
INV ITED
P A P E R

Taking the Human Out of the
Loop: A Review of Bayesian
Optimization
The paper introduces the reader to Bayesian optimization, highlighting its methodical

aspects and showcasing its applications.

By Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas

ABSTRACT | Big Data applications are typically associated with

systems involving large numbers of users, massive complex

software systems, and large-scale heterogeneous computing

and storage architectures. The construction of such systems

involves many distributed design choices. The end products

(e.g., recommendation systems, medical analysis tools, real-

time game engines, speech recognizers) thus involve many

tunable configuration parameters. These parameters are

often specified and hard-coded into the software by various

developers or teams. If optimized jointly, these parameters

can result in significant improvements. Bayesian optimization

is a powerful tool for the joint optimization of design choices

that is gaining great popularity in recent years. It promises

greater automation so as to increase both product quality and

human productivity. This review paper introduces Bayesian

optimization, highlights some of its methodological aspects,

and showcases a wide range of applications.

KEYWORDS | Decision making; design of experiments; optimi-

zation; response surface methodology; statistical learning

I . INTRODUCTION

Design problems are pervasive in scientific and industrial

endeavours: scientists design experiments to gain insights

into physical and social phenomena, engineers design

machines to execute tasks more efficiently, pharmaceutical

researchers design new drugs to fight disease, companies

design websites to enhance user experience and increase

advertising revenue, geologists design exploration strate-

gies to harness natural resources, environmentalists design
sensor networks to monitor ecological systems, and

developers design software to drive computers and

electronic devices. All these design problems are fraught

with choices, choices that are often complex and high

dimensional, with interactions that make them difficult for

individuals to reason about.

For example, many organizations routinely use the

popular mixed integer programming solver IBM ILOG
CPLEX1 for scheduling and planning. This solver has 76 free

parameters, which the designers must tune manuallyVan

overwhelming number to deal with by hand. This search space

is too vast for anyone to effectively navigate.

More generally, consider teams in large companies that

develop software libraries for other teams to use. These

libraries have hundreds or thousands of free choices and

parameters that interact in complex ways. In fact, the level
of complexity is often so high that it becomes impossible to

find domain experts capable of tuning these libraries to

generate a new product.

As a second example, consider massive online games

involving the following three parties: content providers,

users, and the analytics company that sits between them.

The analytics company must develop procedures to

automatically design game variants across millions of
users; the objective is to enhance user experience and

maximize the content provider’s revenue.

Manuscript received May 1, 2015; revised July 6, 2015; accepted July 20, 2015. Date of

publication December 10, 2015; date of current version December 18, 2015.

B. Shahriari is with the University of British Columbia, Vancouver, BC V6T 1Z4 Canada

(e-mail: bshahr@cs.ubc.ca).

K. Swersky is with the University of Toronto, Toronto, ON M5S 1A1 Canada and also

with Twitter Boston, Cambridge, MA 02139 USA (e-mail: kswersky@cs.toronto.edu).

Z. Wang is with Oxford University, Oxford OX1 2JD, U.K. and also with Google

Deepmind, London N1C 4AG, U.K. (e-mail: ziyu@google.com).

R. P. Adams is with Harvard University, Cambridge, MA 02138 USA and also with

Twitter, USA (e-mail: rpa@seas.harvard.edu).

N. de Freitas is with Oxford University, Oxford OX1 2JD, U.K., with Google DeepMind

London N1C 4AG, U.K., and also with the Canadian Institute for Advanced Research,

Toronto, ON M5G 1Z8, Canada (e-mail: nandodefreitas@google.com).

Digital Object Identifier: 10.1109/JPROC.2015.2494218

1ht tp : / /www.ibm.com/sof tware/commerce/opt imizat ion/
cplex-optimizer/

0018-9219 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

148 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

The preceding examples highlight the importance of
automating design choices. For a nurse scheduling

application, we would like to have a tool that automatically

chooses the 76 CPLEX parameters so as to improve

healthcare delivery. When launching a mobile game, we

would like to use the data gathered from millions of users

in real time to automatically adjust and improve the game.

When a data scientist uses a machine learning library to

forecast energy demand, we would like to automate the
process of choosing the best forecasting technique and its

associated parameters.

Any significant advances in automated design can

result in immediate product improvements and innovation

in a wide area of domains, including advertising,

healthcare informatics, banking, information mining, life

sciences, control engineering, computing systems, manu-

facturing, e-commerce, and entertainment.
Bayesian optimization has emerged as a powerful

solution for these varied design problems. In academia, it

is impacting a wide range of areas, including interactive

user interfaces [26], robotics [101], [110], environmental

monitoring [106], information extraction [157], combina-

torial optimization [79], [158], automatic machine learn-

ing [16], [72], [143], [148], [151], sensor networks [55],

[146], adaptive Monte Carlo (MC) [105], experimental
design [11], and reinforcement learning [27].

When software engineers develop programs, they are

often faced with myriad choices. By making these choices

explicit, Bayesian optimization can be used to construct

optimal programs [74]: that is to say, programs that run

faster or compute better solutions. Furthermore, since

different components of software are typically integrated

to build larger systems, this framework offers the
opportunity to automate integrated products consisting

of many parametrized software modules.

Mathematically, we are considering the problem of

finding a global maximizer (or minimizer) of an unknown

objective function f

x? ¼ arg max
x2X

fðxÞ (1)

where X is some design space of interest; in global

optimization, X is often a compact subset of Rd but the

Bayesian optimization framework can be applied to more

unusual search spaces that involve categorical or condi-

tional inputs, or even combinatorial search spaces with
multiple categorical inputs. Furthermore, we will assume

the black-box function f has no simple closed form, but can

be evaluated at any arbitrary query point x in the domain.

This evaluation produces noise-corrupted (stochastic)

outputs y 2 R such that E½y j fðxÞ� ¼ fðxÞ. In other

words, we can only observe the function f through

unbiased noisy point-wise observations y. Although this

is the minimum requirement for Bayesian optimization,
when gradients are available, they can be incorporated in

the algorithm as well; see, for example, [99, Sec. 4.2.1

and 5.2.4]. In this setting, we consider a sequential

search algorithm which, at iteration n, selects a location

xnþ1 at which to query f and observe ynþ1. After N
queries, the algorithm makes a final recommendation
�xN, which represents the algorithm’s best estimate of the

optimizer.
In the context of big data applications, for instance, the

function f can be an object recognition system (e.g., deep

neural network) with tunable parameters x (e.g., archi-

tectural choices, learning rates, etc.) with a stochastic

observable classification accuracy y ¼ fðxÞ on a particular

data set such as ImageNet. Because the Bayesian

optimization framework is very data efficient, it is

particularly useful in situations like these where evalua-
tions of f are costly, where one does not have access to

derivatives with respect to x, and where f is nonconvex

and multimodal. In these situations, Bayesian optimization

is able to take advantage of the full information provided

by the history of the optimization to make this search

efficient.

Fundamentally, Bayesian optimization is a sequential

model-based approach to solving problem (1). In partic-
ular, we prescribe a prior belief over the possible objective

functions and then sequentially refine this model as data

are observed via Bayesian posterior updating. The

Bayesian posterior represents our updated beliefsVgiven

dataVon the likely objective function we are optimizing.

Equipped with this probabilistic model, we can sequen-

tially induce acquisition functions �n : X7!R that lever-

age the uncertainty in the posterior to guide exploration.
Intuitively, the acquisition function evaluates the utility of

candidate points for the next evaluation of f ; therefore,

xnþ1 is selected by maximizing �n, where the index n
indicates the implicit dependence on the currently

available data. Here the ‘‘data’’ refers to previous locations

where f has been evaluated, and the corresponding noisy

outputs.

In summary, the Bayesian optimization framework has
two key ingredients. The first ingredient is a probabilistic

surrogate model, which consists of a prior distribution that

captures our beliefs about the behavior of the unknown

objective function and an observation model that describes

the data generation mechanism. The second ingredient is a

loss function that describes how optimal a sequence of

queries are; in practice, these loss functions often take the

form of regret, either simple or cumulative. Ideally, the
expected loss is then minimized to select an optimal

sequence of queries. After observing the output of each

query of the objective, the prior is updated to produce a

more informative posterior distribution over the space of

objective functions; see Fig. 1 and Algorithm 1 for an

illustration and pseudocode of this framework. See

[64, Sec. 4] for another introduction.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 149

Algorithm 1: Bayesian optimization

1: for n ¼ 1; 2; . . . ; do

2: select new xnþ1 by optimizing acquisition function �

xnþ1 ¼ arg max
x

�ðx;DnÞ

3: query objective function to obtain ynþ1

4: augment data Dnþ1 ¼ fDn; ðxnþ1; ynþ1Þg
5: update statistical model
6: end for

One problem with this minimum expected risk

framework is that the true sequential risk, up to the

full evaluation budget, is typically computationally
intractable. This has led to the introduction of many

myopic heuristics known as acquisition functions, e.g.,

Thompson sampling (TS), probability of improvement,

expected improvement (EI), upper confidence bounds,

and entropy search (ES). These acquisition functions

trade off exploration and exploitation; their optima are

located where the uncertainty in the surrogate model is

large (exploration) and/or where the model prediction is

high (exploitation). Bayesian optimization algorithms

then select the next query point by maximizing such

acquisition functions. Naturally, these acquisition func-

tions are often even more multimodal and difficult to

optimize, in terms of querying efficiency, than the

original black-box function f . Therefore, it is critical
that the acquisition functions be cheap to evaluate or

approximate: cheap in relation to the expense of

evaluating the black box f . Since acquisition functions

have analytical forms that are easy to evaluate or at least

approximate, it is usually much easier to optimize them

than the original objective function.

A. Paper Overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that

we aim to disentangle the multiple components that

determine the success of Bayesian optimization imple-

mentations. In particular, we focus on statistical modeling

Fig. 1. Illustration of the Bayesian optimization procedure over three iterations. The plots show the mean and confidence intervals estimated with

a probabilistic model of the objective function. Although the objective function is shown, in practice, it is unknown. The plots also show the

acquisition functions in the lower shaded plots. The acquisition is high where the model predicts a high objective (exploitation) and where the

prediction uncertainty is high (exploration). Note that the area on the far left remains unsampled, as while it has high uncertainty, it is correctly

predicted to offer little improvement over the highest observation [27].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

150 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

as this leads to general algorithms to solve a broad range
tasks. We also provide an extensive comparison among

popular acquisition functions. We will see that the careful

choice of statistical model is often far more important than

the choice of acquisition function heuristic.

We begin in Sections II and III, with an introduction to

parametric and nonparametric models, respectively, for

binary- and real-valued objective functions. In Section IV,

we will introduce many acquisition functions, compare
them, and even combine them into portfolios. Several

practical and implementation details, including available

software packages, are discussed in Section V. A survey of

theoretical results and a brief history of model-based

optimization are provided in Sections VI and VII,

respectively. Finally, we introduce more recent develop-

ments in Section VIII.

B. Applications of Bayesian Optimization
Before embarking on a detailed introduction to

Bayesian optimization, the following sections provide an

overview of the many and varied successful applications of

Bayesian optimization that should be of interest to data

scientists.

1) A/B Testing: Though the idea of A/B testing dates back
to the early days of advertising in the form of so-called focus

groups, the advent of the internet and smartphones has

given web and app developers a new forum for implement-

ing these tests at unprecedented scales. In its simplest

form, consider two possible options denoted A and B. The

technique consists of redirecting small fractions of user

traffic to experimental designs of an ad, an app, a game, or a

website, and the developers can utilize noisy feedback to
optimize any observable metric with respect to the

product’s configuration. In fact, depending on the partic-

ular phase of a product’s life, new subscriptions may be

more valuable than revenue or user retention, or vice versa;

the click-through rate might be the relevant objective to

optimize for an ad, whereas for a game it may be some

measure of user engagement.

