel accuracy in all
cases. In the Car data, all methods experienced some over-
fitting, but otherwise training performance was indicative
of test performance, showing that better optimization of the
maximum likelihood objective led to models with better test
performance. Quantitative results are shown in Fig. 3, and
illustrative qualitative results are shown in Fig. 4.

Decision Theoretic Predictions for ∩∪ Score. Given
properly calibrated probabilities, we can make predictions
that seek to maximize expected score on the test set. Here,
we take this approach and seek to optimize the intersection-
over-union (∩∪ ) score that is commonly used to evaluate
image segmentations. Given true labeling y∗, the score

is defined as ∆(y,y∗) = 1
K

∑K
k=1

∑
d 1{y∗

d
=k∧yd=k}∑

d 1{y∗
d
=k∨yd=k}

. In

Log Lik Accuracy AUC

A
er

o KT-final -.35 (-.29) 87.3 (89.7) .85 (.87)
KT-fbest -.32 (-.28) 88.1 (89.9) .85 (.87)

Ours -.26 (-.24) 88.9 (90.4) .90 (.90)

C
ar

KT-final -.48 (-.65) 84.1 (78.7) .69 (.65)
KT-fbest -.39 (-.51) 86.2 (80.0) .66 (.62)

Ours -.35 (-.51) 86.1 (81.4) .76 (.65)

C
ow

KT-final -.54 (-.64) 79.7 (75.9) .76 (.77)
KT-fbest -.47 (-.52) 80.9 (76.7) .66 (.65)

Ours -.38 (-.41) 82.5 (79.9) .84 (.82)

D
og

KT-final -.52 (-.45) 81.8 (84.7) .64 (.66)
KT-fbest -.43 (-.38) 84.1 (86.7) .62 (.66)

Ours -.38 (-.34) 84.0 (86.8) .76 (.79)

Figure 3. Results for binary models. Format is “Train (Test)”.
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Figure 4. Estimated marginal probabilities for test examples. On
many examples (e.g. left), the three methods behave similarly.
When they behave differently (middle and right), KT-final often
becomes overconfident; KT-fbest is often under-confident; and our
method is more able to produce well-calibrated probabilities.

the case of a binary model, K=2 and classes are fore-
ground and background. Given our predictive distribu-
tion Q(y) =

∏D
d=1

∏K
k=1 q

δ(yd,k)
dk , the expected score for

making prediction y is e(y) =
∑

y′ Q(y′)∆(y,y′). Since
∆ does not decompose, even evaluating e(y) requires a
sum over exponentially many joint configurations. In-
stead, we define a smoothed surrogate expected score
that is tractable to evaluate given prediction y: ẽ(y) =

1
K

∑K
k=1

EQ(y′)[
∑

d 1{y′
d
=k∧yd=k}]

EQ(y′)[
∑

d 1{y′
d
=k∨yd=k}]

. Our strategy will be to

initialize prediction y at the mode of Q, then to greedily
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∩/∪ Before ∩/∪ After Change
A

er
o KT-final 63.4 63.9 .5

KT-fbest 60.7 61.8 1.1
Ours 64.1 66.6 2.5

C
ar

KT-final 43.5 44.2 .7
KT-fbest 40.7 43.3 2.6

Ours 41.8 45.9 4.1

C
ow

KT-final 51.2 51.7 .5
KT-fbest 40.7 47.1 6.4

Ours 46.5 52.8 6.3

D
og

KT-final 52.1 52.0 -.1
KT-fbest 44.5 47.2 2.7

Ours 48.9 55.3 6.4
Figure 5. Test results for maximizing surrogate expected ∩

∪ score.
“Before” corresponds to predicting the mode of Q; “After” is the
prediction from our expected score maximization routine.

hill climb in terms of ẽ(y) until we reach a local maximum
of expected score. At each step, we iterate through classes
k, proposing to flip pixel d to label k, where d is the pixel
that has largest probability qdk amongst pixels not currently
labeled k. When we cycle through all k but do not make a
flip, we terminate. This yields our prediction, y, which we
will evaluate under ∆(y,y∗). Quantitative results for this
approach are shown in Fig. 5. Interestingly, even though
KT-final gives higher scores for the initial mode prediction,
our method surpasses it in all cases after running the ex-
pected score optimization. Because KT-final does not pro-
duce well-calibrated probabilities, the expected loss opti-
mization either provides little win or hurts predictions.

In Fig. 6, we illustrate the trajectories that the expected
score optimizer takes as it performs the local ascent. Each
line is for a different image, and the left-most endpoint of
the line corresponds to the initialization of the optimizer.
As the line moves right, the expected score increases, and
ideally the true score will also increase, which would corre-
spond to the line moving upwards. In Fig. 7, we show the
change in predictions from before and after running the op-
timizer for three images, under our predictive distributions.