The crucial problem is how to optimally query these
subsets of users in order to find the best product with high

probability within a predetermined query budget, or how

to redirect traffic sequentially in order to optimize a

cumulative metric while incurring the least opportunity

cost [38], [88], [135].

2) Recommender Systems: In a similar setting, online

content providers make product recommendations to their
subscribers in order to optimize either revenue in the case

of e-commerce sites, readership for news sites, or

consumption for video and music streaming websites. In

contrast to A/B testing, the content provider can make

multiple suggestions to any given subscriber. The techni-

ques reviewed in this work have been successfully used for

the recommendation of news articles [38], [97], [153].

3) Robotics and Reinforcement Learning: Bayesian opti-
mization has also been successfully applied to policy search.

For example, by parameterizing a robot’s gait it is possible to

optimize it for velocity or smoothness as was done on the

Sony AIBO ERS-7 in [101]. Similar policy parameterization

and search techniques have been used to navigate a robot

through landmarks, minimizing uncertainty about its own

location and map estimate [108], [110]. See [27] for an

example of applying Bayesian optimization to hierarchical
reinforcement learning, where the technique is used to

automatically tune the parameters of a neural network policy

and to learn value functions at higher levels of the hierarchy.

Bayesian optimization has also been applied to learn

attention policies in image tracking with deep networks [44].

4) Environmental Monitoring and Sensor Networks: Sensor

networks are used to monitor environmentally relevant
quantities: temperature, concentration of pollutants in the

atmosphere, soil, oceans, etc. Whether inside a building or at

a planetary scale, these networks make noisy local measure-

ments that are interpolated to produce a global model of the

quantity of interest. In some cases, these sensors are

expensive to activate but one can answer important questions

like what is the hottest or coldest spot in a building by

activating a relatively small number of sensors. Bayesian
optimization was used for this task and the similar one of

finding the location of greatest highway traffic congestion

[146]. Also, see [55] for a meteorological application.

When the sensor is mobile, there is a cost associated

with making a measurement which relates to the distance

travelled by a vehicle on which the sensor is mounted (e.g.,

a drone). This cost can be incorporated in the decision

making process as in [106].

5) Preference Learning and Interactive Interfaces: The

computer graphics and animation fields are filled with

applications that require the setting of tricky parameters.

In many cases, the models are complex and the parameters

unintuitive for nonexperts. In [26] and [28], the authors

use Bayesian optimization to set the parameters of several

animation systems by showing the user examples of
different parametrized animations and asking for feed-

back. This interactive Bayesian optimization strategy is

particularly effective as humans can be very good at

comparing examples, but unable to produce an objective

function whose optimum is the example of interest.

6) Automatic Machine Learning and Hyperparameter
Tuning: In this application, the goal is to automatically
select the best model (e.g., random forests, support vector

machines, neural networks, etc.) and its associated hyper-

parameters for solving a task on a given data set. For big data

sets or when considering many alternatives, cross validation

is very expensive and hence it is important to find the best

technique within a fixed budget of cross-validation tests. The

objective function here is the generalization performance of

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 151

the models and hyperparameter settings; a noisy evaluation
of the objective corresponds to training a single model on all

but one cross-validation folds and returning, e.g., the

empirical error on the held out fold.

The traditional alternatives to cross validation include

racing algorithms that use conservative concentration

bounds to rule out underperforming models [107], [113].

Recently, the Bayesian optimization approach for the model

selection and tuning task has received much attention in
tuning deep belief networks [16], Markov chain Monte Carlo

(MCMC) methods [65], [105], convolutional neural net-

works [143], [148], and automatically selecting among

WEKA and scikit-learn offerings [72], [151].

7) Combinatorial Optimization: Bayesian optimization has

been used to solve difficult combinatorial optimization

problems in several applications. One notable approach is
called empirical hardness models (EHMs) that use a set of

problem features to predict the performance of an algorithm

on a specific problem instance [96]. Bayesian optimization

with an EHM amounts to finding the best algorithm and

configuration for a given problem. This concept has been

applied to, e.g., tuning mixed integer solvers [78], [158], and

tuning approximate nearest neighbor algorithms [109].

Bayesian optimization has also been applied to fast object
localization in images [162].

8) Natural Language Processing and Text: Bayesian

optimization has been applied to improve text extraction

in [157] and to tune text representations for more general

text and language tasks in [161].

II . BAYESIAN OPTIMIZATION WITH
PARAMETRIC MODELS

The central idea of Bayesian optimization is to build a

model that can be updated and queried to drive

optimization decisions. In this section, we cover several

such models, but for the sake of clarity, we first consider a

generic family of models parameterized by w. Let D
denote the available data. We will generalize to the

nonparametric situation in the proceeding section.
Since w is an unobserved quantity, we treat it as a

latent random variable with a priori distribution pðwÞ,
which captures our a priori beliefs about probable values

for w before any data are observed. Given data D and a

likelihood model pðD j wÞ, we can then infer a posteriori
distribution pðw j DÞ using Bayes’ rule

pðw j DÞ ¼ pðD j wÞpðwÞ
pðDÞ : (2)

This posterior represents our updated beliefs about w after

observing data D. The denominator pðDÞ is the marginal

likelihood, or evidence, and is usually computationally
intractable. Fortunately, it does not depend on w and is

therefore simply a normalizing constant. A typical

modeling choice is to use conjugacy to match the prior

and likelihood so that the posterior (and often the

normalizing constant) can be computed analytically.

A. Thompson Sampling in the Beta-Bernoulli Bandit
Model

We begin our discussion with a treatment of perhaps
the simplest statistical model, the beta-Bernoulli. Imagine

that there are K drugs that have unknown effectiveness,

where we define ‘‘effectiveness’’ as the probability of a

successful cure. We wish to cure patients, but we must also

identify which drugs are effective. Such a problem is often

called a Bernoulli (or binomial) bandit problem by analogy

to a group of slot machines, which each yield a prize with

some unknown probability. In addition to clinical drug
settings, this formalism is useful for A/B testing [135],

advertising, and recommender systems [38], [97], among a

wide variety of applications. The objective is to identify

which arm of the bandit to pull, e.g., which drug to

administer, which movie to recommend, or which

advertisement to display. Initially, we consider the simple

case where the arms are independent insofar as observing

the success or failure of one provides no information about
another.

Returning to the drug application, we can imagine the

effectiveness of different drugs (arms on the bandit) as

being determined by a function f that takes an index

a 2 1; . . . ;K and returns a Bernoulli parameter in the

interval (0, 1). With yi 2 f0; 1g, we denote the Bernoulli

outcome of the treatment of patient i, and this has mean

parameter fðaiÞ if the drug administered was ai. Note that
we are assuming stochastic feedback, in contrast to

deterministic or adversarial feedback [9], [10]. With only

K arms, we can fully describe the function f with a

parameter w 2 ð0; 1ÞK so that fwðaÞ :¼ wa.

Over time, we will see outcomes from different

patients and different drugs. We can denote these data

as a set of tuples Dn ¼ fðai; yiÞgn
i¼1, where ai indicates

which of the K drugs was administered and yi is 1 if the
patient was cured and 0 otherwise. In a Bayesian setting,

we will use these data to compute a posteriori distribution

over w. A natural choice for the prior distribution is a

product of K beta distributions

pðw j �; �Þ ¼
YK

a¼1

betaðwa j �; �Þ (3)

as this is the conjugate prior to the Bernoulli likelihood,

and it leads to efficient posterior updating. We denote by

na;1 the number of patients cured by drug a and by na;0 the

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

152 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

number of patients who received a but were unfortunately

not cured; that is

na;0 ¼
Xn

i¼1

Iðyi ¼ 0; ai ¼ aÞ (4)

na;1 ¼
Xn

i¼1

Iðyi ¼ 1; ai ¼ aÞ: (5)

The convenient conjugate prior then leads to a posteriori
distribution which is also a product of betas

pðw j DÞ ¼
YK

a¼1

betaðwa j �þ na;1; � þ na;0Þ: (6)

Note that this makes it clear how the hyperparameters �;
� > 0 in the prior can be interpreted as pseudocounts. Fig. 2

provides a visualization of the posterior of a three-armed

beta-Bernoulli bandit model with a beta(2, 2) prior.

In Section IV, we will introduce various strategies for
selecting the next arm to pull within models like the beta-

Bernoulli, but for the sake of illustration, we introduce TS

[150], the earliest and perhaps the simplest nontrivial

bandit strategy. This strategy is also commonly known as

randomized probability matching [135] because it selects

the arm based on the posterior probability of optimality,

here given by a beta distribution. In simple models like the

beta-Bernoulli, it is possible to compute this distribution
in closed form, but more often it must be estimated via,

e.g., MC.

After observing n patients in our drug example, we can

think of a bandit strategy as being a rule for choosing

which drug to administer to patient nþ 1, i.e., choosing

anþ1 among the K options. In the case of TS, this can be

done by drawing a single sample ~w from the posterior and

then maximizing the resulting surrogate f ~w, i.e.,

anþ1 ¼ arg max
a

f ~wðaÞ; where ~w � pðw j DnÞ: (7)

For the beta-Bernoulli, this corresponds to simply drawing
~w from (6) and then choosing the action with the largest
~wa. This procedure, shown in pseudocode in Algorithm 2,

is also commonly called posterior sampling [127]. It is

popular for several reasons: 1) there are no free parameters

other than the prior hyperparameters of the Bayesian

model; 2) the strategy naturally trades off between
exploration and exploitation based on its posterior beliefs

on w; arms are explored only if they are likely (under the

posterior) to be optimal; 3) the strategy is relatively easy to

implement as long as MC sampling mechanisms are

available for the posterior model; and 4) the randomiza-

tion in TS makes it particularly appropriate for batch or

delayed feedback settings where many selections anþ1 are

based on the identical posterior [38], [135].

Algorithm 2: Thompson Sampling for Beta-Bernoulli
Bandit

Require: �; �: hyperparameters of the beta prior

1: Initialize na;0 ¼ na;1 ¼ i ¼ 0 for all a
2: repeat

3: for a ¼ 1; . . . ;K do

4: ~wa � betað�þ na;1; � þ na;0Þ
5: end for
6: ai ¼ arg maxa ~wa

7: Observe yi by pulling arm ai

8: if yi ¼ 0 then

9: nai;0 ¼ nai;0 þ 1

10: else

11: nai;1 ¼ nai;1 þ 1

12: end if

13: i ¼ iþ 1
14: until stopping criterion reached

B. Linear Models
In many applications, the designs available to the

experimenter have components that can be varied

independently. For example, in designing an advertise-

ment, one has choices such as artwork, font style, and size;

if there are five choices for each, the total number of

possible configurations is 125. In general, this number

Fig. 2. Example of the beta-Bernoulli model for A/B testing. Three

different buttons are being tested with various colors and text. Each

option is given two successes (click-throughs) and two failures as a

prior (top). As data are observed, each option updates its posterior

over w. Option A is the current best with five successes and only one

observed failure.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 153

grows combinatorially in the number of components. This
presents challenges for approaches such as the indepen-

dent beta-Bernoulli model discussed in the previous

section: modeling the arms as independent will lead to

strategies that must try every option at least once. This

rapidly becomes infeasible in the large spaces of real-world

problems. In this section, we discuss a parametric

approach that captures dependence between the arms via

a linear model. For simplicity, we first consider the case of
real-valued outputs y and generalize this model to binary

outputs in the succeeding section.

As before, we begin by specifying a likelihood and a

prior. In the linear model, it is natural to assume that each

possible arm a has an associated feature vector xa 2 Rd.

We can then express the expected payout (reward) of each

arm as a function of this vector, i.e., fðaÞ ¼ fðxaÞ. Our

objective is to learn this function f : Rd 7!R for the
purpose of choosing the best arm, and in the linear model

we require f to be of the form fwðaÞ ¼ xT
a w, where the

parameters w are now feature weights. This forms the

basis of our likelihood model, in which the observations for

arm a are drawn from a Gaussian distribution with mean

xT
a w and variance �2.

We use X to denote the n� d design matrix in which

row i is the feature vector associated with the arm pulled in
the ith iteration, xai

. We denote by y the n-vector of

observations. In this case, there is also a natural conjugate

prior for w and �2: the normal inverse gamma (NIG), with

density given by

NIGðw; �2 j w0;V0; �0; �0Þ

¼ j2��2V0j�
1
2 exp � 1

2�2
ðw�w0ÞTV�1

0 ðw�w0Þ
� �

� ��0

0

Gð�0Þð�2Þ�0þ1 exp � �0

�2

� �
: (8)

There are four prior hyperparameters in this case: w0, V0,
�0, and �0. As in the beta-Bernoulli case, this conjugate

prior enables the posterior distribution to be computed

easily, leading to another NIG distribution, now with

parameters

wn ¼Vn V�1
0 w0 þXTy

� �
(9)

Vn ¼ V�1
0 þXTX

� ��1
(10)

�n ¼�0 þ n=2 (11)

�n ¼ �0 þ
1

2
wT

0V�1
0 w0 þ yTy�wT

nV�1
n wn

� �
: (12)

Integrating out the weight parameter w leads to coupling

between the arms and makes it possible for the model

to generalize observations of reward from one arm to
another.

In this linear model, TS draws a ~w from the posterior

pðw j DnÞ and selects the arm with the highest expected

reward under that parameter, i.e.,

anþ1 ¼ arg max
a

xT
a ~w; where ~w � pðw j DnÞ: (13)

After arm anþ1 is pulled and ynþ1 is observed, the posterior

model can be readily updated using (9)–(12).

Various generalizations can be immediately seen. For
example, by embedding the arms of a multiarmed bandit

into a feature space denoted X , we can generalize to

objective functions f defined on the entire domain X , thus

unifying the multiarmed bandit problem with that of

general global optimization

maximize fðxÞ s.t. x 2 X : (14)

In the multiarmed bandit, the optimization is over a

discrete and finite set fxagK
a¼1 � X , while global optimi-

zation seeks to solve the problem on, e.g., a compact set

X � Rd.

As in other forms of regression, it is natural to increase

the expressiveness of the model with nonlinear basis
functions. In particular, we can use J basis functions

�j : X7!R, for j ¼ 1; . . . ; J, and model the function f with

a linear combination

fðxÞ ¼ FðxÞTw (15)

where FðxÞ is the column vector of concatenated features

f�jðxÞgJ
j¼1

. Common classical examples of such �j include
radial basis functions such as

�jðxÞ ¼ exp � 1

2
ðx� zjÞTmðx� zjÞ

� �
(16)

where m and fzjgJ
j¼1

are model hyperparameters, and

Fourier bases

�jðxÞ ¼ expf�ixTWjg (17)

with hyperparameters fWjgJ
j¼1

.

Recently, such basis functions have also been learned

from data by training deep belief networks [71], deep

neural networks [93], [144], or by factoring the empirical

covariance matrix of historical data [72], [146]. For

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

154 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

example, in [34], each sigmoidal layer of an L layer neural
network is defined as L‘ðxÞ :¼ �ðW‘xþB‘Þ, where � is

some sigmoidal nonlinearity, and W‘ and B‘ are the layer

parameters. Then, the feature map F : Rd 7!RJ can be

expressed as FðxÞ ¼ LL � � � � � L1ðxÞ, where the final

layer LL has J output units. In [144], the weights of the last

layer of a deep neural network are integrated out to result

in a tractable Bayesian model with flexible learned basis

functions.
Regardless of the feature map F, when conditioned on

these basis functions, the posterior over the weights w can

be computed analytically using (9)–(12). Let FðXÞ denote

the n� J matrix where ½FðXÞ�i;j ¼ �jðxiÞ; then the

posterior is as in Bayesian linear regression, substituting

FðXÞ for the design matrix X.

C. Generalized Linear Models
While simple linear models capture the dependence

between bandit arms in a straightforward and expressive

way, the model as described does not immediately apply to

other types of observations, such as binary or count data.

Generalized linear models (GLMs) [119] allow more

flexibility in the response variable through the introduc-

tion of a link function. Here we examine the GLM for

binary data such as might arise from drug trials or A/B
testing.

The generalized linear model introduces a link

function g that maps from the observation space into the

reals. Most often, we consider the mean function g�1,

which defines the expected value of the response as a

function of the underlying linear model: E½ y j x� ¼
g�1ðxTwÞ ¼ fðxÞ. In the case of binary data, a common

choice is the logit link function, which leads to the familiar
logistic regression model in which g�1ðzÞ ¼ 1=
ð1þ expfzgÞ. In probit regression, the logistic mean

function is replaced with the cumulative distribution

function (cdf) of a standard normal. In either case, the

observations yi are taken to be Bernoulli random variables

with parameter g�1ðxT
i wÞ.

Unfortunately, there is no conjugate prior for the

parameters w when such a likelihood is used and so we
must resort to approximate inference. MCMC methods

[4] approximate the posterior with a sequence of samples

that converge to the posterior; this is the approach taken

in [135] on the probit model. In contrast, the Laplace

approximation fits a Gaussian distribution to the

posterior by matching the curvature of the posterior

distribution at the mode. For example, in [38], Bayesian

logistic regression with a Laplace approximation was
used to model click-throughs for the recommendation of

news articles in a live experiment. In the generalized

linear model, TS draws a ~w from the posterior pðw j DnÞ
using MCMC or a Laplace approximation, and then

selects the arm with the highest expected reward given

the sampled parameter ~w, i.e., anþ1 ¼ arg maxa g�1

ðxT
a ~wÞ.

D. Related Literature
There are various strategies beyond TS for Bayesian

optimization that will be discussed in succeeding sections

of the paper. However, before we can reason about which

selection strategy is optimal, we need to establish what the

goal of the series of sequential experiments will be.

Historically, these goals have been quantified using the

principle of maximum expected utility. In this framework,

a utility function U is prescribed over a set of experiments
X :¼ fxign

i¼1, their outcomes y :¼ fyign
i¼1, and the model

parameter w. The unknown model parameter and out-

comes are marginalized out to produce the expected utility

�ðXÞ :¼ EwEy j X;w UðX;y;wÞ½ � (18)

which is then maximized to obtain the best set of

experiments with respect to the given utility U and the

current posterior. The expected utility � is related to

acquisition functions in Bayesian optimization, reviewed in

Section IV. Depending on the literature, researchers have

focused on different goals which we briefly discuss here.

1) Active Learning and Experimental Design: In this

setting, we are usually concerned with learning about w,

which can be framed in terms of improving an estimator of

w given the data. One popular approach is to select points

that are expected to minimize the differential entropy of

the posterior distribution pðw j X;yÞ, i.e., maximize

�ðXÞ¼EwEyjX;w

Z
pðw0jX;yÞ log pðw0jX;yÞdw0

� �
:

In the Bayesian experimental design literature, this

criterion is known as the D-optimality utility and was first

introduced by Lindley [98]. Since this seminal work, many

alternative utilities have been proposed in the experimen-

tal design literature. See [37] for a detailed survey.

In the context of A/B testing, following this strategy
would result in exploring all possible combinations of

artwork, font, and sizes, no matter how bad initial

outcomes were. This is due to the fact that the D-optimality

utility assigns equal value to any information provided

about any advertisement configuration, no matter how

effective.

In contrast to optimal experimental design, Bayesian

optimization explores uncertain arms a 2 f1; . . . ;Kg, or
areas of the search space X , only until they can confidently

be ruled out as being suboptimal. Additional impressions of

suboptimal ads would be a waste of our evaluation budget.

In Section IV, we will introduce another differential

entropy-based utility that is better suited for the task of

optimization and that partially bridges the gap between

optimization and improvement of estimator quality.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 155

2) Multiarmed Bandit: Until recently, the multiarmed
bandit literature has focused on maximizing the sum of

rewards yi, possibly discounted by a discount factor

� 2 ð0; 1�

�ðXÞ ¼ EwEy j X;w
Xn

i¼1

�i�1yi

" #
: (19)

When � G 1, a Bayes-optimal sequence X can be computed

for the Bernoulli bandit via dynamic programming, due to

Gittins [59]. However, this solution is intractable for

general reward distributions, and so in practice sequential

heuristics are used and analyzed in terms of a frequentist

measure, namely cumulative regret [38], [92], [127], [135],

[146].

Cumulative regret is a frequentist measure defined as

RnðwÞ ¼
Xn

i¼1

f?w � fwðxai
Þ (20)

where f?w :¼ maxa fwðxaÞ denotes the best possible

expected reward. Whereas the D-optimality utility leads

to too much exploration, the cumulative regret encourages
exploitation by including intermediate selections ai in the

final loss function Rn. For certain tasks, this is an

appropriate loss function: for example, when sequentially

selecting ads, each impression incurs an opportunity cost.

Meanwhile, for other tasks such as model selection, we

typically have a predetermined evaluation budget for

optimization and only the performance of the final

recommended model should be assessed by the loss
function.

Recently, there has been growing interest in the best

arm identification problem, which is more suitable for the

model selection task [7], [30], [50], [51], [72], [104]. When

using Bayesian surrogate models, this is equivalent to

performing Bayesian optimization on a finite, discrete

domain. In this so-called pure exploration settings, in

addition to a selection strategy, a recommendation strategy
� is specified to recommend an arm (or ad or drug) at the

end of the experimentation based on observed data. The

experiment is then judged via the simple regret, which

depends on the recommendation �a ¼ �ðDÞ

rnðwÞ ¼ f ?w � fwðx�aÞ: (21)

III . NONPARAMETRIC MODELS

In this section, we show how it is possible to marginalize

away the weights in Bayesian linear regression and apply

the kernel trick to construct a Bayesian nonparametric
regression model. As our starting point, we assume the

observation variance �2 is fixed and place a zero-mean

Gaussian prior on the regression coefficients pðw j V0Þ ¼
N ð0;V0Þ. In this case, we notice that it possible to

analytically integrate out the weights, and in doing so we

preserve Gaussianity

pðy j X; �2Þ ¼
Z

pðy j X;w; �2Þpðw j 0;V0Þdw

¼
Z
Nðy j Xw; �2IÞN ðw j 0;V0Þdw

¼Nðy j 0;XV0X
T þ �2IÞ: (22)

As noted earlier, it can be useful to introduce basis

functions � and in the context of Bayesian linear

regression we in effect replace the design matrix X with

a feature mapping matrix % ¼ FðXÞ. In (22), this results

in a slightly different Gaussian for weights in feature space

pðy j X; �2Þ ¼ N ðy j 0;%V0%
T þ �2IÞ: (23)

Note that %V0%
T 2 Rn�n is a symmetric positive–

semidefinite matrix made up of pairwise inner products

between each of the data in their basis function
representations. The celebrated kernel trick emerges

from the observation that these inner products can be

equivalently computed by evaluating the corresponding

kernel function k for all pairs to form the matrix K

Ki;j ¼ kðxi;xjÞ ¼ %ðxiÞV0%ðxjÞT (24)

¼ %ðxiÞ;%ðxjÞ
� 	

V0
: (25)

The kernel trick allows us to specify an intuitive similarity

between pairs of points, rather than a feature map %,

which in practice can be hard to define. In other words, we

can either think of predictions as depending directly on

features %, as in the linear regression problem, or on

kernels k, as in the lifted variant, depending on which

paradigm is more interpretable or computationally tracta-

ble. Indeed, the former requires a J � J matrix inversion
compared to the latter’s n� n.