Statistical Significance. For all of the experiments
in this section, we ran a bootstrap experiment, where we
resampled instances with replacement, and computed the
mean of each evaluation measure on each resampled set
of instances. We repeated the resampling procedure 1000
times and computed the standard deviations across the re-
sampled datasets. Tables with these error bars appear in the
Supplementary Material.

7.3. Evaluation of Multilabel Model
Finally, we ran experiments on the multilabel model, and

compared it to learning a CRF with loopy belief propaga-
tion (LBP) for approximate inference. We used the pub-
licly available libDAI implementation of LPB [11], setting
damping to .3, and using a maximum of 100 iterations. We
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(a) KT-final (b) Ours
Figure 6. Trajectories as the local optimizer moves from mode
prediction (left-most point of line segment) to the prediction that
locally maximizes the surrogate expected score (right-most point
of line segment). The surrogate expected score is on the x-axis,
and the true score (which uses the ground truth to compute) is on
the y-axis. (a) KT-final on dog test data. (b) Ours on dog test data.
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Figure 7. Expected loss optimization results on test images.

constructed a dataset of 5 classes (the four from previously
plus background), and chose 80 images evenly from the 4
foreground classes. We similarly constructed a test set of a
separate 80 images. To optimize, we parallelized computa-
tion across 41 CPUs (1 master, 40 slaves), and let each algo-
rithm run for 12 hours (nearly 500 hours of CPU time). The
models produced similar test performance — LBP gave an
average test ∩∪ score of 17.2, while ours produced a score of
17.7. After expected score optimization, LBP performance
increased to 17.3, while ours increased to 20.0. However,
the most striking difference between the approaches was the
speed and reliability of the inference routines. While LBP
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Time (sec) % Not Conv.
Loopy BP (first iter.) 11.3 ± 1.7 0%

Ours (first iter.) 0.14 ± .02 –
Loopy BP (last iter.) 59.1 ± 15.1 30%

Ours (last iter.) 0.16 ± .02 –

Figure 8. Time taken for a single inference call on multilabel mod-
els, reported early and late in learning. As pairwise potentials get
stronger, loopy BP gets slower and less reliable; the graph cuts in-
ference is uniformly reliable and two orders of magnitude faster.

was consistently more than two orders of magnitude slower,
performance got even worse as learning progressed, and we
later had problems with non-convergence. Conversely, the
graph cuts based inference was uniformly fast and reliable.
Quantitative results are shown in Fig. 8.

8. Discussion and Related Work
Our approach is a deviation from the standard strategy

of defining an intractable model, then devising efficient but
approximate inference routines. Instead, we are taking an
efficient inference routine and treating it as a model. Specif-
ically, we asked, “for what model is the method of [8] an
exact marginal inference routine?” The answer is the model
that we presented in Section 3. The power of this approach
is that we can efficiently compute exact gradients of this
model under the maximum likelihood objective (Section 4),
so we are directly training the graph cuts inference to pro-
duce well calibrated marginal probabilities at test time. In
Section 6, we show how to extend the ideas to multilabel
problems where MAP inference is NP-hard. The key idea is
to build a model composed of tractable subcomponent mod-
ules, which are as expressive as possible while still admit-
ting efficient exact inference. We showed experimentally
that this approach gives strong empirical performance.

If we look at a high level and consider works that define
models around efficient computational procedures, there is
some related work. [13] defines a generative probabilistic
models that includes a discrete optimization procedure as
the final step. [4] defines probability models around a fixed
number of iterations of belief propagation. None of these
is a min-marginal computation, and thus the specifics are
quite different, but the general spirits are similar.

At a broader level, we are addressing a low level vision
problem in this work. While low level vision has received
considerable attention in computer vision, there has not
been a strong emphasis on producing properly calibrated
probabilistic outputs. Our approach maintains the compu-
tational efficiency of previous surrogate measures of uncer-
tainty, but it does so within a proper probabilistic frame-
work. We believe this direction to be of importance going
forward when building large probabilistic vision systems.
There are also direct applications to multiscale image label-
ing, interactive image segmentation, and active learning.

Finally, our formulation is quite general, and applies to

any model that can be assembled from components where
min-marginals can be computed efficiently. Our multil-
abel model is one example of how to assemble graph cuts
components. A similar approach also may be attractive in
other structured output domains, such as those with bipartite
matching and shortest path structures, where min-marginals
can be computed efficiently [5] but where exact marginal in-
ference in the standard CRF formulation is NP-hard.
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