Note also that this approach not only allows us to

compute the marginal likelihood of data that have already

been seen, but it enables us to make predictions of outputs

y? at new locations X?. This can be done by observing that

pðy? j X?;X;y; �
2Þ ¼ pðy?;y j X?;X; �

2Þ
pðy j X; �2Þ : (26)

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

156 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

Both the numerator and the denominator are Gaussian
with the form appearing in (23), and so the predictions are

jointly Gaussian and can be computed via some simple

linear algebra. Critically, given a kernel k, it becomes

unnecessary to explicitly define or compute the features %

because both the predictions and the marginal likelihood

only depend on K.

A. The Gaussian Process
By kernelizing a marginalized version of Bayesian

linear regression, what we have really done is construct an

object called a Gaussian process (GP). GPð	0; kÞ is a

nonparametric model that is fully characterized by its prior
mean function 	0 : X7!R and its positive–definite kernel,

or covariance function, k : X � X7!R [126]. Consider any

finite collection2 of n points x1:n, and define variables

fi :¼ fðxiÞ and y1:n to represent the unknown function

values and noisy observations, respectively. In GP regres-

sion, we assume that f :¼ f1:n are jointly Gaussian and the

observations y :¼ y1:n are normally distributed given f ,

resulting in the following generative model:

f j X �Nðm;KÞ (27)

y j f ; �2 �Nðf ; �2IÞ (28)

where the elements of the mean vector and covariance

matrix are defined as mi :¼ 	0ðxiÞ and Ki;j :¼ kðxi;xjÞ,
respectively. Equation (27) represents the prior distribu-

tion pðfÞ induced by the GP.

Let Dn ¼ fðxi; yiÞgn
i¼1 denote the set of observations

and x denote an arbitrary test point. As mentioned when

kernelizing linear regression, the random variable fðxÞ
conditioned on observationsDn is also normally distributed

with the following posterior mean and variance functions:

	nðxÞ ¼	0ðxÞ þ kðxÞTðKþ �2IÞ�1ðy�mÞ (29)

�2
nðxÞ ¼ kðx;xÞ � kðxÞTðKþ �2IÞ�1

kðxÞ (30)

where kðxÞ is a vector of covariance terms between x
and x1:n.

The posterior mean and variance evaluated at any point

x represent the model’s prediction and uncertainty,

respectively, in the objective function at the point x.
These posterior functions are used to select the next query

point xnþ1 as detailed in Section IV.

B. Common Kernels
In GP regression, the covariance function k dictates the

structure of the response functions we can fit. For

instance, if we expect our response function to be periodic,

we can prescribe a periodic kernel. In this review, we focus
on stationary kernels, which are shift invariant.

Matérn kernels are a very flexible class of stationary

kernels. These kernels are parameterized by a smoothness

parameter
 > 0, so called because samples from a GP

with such a kernel are differentiable b
 � 1c times [126].

The exponential kernel is a special case of the Matérn

kernel with
 ¼ 1=2, and the squared exponential kernel is

the limiting kernel when
 !1. The following are the
most commonly used kernels, labeled by the smoothness

parameter, omitting the factor of 1/2:

k
MAT E

;

RN1
ðx;x0Þ ¼ �2

0 expð�rÞ (31)

k
MAT E

;

RN3
ðx;x0Þ ¼ �2

0 expð�
ffiffiffi
3
p

rÞð1þ
ffiffiffi
3
p

rÞ (32)

k
MAT E

;

RN5
ðx;x0Þ ¼ �2

0 expð�
ffiffiffi
5
p

rÞ 1þ
ffiffiffi
5
p

rþ 5

3
r2

� �
(33)

ksq�expðx;x0Þ ¼ �2
0 expð�1=2r2Þ; (34)

where r2 ¼ ðx� x0ÞTmðx� x0Þ and m is a diagonal

matrix of d squared length scales �2
i . This family of

covariance functions is therefore parameterized by an

amplitude and d length scale hyperparameters, jointly

denoted �. Covariance functions with learnable length

scale parameters are also known as automatic relevance
determination (ARD) kernels. Fig. 3 provides a visualiza-

tion of the kernel profiles and samples from the

corresponding priors and posteriors.

C. Prior Mean Functions
While the kernel function controls the smoothness and

amplitude of samples from the GP, the prior mean provides a

possible offset. In practice, this function is set to a constant

	0ðxÞ 	 	0 and inferred from data using techniques

covered in Section V-A. Unless otherwise specified, in

what follows we assume a constant prior mean function for

convenience. However, the prior mean function is a
principled way of incorporating expert knowledge of the

objective function, if it is available, and the following analysis

can be readily applied to nonconstant functions 	0.

D. Marginal Likelihood
Another attractive property of the GP model is that it

provides an analytical expression for the marginal likeli-

hood of the data, where marginal refers to the fact that the

unknown latent function f is marginalized out. The

expression for the log marginal likelihood is simply given by

log pðyjx1:n; �Þ ¼ �
1

2
ðy�m�ÞTðK� þ �2IÞ�1ðy�m�Þ

� 1

2
log jK� þ �2Ij � n

2
logð2�Þ (35)

2We use the notation zi:j ¼ fzi; . . . ; zjg.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 157

where in a slight abuse of notation we augment the vector
� :¼ ð�0:d; 	0; �

2Þ; and the dependence on � is made

explicit by adding a superscript to the covariance matrix

K�. The marginal likelihood is very useful in learning

the hyperparameters, as we will see in Section V-A. The

right-hand side of (35) can be broken into three terms:

the first term quantifies how well the model fits the data,

which is simply a Mahalanobis distance between the

model predictions and the data; the second term
quantifies the model complexityVsmoother covariance

matrices will have smaller determinants and therefore

lower complexity penalties; finally, the last term is simply

a linear function of the number of data points n,

indicating that the likelihood of data tends to decrease

with larger data sets.

Conveniently, as long as the kernel is differentiable

with respect to its hyperparameters �, the marginal
likelihood can be differentiated and can therefore be

optimized in an off-the-shelf way to obtain a type II

maximum likelihood (MLII) or empirical Bayes estimate of

the kernel parameters. When data are scarce, this can

overfit the available data. In Section V-A, we will review

various practical strategies for learning hyperparameters

which all use the marginal likelihood.

E. Computational Costs and Other Regression
Models

Although we have analytic expressions, exact inference

in GP regression is Oðn3Þ where n is the number of

observations. This cost is due to the inversion of the

covariance matrix. In practice, the Cholesky decomposi-

tion can be computed once and saved so that subsequent

predictions are Oðn2Þ. However, this Cholesky decompo-

sition must be recomputed every time the kernel

hyperparameters are changed, which usually happens at
every iteration (see Section V-A). For large data sets, or

large function evaluation budgets in the Bayesian optimi-

zation setting, the cubic cost of exact inference is

prohibitive and there have been many attempts at reducing

this computational burden via approximation techniques.

In this section, we review two sparsification techniques for

GPs and the alternative random forest regression.

1) Sparse Pseudoinput Gaussian Processes (SPGPs): One
early approach to modeling large n with GPs considered

using m G n inducing pseudoinputs to reduce the rank of

the covariance matrix to m, resulting in a significant

reduction in computational cost [137], [140]. By forcing

the interaction between the n data points x1:n and any test

point x to go through this set of m inducing pseudoinputs,

these methods can compute an approximate posterior in

Oðnm2 þ m3Þ time. Pseudoinput methods have since been
unified in a single theory based on the following

overarching approximation.

Let f and f ? denote two sets of latent function values,

commonly representing the function at training and test

locations, respectively. The simplifying assumption is that

f and f ? are independent given a third set of variables u,

such that

pðf ?; fÞ ¼
Z

pðf ?; f ;uÞdu (36)

Z

qðf? j uÞqðf j uÞpðuÞdu ¼ qðf ; f ?Þ (37)

where u is the vector of function values at the pseudoinputs.

All sparse pseudoinput GP approximations can be specified

in terms of the form used for the training and test
conditionals qðf j uÞ and qðf ? j uÞ, respectively [124].

In the seminal works on pseudoinput methods, the

locations of the pseudoinputs were selected to optimize

the marginal likelihood of the SPGP [137], [140]. In

contrast, a variational approach has since been proposed to

marginalize the pseudoinputs to maximize fidelity to the

original exact GP [152] rather than the likelihood of the

approximate GP.
The computational savings in the pseudoinput ap-

proach to approximating the GP comes at the cost of poor

variance estimates. As can be observed in Fig. 4, the

uncertainty (blue shaded area) exhibits unwanted pinching

at pseudoinputs, while it is overly conservative in between

and away from pseudoinputs. In this instance, the ten

inducing points, indicated with black crosses, were not

Fig. 3. (Left): Visualization of various kernel profiles. The horizontal axis represents the distance r > 0. (Middle): Samples from GP priors with the

corresponding kernels. (Right): Samples from GP posteriors given two data points (black circles). Note the sharper drop in the Matérn1 kernel

leads to rough features in the associated samples, while samples from a GP with the Matérn3 and Matérn5 kernels are increasingly smooth.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

158 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

optimized to emphasize the potential pathologies of the

method. Since in Bayesian optimization we use the

credible intervals to guide exploration, these artefacts
can mislead our search.

2) Sparse Spectrum Gaussian Processes (SSGPs): While

inducing pseudoinputs reduce computational complexity

by using a fixed number of points in the search space,

sparse spectrum Gaussian processes (SSGPs) take a similar

approach to the kernel’s spectral space [94]. Bochner’s

theorem states that any stationary kernel kðx;x0Þ ¼
kðx� x0Þ has a positive and finite Fourier spectrum sðWÞ, i.e.,

kðxÞ ¼ 1

ð2�Þd
Z

e�iWTxsðWÞdW: (38)

Since the spectrum is positive and bounded, it can be

normalized such that pðWÞ :¼ sðWÞ=
 is a valid probability

density function. In this formulation, evaluating the

stationary kernel is equivalent to computing the expecta-

tion of the Fourier basis with respect to its specific spectral
density pðWÞ as in the following:

kðx;x0Þ ¼
EW e�iWTðx�x0Þ
h i

: (39)

As the name suggests, SSGP approximates this expectation

via MC estimation using m samples drawn from the

spectral density so that

kðx;x0Þ

m

Xm

i¼1

e�iWðiÞ
T
xeiWðiÞ

T
x0 (40)

where WðiÞ � sðWÞ=
. The resulting finite-dimensional

problem is equivalent to Bayesian linear regression with m
basis functions and the computational cost is once again

reduced to Oðnm2 þ m3Þ.

As with the pseudoinputs, the spectral points can also be

tuned via marginal likelihood optimization. Although this

violates the MC assumption and introduces a risk of
overfitting, it allows for a smaller number of basis functions

with good predictive power [94]. Once again, in Fig. 4, we

have not tuned the 80 spectral points in this way. Whereas

around observed data (red crosses) the uncertainty estimates

are smoother than the pseudoinputs method, away from

observations both the prediction and uncertainty regions

exhibit spurious oscillations. This is highly undesirable for

Bayesian optimization where we expect our surrogate model
to fall back on the prior away from observed data.

3) Random Forests: Finally, as an alternative to GPs,

random forest regression has been proposed as an

expressive and flexible surrogate model in the context of

sequential model-based algorithm configuration (SMAC)

[79]. Introduced in 2001 [24], random forests are a class of

scalable and highly parallelizable regression models that
have been very successful in practice [42]. More precisely,

the random forest is an ensemble method where the weak

learners are decision trees trained on random subsamples

of the data [24]. Averaging the predictions of the

individual trees produces an accurate response surface.

Subsampling the data, and the inherent parallelism of

the random forest regression model give SMAC the ability

to readily scale to large evaluation budgets, beyond where
the cubic cost of an exact GP would be infeasible.

Similarly, at every decision node of every tree, a fixed-

sized subset of the available dimensions is sampled to fit a

decision rule; this subsampling also helps the random

forest scale to high-dimensional search spaces. Perhaps

most importantly, random forests inherit the flexibility of

decision trees when dealing with various data types; they

can easily handle categorical and conditional variables. For
example, when considering a decision node, the algorithm

can exclude certain search dimensions from consideration

when the path leading up to said node includes a particular

boolean feature that is turned off.

The exploration strategy in SMAC still requires an

uncertainty estimate for predictions at test points. While

the random forest does not provide an estimate of the

Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95%

credible intervals), given noisy evaluations (red crosses) of a synthetic function (dashed line). The ten pseudoinputs for the SPGP method are

shown as black crosses. The SSGP model used a basis of 80 Fourier features.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 159

variance of its predictions, Hutter et al. proposed using the
empirical variance in the predictions across trees in the

ensemble [79]. Though these are not principled uncer-

tainty estimates, this heuristic has been shown to work

well in practice for the SMAC algorithm.

Although random forests are good interpolators in the

sense that they output good predictions in the neighborhood

of training data, they are very poor extrapolators. Indeed, far

from the data, the predictions of all trees could be identical,
resulting in a poor prediction; more importantly, using the

variance estimate of SMAC results in extremely confident

intervals. In Fig. 4, for example, away from data the shaded

area is very narrow around a very poor constant prediction.

Even more troubling is the fact that in areas of missing data

multiple conflicting predictions can cause the empirical

variance to blow up sharply, as can be seen in Fig. 4. While

GPs are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away

from the data by reverting to the priorVa more desirable

behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for

Bayesian optimization is that the response surface is

discontinuous and nondifferentiable so gradient-based

optimization methods are not applicable. SMAC relies on

a combination of local and random search when maximiz-
ing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to

represent our belief about the unknown function f at

iteration n. We have not described the exact mechanism or

policy for selecting the sequence of query points x1:n. One

could select these arbitrarily but this would be wasteful.

Instead, there is a rich literature on selection strategies that

utilize the posterior model to guide the sequential search,
i.e., the selection of the next query point xnþ1 given Dn.

Consider the utility function U : Rd �R � Q 7!R
which maps an arbitrary query point x, its corresponding

function value v ¼ fðxÞ, and a setting of the model

hyperparameters � to a measure of quality of the experiment,

e.g., how much information this query will provide as in [98].

Given some data accumulated thus far, we can marginalize

the unseen outcome y and the unknown model hyperpara-
meters � to obtain the expected utility of a query point x

�ðx;DnÞ ¼ E�Ev j x;� Uðx; v; �Þ½ �: (41)

For simplicity, in this section, we will mostly ignore the �
dependence and we will discuss its marginalization in

Section V-A.

Whereas in experimental design and decision theory, the

function � is called the expected utility, in Bayesian

optimization it is often called the acquisition or infill

function. These acquisition functions are carefully designed
to trade off exploration of the search space and exploitation

of current promising areas. We first present traditional

improvement-based and optimistic acquisition functions,

followed by more recent information-based approaches and

compare them qualitatively in Fig. 5.

A. Improvement-Based Policies
Improvement-based acquisition functions favor points

that are likely to improve upon an incumbent target � . An

early strategy in the literature, probability of improvement

(PI) [91], measures the probability that a point x leads to
an improvement upon � . Since the posterior distribution of

v ¼ fðxÞ is Gaussian, we can analytically compute this

probability as follows:

�PIðx;DnÞ :¼ P½v > � � ¼ F
	nðxÞ � �
�nðxÞ

� �
(42)

where F is the standard normal cumulative distribution

function. Recall that �PI is then maximized to select the

next query point. For this criterion, the utility function is

simply an indicator of improvement Uðx; v; �Þ ¼ I½v > � �,
where the utility function is expressed (and marginalized)

with respect to the latent variable v. Therefore, all

improvements are treated equal and PI simply accumulates

the posterior probability mass above � at x.

Although probability of improvement can perform very

well when the target is known, in general the heuristic

used for an unknown target � causes PI to exploit quite

aggressively [81].

Fig. 5. Visualization of the surrogate regression model and various

acquisition functions. (Top) The true objective function is shown as a

dashed line and the probabilistic regression model is shown as a blue

line with a shaded region delimiting the 2�n credible intervals. Finally,

the observations are shown as red crosses. (Bottom) Four acquisition

functions are shown. In the case of PI, the optimal mode is much closer

to the best observation as in the alternative methods, which explains

its greedy behavior. In contrast, the randomization in TS allows it to

explore more aggressively.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

160 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

One could instead measure the EI [115] which
incorporates the amount of improvement. This new

criterion corresponds to a different utility that is called

the improvement function, denoted by IðxÞ. Formally, the

improvement function I is defined as follows:

Iðx; v; �Þ :¼ ðv� �ÞIðv > �Þ: (43)

Note that I > 0 only if there is an improvement. Once again,

because the random variable v is normally distributed, the
expectation can be computed analytically as follows:

�EIðx;DnÞ :¼E Iðx; v; �Þ½ �

¼ 	nðxÞ � �ð ÞF 	nðxÞ � �
�nðxÞ

� �

þ �nðxÞ�
	nðxÞ � �
�nðxÞ

� �
(44)

when �n > 0 and vanishes otherwise. Here, not to be

confused with the previous section, � is the standard normal

probability density function. These improvement strategies

have been empirically studied in the literature [27], [81], [82]

and recently convergence rates have been proven for EI [32].

Finally, although the target objective value (i.e., the

best reachable objective value) is often unknown, in
practice � is adaptively set to the best observed value

yþ ¼ maxi¼1:n yi. Whereas for PI this heuristic can lead to

an overly greedy optimization [81], it works reasonably

with EI in practice [143]. When the objective function

being minimized is very noisy, using the lowest mean value

as the target is reasonable [156].

B. Optimistic Policies
Dating back to the seminal work of Lai and Robbins [92]

on the multiarmed bandit problem, the upper confidence

bound criterion has been a popular way of negotiating

exploration and exploitation, often with provable cumula-
tive regret bounds. The guiding principle behind this class

of strategies is to be optimistic in the face of uncertainty.

Indeed, using the upper confidence for every query point x
corresponds to effectively using a fixed probability best case

scenario according to the model. Originally, the upper

confidence was given by frequentist Chernoff–Hoeffding

bounds [8].

More recently, the Gaussian process upper confidence
bound (GP-UCB [146]) algorithm was proposed as a Bayesian

optimistic algorithm with provable cumulative regret bounds.

In the deterministic case, a branch-and-bound extension to

GP-UCB was proven to have exponentially vanishing

instantaneous regret [43]. The GP-UCB algorithm has since

been generalized to other Bayesian models by considering

upper quantiles [84] instead of (45) defined below, which is

more reminiscent of frequentist concentration bounds. In the
GP case, since the posterior at any arbitrary point x is a

Gaussian, any quantile of the distribution of fðxÞ is computed

with its corresponding value of �n as follows:

�UCBðx;DnÞ :¼ 	nðxÞ þ �n�nðxÞ: (45)

There are theoretically motivated guidelines for setting

and scheduling the hyperparameter �n to achieve optimal

regret [146] and, as with � in the improvement policies,

tuning this parameter within these guidelines can offer a

performance boost.

Finally, there also exist variants of these algorithms for

the contextual bandits [153] (see Section VIII-D) and
parallel querying [45] (see Section V-E).

C. Information-Based Policies
In contrast to the acquisition functions introduced so

far, information-based policies consider the posterior

distribution over the unknown minimizer x?, denoted

p?ðx j DnÞ. This distribution is implicitly induced by the

posterior over objective functions f . There are two policies

in this class, namely TS and ES.

Though it was introduced in 1933 [150], TS has attracted

renewed interest in the multiarmed bandit community,
producing empirical evaluations [38], [135] as well as

theoretical results [2], [85], [127]. TS is a randomized

strategy which samples a reward function from the posterior

and selects the arm with the highest simulated reward.

Therefore, the selection made by TS can be expressed as the

randomized acquisition function xnþ1 � p?ðx j DnÞ.
However, in continuous search spaces, the analog of TS

is to draw a continuous function f ðnÞ from the posterior GP
and optimize it to obtain xnþ1. In order to be optimized,

the sample f ðnÞ needs to be fixed so it can be queried at

arbitrary points; unfortunately, it is not clear how to fix an

exact sample from the GP. However, using recent spectral

sampling techniques [20], [94], [125], we can draw an

approximate sample from the posterior that can be

evaluated at any arbitrary point x [69], which extends

TS to continuous search spaces. As an acquisition function,
TS can be formulated as

�TSðx;DnÞ :¼ f ðnÞðxÞ;
where f ðnÞ �s:s: GPð	0; k j DnÞ

(46)

where �s:s: indicates approximate simulation via spectral

sampling. Empirical evaluations show good performance

which, however, seems to deteriorate in high dimensional

problems, likely due to aggressive exploration [139].

Instead of sampling the distribution p?ðx j DnÞ, ES

techniques aim to reduce the uncertainty in the location

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 161

x? by selecting the point that is expected to cause the
largest reduction in entropy of the distribution p?ðx j DnÞ
[67], [69], [155]. In terms of utility, ES methods use the

information gain defined as follows:

Uðx; y; �Þ ¼ Hðx? j DnÞ � H x? j Dn [ðx; yÞf gð Þ (47)

where the � implicitly parameterizes the distribution of y.

In other words, ES measures the expected information

gain from querying an arbitrary point x and selects the point
that offers the most information about the unknown x?. The

acquisition function for ES can be expressed formally as

�ESðx;DnÞ :¼Hðx?jDnÞ � EyjDn;xH x?jDn[ðx; yÞf gð Þ

where Hðx? j DnÞ denotes the differential entropy of the

posterior distribution p?ðx j DnÞ, and the expectation is

over the distribution of the random variable y � Nð	nðxÞ;
�2

nðxÞ þ �2Þ.
Once again, this function is not tractable for contin-

uous search spaces X so approximations must be made.

Early work discretized the space X and computed the

conditional entropy via MC sampling [155]. More recent

work uses a discretization of the X to obtain a smooth

approximation to p? and its expected information gain

[67]. This method is unfortunately OðM4Þ where M is the

number of discrete so-called representer points.

Finally, predictive entropy search (PES) removes the
need for a discretization and approximates the acquisition

function in Oððnþ dÞ3Þ time, which, for d G n is of the

same order as EI [69]. This is achieved by using the

symmetric property of mutual information to rewrite

�ESðxÞ as

�PESðx;DnÞ :¼Hðy j Dn;xÞ � Ex?jDn
HðyjDn;x;x

?Þ½ �:

The expectation can be approximated via MC with

Thompson samples; and three simplifying assumptions

are made to compute Hðy j Dn;x;x
?Þ. Empirically, this

algorithm has been shown to perform as well as or better
than the discretized version without the unappealing

quartic term [69], making it arguably the state of the art in

ES approximation.

D. Portfolios of Acquisition Functions
No single acquisition strategy provides better perfor-

mance over all problem instances. In fact, it has been

empirically observed that the preferred strategy can

change at various stages of the sequential optimization

process. To address this issue, Hoffman et al. [73] proposed

the use of a portfolio containing multiple acquisition

strategies. At each iteration, each strategy in the portfolio
provides a candidate query point and meta-criterion is used

to select the next query point among these candidates. The

meta-criterion is analogous to an acquisition function at a

higher level; whereas acquisition functions are optimized

in the entire input space, a meta-criterion is only

optimized within the set of candidates suggested by its

base strategies.

The earlier approach of Hoffman et al. is based on a
modification of the well-known Hedge algorithm [9],

designed for the full-information adversarial multiarmed

bandit. This particular portfolio algorithm relies on using

the past performance of each acquisition function to

predict future performance, where performance is mea-

sured by the objective function. However, this perfor-

mance metric does not account for valuable information

that is gained through exploration.
A more recent approach, the so-called entropy search

portfolio (ESP), considers the use of an information-based

metric instead [139]. In contrast to the GP-Hedge

portfolio, ESP selects among different candidates by

considering the gain of information toward the optimum.

Removing the constant entropy at the current time, the

ESP meta-criterion reduces to

�ESPðx;DnÞ ¼ �EyjDn;x H x?jDn [ðx; yÞf g½ �½ � (48)

xn ¼ arg max
x1:K;n

�ESPðx;DnÞ (49)

where x1:K;n represent the candidates provided by the K base

acquisition functions. In other words, the candidate selected

by this criterion is the one that results in the greatest

expected reduction in entropy about the minimizer x?. If the

meta-criterion �ESPðxjDnÞ were minimized over the entire
space X , ESP would reduce to the acquisition functions

proposed by [67], [69], and [155]. However, ESP restricts

this minimization to the set of candidates made by each

portfolio member. Fig. 6 demonstrates the potential gains in

using a portfolio, over committing to a single acquisition

function that could perform poorly, e.g., in this case PI.

V. PRACTICAL CONSIDERATIONS

In this section, we discuss some implementation details and

more advanced topics. In particular, we first describe how

the unknown hyperparameters � are dealt with, we then
provide a survey of techniques used to optimize the

acquisition functions, followed by a discussion of nonstatio-

narity and Bayesian optimization with parallelizable queries.

A. Handling Hyperparameters
Thus far in the discussion, we have mostly ignored the

kernel hyperparameters and assumed they were given. In

this section, we describe two data-driven ways of handling

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

162 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

hyperparameters, namely point estimation and approxi-
mate marginalization. Consider a generic function

� : X � Q 7!R, where � 2 Q represents the hyperpara-

meters of our GP. In the context of Bayesian optimization,

this function could be our objective function or any

function derived from the GP, but for concreteness, it may

help to think of it specifically as the acquisition function,

hence the symbol �. We wish to marginalize out our

uncertainty about � with the following expression:

�nðxÞ :¼ E�jDn
�ðx; �Þ½ � ¼

Z
�ðx; �Þpð� j DnÞd�: (50)

This integral is over our posterior belief over � given
observationsDn, which can be decomposed via Bayes’ rule as

pð� j DnÞ ¼
pðy j X; �Þpð�Þ

pðDnÞ
: (51)

The simplest approach to tackling (50) is to fit the

hyperparameter to observed data using a point estimate

�̂
ML

n or �̂
MAP

n , corresponding to type II maximum
likelihood or maximum a posteriori estimates, respectively.

The posterior is then replaced by a delta measure at the

corresponding �̂n which yields

�̂nðxÞ ¼ �ðx; �̂nÞ: (52)

The estimators �̂
ML

n and �̂
MAP

n can be obtained by

optimizing the marginal likelihood or the unnormalized

posterior, respectively. For certain priors and likelihoods,

these quantities as well as their gradients can be computed

analytically. For example, the GP regression model yields
the following marginal likelihood defined in (35), which

we denote here by Ln. Therefore, it is common to use

multistarted quasi-Newton hill climbers [e.g., the limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

method] on objectives such as the likelihood Ln or the

unnormalized posterior.

In Bayesian optimization, our uncertainty about the

response surface plays a key role in guiding exploration,
and therefore it is important to incorporate our uncer-

tainty about � in the regression model. Naturally, these

point estimates cannot capture this uncertainty. For this

reason, we consider marginalizing out the hyperpara-

meters using either quadrature or MC [26], [120], [143].

The common component in MC methods is that they

approximate the integral in (50) using M samples f�ðiÞn g
M

i¼1

from the posterior distribution pð� j DnÞ

E�jDn
�ðx; �Þ½ �
 1

M

XM

i¼1

� x; �ðiÞn

 �
: (53)

However, in practice, it is impossible to sample directly

from the posterior so MCMC and sequential Monte Carlo

(SMC) techniques are used to produce a sequence of

samples that are marginally distributed according to

pð� j DnÞ in the limit of infinitely long chains. Once the

M hyperparameter samples are obtained, the acquisition

function is evaluated and averaged over all samples; this
marginal acquisition function incorporates the uncertainty

in �. In addition to MC methods, one could also use

quadrature as shown in [120]. Here, samples (not

necessarily drawn from the posterior) are combined using

a weighted mixture

E�jDn
�ðx; �Þ½ �

XM

i¼1

!i� x; �ðiÞn

 �
: (54)

We could do away with samples entirely and approximate-

ly integrate out the hyperparameters as shown in [53]. To

Fig. 6. Absolute error of the best observation for the Branin and

Hartmann three synthetic functions. Plotting the mean and standard

error (shaded area) over 25 repeated runs.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 163

make the integral tractable, the authors adopted a linear
approximation to the likelihood which enables them to

derive an approximate posterior. This method, however,

has not been demonstrated in the setting of Bayesian

optimization.

Estimating the hyperparameters of GP kernels with very

few function evaluations is a challenging task, often with

disastrous consequences as illustrated by a simple example in

[15]. The typical estimation of the hyperparameters by
maximizing the marginal likelihood [82], [126] can easily fall

into traps, as shown in [32]. Several authors have proposed

to integrate out the hyperparameters using quadrature or

MC methods [26], [120], [143]. These more advanced

techniques can still fall in traps as illustrated with a simple

simulation example in [156], where theoretical bounds are

used to ensure that Bayesian optimization is robust with

respect to the choice of hyperparameters.

B. Optimizing Acquisition Functions
A central step of the Bayesian optimization framework

is the maximization of the acquisition function. Naturally,

an acquisition function is only useful if it is cheap to

evaluate relative to the objective function f . Nevertheless,

the acquisition function is often multimodal and maxi-

mizing it is not a trivial task. In practice, the community
has resorted to using various techniques such as dis-

cretization [143] and adaptive grids [13], or similarly, the

divided rectangles approach of [83], which was used in

[28], [105], and [110]. When gradients are available, or can

be cheaply approximated, one can use a multistarted quasi-

Newton hill-climbing approach [100], [143]. Alternatively,

Bergstra et al. [16] and Wang et al. [158] use the CMA-ES

method of [66], and Hutter et al. [79] apply multistart local
search.

Unfortunately, these auxiliary optimization techniques

can be problematic for several reasons. First, in practice, it

is difficult to assess whether the auxiliary optimizer has

found the global maximizer of the acquisition function.

This raises important concerns about the convergence of

Bayesian optimization algorithms because theoretical

guarantees are only valid with the assumption that the
exact optimizer is found and selected; see, for example,

[32], [146], and [154]. Second, between any two consec-

utive iterations of the Bayesian optimization algorithm, the

acquisition function may not change dramatically. There-

fore, rerunning the auxiliary optimizer can be unneces-

sarily wasteful.

Recent proposed optimistic optimization methods

provide an alternative to Bayesian optimization [31],
[87], [116]. These methods sequentially build space-

partitioning trees by splitting leaves with high function

values or upper confidence bounds; the objective function

is then evaluated at the center of the chosen leaves.

Simultaneous optimistic optimization (SOO) can reach the

global optimum without knowledge of the function’s

smoothness [116]. Since SOO is optimistic at multiple

scales (i.e., it expands several leaves simultaneously, with
at most one leaf per level) it has also been referred to as

multiscale optimistic optimization [157].

Though these optimistic optimization methods do not

require any auxiliary optimization, these methods are not

as competitive as Bayesian optimization in practical

domains where prior knowledge is available. The Bayesian

multiscale SOO (BamSOO) algorithm combines the tree

partitioning idea of SOO with the surrogate model of
Bayesian optimization [157], eliminating the need for

auxiliary optimization. BamSOO also boasts some theo-

retical guarantees that do not depend on the exact

optimization of an acquisition function. Intuitively, the

method implements SOO to optimize the objective

function directly, but avoids querying points that are

deemed unlikely to be optimal by the surrogate model’s

confidence bounds.
In other words, BaMSOO uses the surrogate model to

reduce the number of function evaluations, increasing

sample efficiency. This work is also reminiscent of the

theoretical work in [43], which proposes to only search in

regions where the upper bound on the objective is greater

than the best lower bound encountered thus far. Fig. 7

illustrates how regions are discarded. Guided by the

probabilistic model, the most promising regions are explored
first, which avoids covering the entire space. Fig. 8 compares

SOO and BaMSOO on a simple 1-D example. Incorporating

the surrogate model leads to better more refined optimiza-

tion for the same number of query points.

C. Conditional Spaces
It is often the case that some variables will only influence

the function being optimized when other variables take on

certain values. These are called conditional variables and are

Fig. 7. Conditioned on the unknown objective function (red) lying

between the surrogate confidence bounds (green region) with high

probability, we can discard regions of the space where the upper

bound is lower than the best lower bound encountered thus far. Figure

from [43].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

164 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

said to be active or inactive. For example, when the function
involves selecting between different algorithms as well as

optimizing their hyperparameters, then certain sets of

hyperparameters belonging to a given algorithm will be

inactive if that algorithm is not selected [16], [79].

More formally, consider a variable x1 2 X 2 and

another variable x2 2 X 2. x1 is said to be a child of x2 if

it is only active when x2 takes on certain values in X 2. This

conditional structure can be extended with multiple
variables to form more complicated tree or directed

acyclic graph structures. This greatly extends the capabil-

ities of the Bayesian optimization framework, allowing it

to chain together individual algorithms to form sophisti-

cated pipelines that can be jointly optimized [19], [151].

Models such as random forests or the tree Parzen

estimator (TPE) are naturally tailored to handle condi-

tional spaces. Random forests are constructed using
ensembles of decision trees that can learn to ignore

inactive variables and the TPE itself is a graph-structured

generative model that follows the conditional structure of

the search space.

GPs are not immediately suitable for conditional spaces
because standard kernels are not defined over variable-

length spaces. A simple approach is to define a separate GP

for each group of jointly active hyperparameters [16],

however this ignores dependencies between groups.

Recent work has focused on defining a fixed-length

embedding of conditional spaces where a standard kernel

using Euclidean distance can be applied [147]. This is

currently a very new area of research and more work needs
to be done before GPs can work in conditional spaces as

well as tree-based models.

D. Nonstationarity
A major assumption made by GP regression using the

kernels suggested in Section III-B is that the underlying

process is stationary. Formally, this assumption means that

the kernel kðx;x0Þ can be equivalently written as a

function of x� x0. Intuitively, a function whose length

scale does not change throughout the input space will be

well modeled by a GP with a stationary kernel.
In real-world problems, we often expect that the true

underlying process will be nonstationary. In these cases,

the GP prior is misspecified, which means that it will

require more data in order to produce reasonable posterior

estimates. For Bayesian optimization this is an issue, as the

entire goal is to minimize the function in as few

evaluations as possible. Here, we will discuss some of

the ways in which Bayesian optimization can be modified
to deal with nonstationarity.

1) Nonstationary Kernels: One way to create a nonsta-

tionary process is to use a nonstationary kernel. One

strategy is to convert a stationary kernel into a nonsta-

tionary one by transforming x using a parametric warping

function xðwÞ ¼ wðxÞ and then applying a stationary

kernel to xðwÞ [129], [145]. If w is chosen appropriately,
the data will follow a stationary process in the transformed

space.

In Bayesian optimization, the inputs are traditionally

projected onto the unit hypercube and this fact was

exploited by Snoek et al. [145], who chose the warping

function to be the cdf of the beta distribution

wdðxÞ ¼
Zxd

0

x��1
d ð1� xdÞ��1

Bð�; �Þ dxd (55)

where � and � are the shape parameters, and the B is the

beta function. In this case, wdðxÞ is a warping function for

the dth dimension of x, and a separate warping is applied

to each dimension.

Examples of functions before and after applying beta

warping are shown in Fig. 9. Despite having only two

parameters, the beta cdf is able to express a wide variety of

Fig. 8. Comparison of SOO (top) and BamSOO (bottom) on

fðxÞ ¼ ð1=2Þ sinð15xÞ sinð27xÞ in [0, 1]. Blue dots represent nodes where

the objective was evaluated. BaMSOO does not evaluate f at points that

are sub-optimal with high probability under the surrogate model

(not shown). Figure from [157].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 165

transformations. These transformations contract portions

of the input space, and expand others, which has the effect
of decreasing and increasing the length scale in those

portions, respectively. The beta warping approach has

been shown to be highly effective on several benchmark

problems as well as hyperparameter optimization for

machine learning models [18], [145].

While the beta cdf is not the only choice, it is appealing

for a number of reasons. For hyperparameter optimization,

it mimics the kind of transformations practitioners tend to
apply when applying a grid search, such as searching over

learning rates in the log domain. It is compactly

parameterized, so that learning the shape parameters is

not much more expensive than learning other kernel

parameters. Finally, it is an invertible transformation so

that once the maximum of the acquisition function is

found, it can easily be mapped back into the original space.

For � ¼ � ¼ 1, the transformation is the identity and the
original, stationary GP is recovered.

Learning � and � via point estimates can be difficult

when using gradient-based optimization as the beta

function and its derivatives with respect to � and � do

not have simple closed-form solutions. An appealing

alternative in this case is the Kumaraswamy distribution,

whose cdf takes the form

wdðxÞ ¼ 1� 1� x�d
� ��

: (56)

There are many other examples of nonstationary
covariance functions [3], [22], [54], [70], [118], [121],

[126], [132] that have been proposed for GP regression along

with closely related output warping techniques [141] that

can also model certain kinds of nonstationary processes.

2) Partitioning: An alternative approach to modeling

nonstationarity that has been useful in practice is to

partition the space into distinct regions and then to model

each region as a separate stationary process. In a random
forest model [27], [79], this is achieved by finer partition-

ing in regions of the space where the function changes

rapidly, and more granular partitioning in regions where

the function changes slowly. Partitioning can also be an

effective strategy for GPs. For example, Gramacy et al. [63]

proposed the treed GP model, which partitions the data

and then applies a separate GP to each region.

3) Heteroscedasticity: Heteroscedasticity is a close analog

of nonstationarity, but refers to nonstationary behaviour in

the noise process governing the observation model, instead

of the true process that we wish to capture. Standard GP

regression using an isotropic noise kernel assumes by

default that the noise process is constant everywhere, and

is therefore stationary by definition. In practice, it is

possible to have nonstationarity in both the true process
and the noise process. Heteroscedasticity has been widely

addressed in the GP literature; see, e.g., [86], [95], and

[103].

For Bayesian optimization in particular, one approach

to handling heteroscedastic noise was proposed in [5]

using a partitioning approach. The idea is to build a

partition using classification and regression trees (CARTs)

[25]; however, splitting was restricted to occur at data
points rather than between them. This ensured that the

variance estimates of the GP would remain smooth

between partitions.

Another form of nonstationarity that is closely related

to heteroscedasticity is a nonstationary amplitude [1], [54].

This is where the magnitude of the output process changes

as a function of the input. To our knowledge this has not

been directly addressed in the Bayesian optimization
literature. There have, however, been attempts to be

robust to this effect by integrating out the amplitude

parameter of the GP kernel. This was done numerically in

[143] and analytically using conjugate priors in [138],

Fig. 9. (Left) Examples of beta cdf warpings under different settings of the shape parameters� and �. (Right) Examples of functions after applying

a beta cdf warping (originally from [145]). The regions where the cdf has a slope greater than 1 are expanded along the horizontal axis, while

regions where the cdf has slope less than 1 are contracted.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

166 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

resulting in a latent GP with t-distributed predictions and

an input-dependent noise covariance.

E. Parallelization
Bayesian optimization is conventionally posed as a

sequential problem where each experiment is completed

before a new one is proposed. In practice, it may be

possible and advantageous to run multiple function

evaluations in parallel. Even if the number of experiments
required to reach the minimum does not change, parallel

approaches can yield a substantial reduction in terms of

wall-clock time [80], [143].

Ginsbourger et al. [57] proposed several approaches

based on imputing the results of currently running

experiments. The idea is that given the current observa-

t ions Dn ¼ fðxn; ynÞg and pend ing exp er iments

Dp ¼ fxpg, one can impute a set of set of experimental
outcomes ~Dp ¼ fðxp; ~ypÞg and then perform a step of

Bayesian optimization using the augmented data set

Dt [~Dp.

One simple strategy is the constant liar, where a

constant L is chosen such that ~yp ¼ L, 8 p. Another strategy

is the Kriging believer, which uses the GP predictive mean

~yp ¼ 	nðxpÞ. Snoek et al. [143] used an approach where a

set of S fantasies are sampled for each unfinished
experiment from the full GP posterior predictive distribu-

tion. These are then combined to estimate the following

parallel integrated acquisition function:

�ðx;Dn;DpÞ ¼
Z
RJ

�ðx;Dn [~DpÞPð~y1:J;DnÞdyp1:J (57)

 1

S

XS

s¼1

� x;Dn [~DðsÞp

 �
(58)

~DðsÞp � Pð~y1:J;DnÞ (59)

where J is the number of currently pending experiments.

This approach has been shown to be very effective in

practice when � is chosen to be EI. Similar approaches are

proposed in [40] and [58] and a similar parallel extension

to GP-UCB is proposed in [45].

Although the imputation approaches deal with parallel

experiments, the nature in which they propose candidates is

still inherently sequential. A truly parallel approach would

simultaneously propose a set of candidates. Jones [81] and

Hutter et al. [80] proposed an approach based on GP-UCB

where �UCB is optimized using a range of �n values, which
produces a set of points that favor a range of exploration

and exploitation.

F. Software Implementations
As of this writing, there are several open source

packages implementing various forms of Bayesian optimi-

zation. We highlight several popular libraries in Table 1.

VI. THEORY OF BAYESIAN
OPTIMIZATION

There exists a vast literature on the theoretical properties

of bandit algorithms in general. Theoretical properties of

Bayesian optimization, however, have only been estab-

lished recently. In this section, we focus on the results

concerning GP-based Bayesian optimization and defer
detailed discussions of bandit algorithms to other dedicat-

ed surveys [29], [117].

There exist several early consistency proofs for GP-

based Bayesian optimization algorithms, in the 1-D setting

[102] and one for a simplification of the algorithm using

simplicial partitioning in higher dimensions [163]. The

consistency of the algorithm using multivariate GPs has

been established in [154].
More recently, Srinivas et al. [146] provided the first

finite sample bound for GP-based Bayesian optimization.

In this work, the authors showed that the GP-UCB

algorithm suffers from sublinear cumulative regret in the

stochastic setting. The regret bounds, however, allow only

fixed hyperparameters. In [32], Bull provided both upper

and lower bounds of simple regret for the EGO algorithm

[82] in the deterministic setting. In addition to regret
bounds concerning fixed hyperparameters, the author also

provided simple regret bounds while allowing varying

hyperparameters.

Since the pioneering work of [32] and [146], there

emerged a large body of results on this topic, including

exponentially vanishing simple regret bounds in the

deterministic setting [43]; bounds for contextual GP

Table 1 List of Several Popular Open Source Software Libraries for Bayesian Optimization as of May 2015

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 167

bandits [89]; Bayes regret bounds for TS [85], [127];
bounds for high-dimensional problems with an underlying

low-rank structure [46]; bounds for parallel Bayesian

optimization [45]; and improved regret bounds using

mutual information [41].

Despite the recent surge in theoretical contributions,

there is still a wide gap between theory and practice.

Regret bounds or even consistency results, for example,

have not been established for approaches that use a full
Bayesian treatment of hyperparameters [143]. Such

theoretical results could advance the field of Bayesian

optimization and provide insight for practitioners.

VII. HISTORY OF BAYESIAN
OPTIMIZATION AND RELATED
APPROACHES

Arguably the earliest work related to Bayesian optimiza-

tion was that of William Thompson in 1933 where he

considered the likelihood that one unknown Bernoulli

probability is greater than another given observational data

[150]. In his article, Thompson argues that when

considering, for example, two alternative medical treat-

ments one should not eliminate the worst one based on a

single clinical trial. Instead, he proposes, one should
estimate the probability that one treatment is better than

the other and weigh future trials in favor of the seemingly

better treatment while still trying the seemingly subopti-

mal one. Thompson rightly argues that by adopting a single

treatment following a clinical trial, there is a fixed chance

that all subsequent patients will be given suboptimal

treatment. In contrast, by dynamically selecting a fraction

of patients for each treatment, this sacrifice becomes
vanishingly small.

In modern terminology, Thompson was directly

addressing the exploration–exploitation tradeoff, referring

to the tension between selecting the best known treatment

for every future patient (the greedy strategy) and

continuing the clinical trial for longer in order to more

confidently assess the quality of both treatments. This is a

recurring theme not only in the Bayesian optimization
literature, but also the related fields of sequential

experimental design, multiarmed bandits, and operations

research.

Although modern experimental design had been

developed a decade earlier by Ronald Fisher’s work on

agricultural crops, Thompson introduced the idea of

making design choices dynamically as new evidence

becomes available; a general strategy known as sequential
experimental design or, in the multiarmed bandit litera-

ture, adaptive or dynamic allocation rules [59], [92].

The term Bayesian optimization was coined in the

1970s [115], but a popular version of the method has been

known as efficient global optimization in the experimental

design literature since the 1990s [134]. Since the

approximation of the objective function is often obtained

using GP priors, the technique is also referred to as GP
bandits [146].

In the nonparametric setting, Kushner [91] used

Wiener processes for unconstrained 1-D optimization

problems. Kushner’s decision model was based on

maximizing the probability of improvement. He also

included a parameter that controlled the tradeoff between

‘‘more global’’ and ‘‘more local’’ optimization, in the same

spirit as the exploration–exploitation tradeoff. Meanwhile,
in the former Soviet Union, Močkus and colleagues

developed a multidimensional Bayesian optimization

method using linear combinations of Wiener fields [114],

[115]. Both of these methods, probability of improvement

and EI, were studied in detail in [81].

At the same time, a large, related body of work

emerged under the name ‘‘kriging,’’ in honor of the South

African student who developed this technique at the
University of the Witwatersrand [90], though largely

popularized by Matheron and colleagues (e.g., [111]). In

kriging, the goal is interpolation of a random field via a

linear predictor. The errors on this model are typically

assumed to not be independent, and are modeled with

a GP.

Kriging has been applied to experimental design under

the name DACE, after design and analysis of computer
experiments, the title of a paper by Sacks et al. [128] (and

more recently a book by Santner et al. [130]). In DACE, the

regression model is a best linear unbiased predictor

(BLUP), and the residual model is a noise-free GP. The

goal is to find a design point or points that optimizes some

criterion. Experimental design is usually nonadaptive: the

entire experiment is designed before data are collected.

However, sequential design is an important and active
subfield (e.g., [33] and [159]).

The efficient global optimization (EGO) algorithm is

the combination of DACE model with the sequential EI

acquisition criterion. It was published in a paper by

Jones et al. [82] as a refinement of the SPACE algorithm

(stochastic process analysis of computer experiments)

[133]. Since EGO’s publication, there has evolved a

body of work devoted to extending the algorithm,
particularly in adding constraints to the optimization

problem [6], [23], [131], and in modeling noisy functions

[14], [75], [76].

In the bandits setting, Lai and Robbins [92] introduced

upper confidence bounds (UCB) as approximate alter-

natives to Gittins indices in 1985. Auer studied these

bounds using frequentist techniques, and in adversarial

multiarmed bandit settings [8], [9].
The literature on multiarmed bandits is vast. The book

of Cesa-Bianchi and Lugosi [36] is a good reference on the

topic of online learning with experts and bandits in

adversarial settings. There are many results on exploration

[30], [50], [51] and contextual bandits [2], [97], [112].

These contextual bandits may also be seen as myopic

approximations to Markov decision processes.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

168 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

VIII . EXTENSIONS AND OPEN
QUESTIONS

A. Constrained Bayesian Optimization
In [56], a scenario was outlined in which a food

company wished to design the best tasting cookie subject

to the number of calories being below a certain level. This

is an example of constrained optimization, where certain

regions of the design space X are invalid. In machine
learning, this can arise when certain hyperparameter

configurations result in models that diverge during

training, or that run out of computer memory. When the

constraints are known a priori, they can be incorporated

into the optimization of the acquisition function. The more

challenging case arises when it is not known in advance

which configurations will result in a constraint violation.

Several approaches deal with this problem by altering the
acquisition function itself.

Gramacy and Lee [62] proposed the integrated

expected conditional improvement (IECI) acquisition

function

�IECIðxÞ¼
Z
x0

�EIðx0;DnÞ��EIðx0;Dn[xÞjxÞð Þhðx0Þdx:

(60)

This gives the change in EI from observing x under the

density h. Choosing h to model the probability of satisfying

the constraint encourages IECI to favor regions with a high

probability of being valid.

Snoek [142] and Gelbart et al. [56] proposed the

weighted expected improvement criterion (wEI) that

multiplies EI by the probability of satisfying the constraints

�wEIðxÞ ¼ �EIðx;DnÞhðx;DnÞ (61)

where hðx;DnÞ is a GP with a Bernoulli observation
model. This reduces EI in regions that are likely to violate

constraints.

A variant of wEI was proposed in [52] to deal with the

case where the function is constrained to be less than some

value . They used hðx;DtÞ ¼ PðfðxÞ G j DtÞ, the

posterior probability of satisfying this constraint under

the GP model of the function.

Hernández-Lobato et al. [68] recently proposed a
variation of the PES acquisition function to deal with the

decoupled case, where the function and constraints can be

evaluated independently.

In a different approach, Gramacy et al. [61] adapted the

augmented Lagrangian approach to the Bayesian optimi-

zation setting, with unconstrained Bayesian optimization

approximately solving the inner loop of the algorithm.

B. Cost Sensitivity
In some cases, each function evaluation may return

both a value along with an associated cost. In other words,

it may be more expensive to evaluate the function in some

parts of the design space than others. If there is a limited

budget, then the search should be biased toward low-cost

areas. In [143], the goal was to train a machine learning

model and the cost was the time it took to train the

model. They used EI per second, EIðx;DnÞ=cðxÞ, in order
to bias the search toward good models with fast training

times. Here, cðxÞ was the estimated cost of querying the

objective at x and was modeled using a GP with response

logðcðxÞÞ.

C. High-Dimensional Problems
Despite many success stories, Bayesian optimization is

restricted to problems of moderate dimension. To advance
the state of the art, Bayesian optimization should be scaled

to high-dimensional parameter spaces. This is a difficult

problem: to ensure that a global optimum is found, we

require good coverage of X , but as the dimensionality

increases, the number of evaluations needed to cover X
increases exponentially.

For linear bandits, Carpentier and Munos [35] recently

proposed a compressed sensing strategy to attack problems
with a high degree of sparsity. Also recently, Chen et al. [39]

made significant progress by introducing a two-stage

strategy for optimization and variable selection of high-

dimensional GPs. In the first stage, sequential likelihood

ratio tests with a couple of tuning parameters are used to

select the relevant dimensions. This, however, requires the

relevant dimensions to be axis-aligned with an ARD kernel.

Chen et al. provide empirical results only for synthetic
examples (of up to 400 dimensions), but they provide key

theoretical guarantees.

Hutter et al. [79] used Bayesian optimization with

random forests based on frequentist uncertainty estimates.

Their method does not have theoretical guarantees for

continuous optimization, but it achieved state-of-the-art

performance for tuning up to 76 parameters of algorithms

for solving combinatorial problems. Note that in con-
structing the trees that make the forest, one samples and

selects the most promising features (dimensions). That is,

random forests naturally select the relevant dimensions of

the problem, and so not surprisingly have worked well in

practice.

Many researchers have noted that for certain classes

of problems most dimensions do not change the

objective function significantly; examples include hyper-
parameter optimization for neural networks and deep

belief networks [17] and automatic configuration of

state-of-the-art algorithms for solving NP-hard problems

[77]. That is to say these problems have low effective

dimensionality. To take advantage of this property,

Bergstra and Bengio [17] proposed to simply use random

search for optimizationVthe rationale being that points

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 169

sampled uniformly at random in each dimension can

densely cover each low-dimensional subspace. As such,

random search can exploit low effective dimensionality

without knowing which dimensions are important. In
[158], Wang et al. exploit the same property, while still

capitalizing on the strengths of Bayesian optimization.

By combining randomization with Bayesian optimization,

they were able to derive a new approach that outper-

forms each of the individual components.

Fig. 10 illustrates the approach in a nutshell. Assume

we know that a given ðD ¼ 2Þ-dimensional black-box

function fðx1; x2Þ only has d ¼ 1 important dimensions, but
we do not know which of the two dimensions is the

important one. We can then perform optimization in the

embedded 1-D subspace defined by x1 ¼ x2 since this is

guaranteed to include the optimum. This idea enables us to

perform Bayesian optimization in a low-dimensional space

to optimize a high-dimensional function with low intrinsic

dimensionality. Importantly, it is not restricted to cases

with axis-aligned intrinsic dimensions.
To make the discussion more precise, a function

f : RD 7!R will have effective dimensionality de, with

de G D, if there exists a linear effective subspace T of

dimension de such that for all x> 2 T � RD and

x? 2 T ? � RD, and fðxÞ ¼ fðx> þ x?Þ ¼ fðx>Þ, where

the so-called constant subspace T ? denotes the orthogonal

complement of T . This definition simply states that the

function does not change along the coordinates x?, and
hence the name for T ?.

Given this definition, [158, Theorem 1] shows that

problems of low effective dimensionality can be solved via

random embedding. The theorem assumes we are given a

function f : RD 7!R with effective dimensionality de and a

random matrix A 2 RD�d with independent entries

sampled according to Nð0; 1Þ and d � de. It then shows

that, with probability 1, for any x 2 RD, there exists a
z 2 Rd such that fðxÞ ¼ fðAzÞ.

Effectively, the theorem says that given any x 2 RD

and a random matrix A 2 RD�d, with probability 1, there

is a point z 2 Rd such that fðxÞ ¼ fðAzÞ. This implies

that for any optimizer x? 2 RD, there is a point z? 2 Rd

with fðx?Þ ¼ fðAz?Þ. Therefore, instead of optimizing in

the high-dimensional space, we can optimize the function

gðzÞ ¼ fðAzÞ in the lower dimensional space. This

observation gives rise to an algorithm called Bayesian

optimization with random embedding (REMBO), de-

scribed in Algorithm 3. REMBO first draws a random

embedding (given by A) and then performs Bayesian

optimization in this embedded space.

Algorithm 3: REMBO

1: Generate a random matrix A
2: Choose the set Z
3: for n ¼ 1; 2; . . . do

4: select znþ1 by optimizing the acquisition function �:

znþ1 ¼ arg max
z2Z

�ðzjDnÞ

5: augment the data Dnþ1 ¼ fDn; ðznþ1; fðAznþ1Þg
6: update the kernel hyperparameters

7: end for

An important detail is how REMBO chooses the

bounded region Z, inside which it performs Bayesian

optimization. This is important because its effectiveness

depends on the size of Z. Locating the optimum within Z
is easier if Z is small, but if we set Z too small it may not
actually contain the global optimizer. We refer the readers

to the original paper for details.

D. Multitask
When tuning the hyperparameters of a machine

learning model on some data, it is unlikely that the

hyperparameters will change very much if new data are

added to the original data, especially if the new data

represents a small fraction of the total amount. Likewise, if

one were to train a model for object recognition, then good

hyperparameter settings are likely to also be good on other

object recognition data sets. Experts often exploit this
property when applying their models to new data sets.

There have been several attempts to exploit this

property within the Bayesian optimization framework

[12], [49], [79], [89], [148], [160]. The idea is that there

are several correlated functions, T ¼ f1; 2; . . . ;Mg, called

tasks and that we are interested in optimizing some subset

of these tasks. In essence, the data from one task can

provide information about another task.
One way to share information between tasks in a

Bayesian optimization routine is to modify the underlying

GP model. There has been a great deal of work on

extending GPs to the multitask scenario. These extensions

are also known as multioutput GPs. The key is to define a

valid covariance over input and task pairs, kððx;mÞ;
ðx0;m0ÞÞ. One method is to use the intrinsic model of

Fig. 10. This function in D ¼ 2 dimensions only has d ¼ 1 effective

dimension: the vertical axis indicated with the word important on the

right-hand side figure. Hence, the 1-D embedding includes the 2-D

function’s optimizer. It is more efficient to search for the optimum

along the 1-D random embedding than in the original 2-D space.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

170 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

coregionalization (ICM) [21], [60], [136] that utilizes the

product kernel

k ðx;mÞ; ðx0;m0Þð Þ ¼ kXðx;x0ÞkT ðm;m0Þ (62)

where m;m0 2 T . kT defines the covariance between

tasks. There are many ways to parameterize the task

covariance function [123]. Fig. 11 illustrates how knowl-

edge of correlations between tasks can be used with a

multioutput GP to make more accurate predictions.

An alternative view of the ICM model is that it defines a

latent process that is rotated and scaled to produce each of

the individual tasks. The problem of defining a multioutput
GP can then be viewed as learning a latent function, or a set

of latent functions, that can be transformed to produce

the output tasks. Bardenet et al. [12] proposed an

approach that learns a latent ranking function at each

iteration using pairs of observations from within each

task. By learning a single ranking function that works

across tasks, the tasks are effectively jointly embedded in

a latent space that is invariant to potentially different
output scales across tasks.

Each task may come with additional side information, or

context features. In this case, it is possible to define a joint

model that uses this context. This was considered for

algorithm configuration in [79] using a random forest model.

When starting a new task, Feurer et al. [49] use task features

to find similar tasks. The best inputs from the most similar

tasks are then used as the initial design for the new task.

E. Freeze–Thaw
In some cases, the experiments selected by Bayesian

optimization themselves require an inner loop of iterative
optimization. For example, in the case of tuning machine

learning hyperparameters, each experiment consists of

training a model before evaluating it. It is often possible to

evaluate the model during training in order to get an

estimate of how it is performing. When tuning hyperpara-

meters by hand, experts can use this information in order

to estimate model performance at the end of training and

can halt training early if this estimate looks unsatisfactory.

This allows a far greater number of models to be trained in
a given amount of time.

An attempt to incorporate this into the Bayesian

optimization framework is given in [149]. They identify that

many loss functions in machine learning follow an exponen-

tial decay pattern during training, and construct a basis set of

exponentially decaying functions of the form fðt; Þ ¼ e�t,

where represents the rate of decay over time, represented

by t, in order to forecast model performance. It is possible to
construct a nonstationary kernel from this basis set

kðt; t0Þ ¼ ��

ðtþ t0 þ �Þ� (63)

where � and � are hyperparameters that control the shape

of the kernel. This kernel is used within a GP to jointly

model ðx; tÞ pairs. Given the ability to forecast curves,

Swersky et al. [149] then use an ES-based acquisition

function in order to determine whether to freeze a

currently running experiment, thaw a previous experiment
in order to resume training, or start a new experiment.

Rather than constructing a kernel, Domhan et al. [47],

[48] built a basis set manually based on previously

collected training curves. This basis set is then used with

Bayesian linear regression in order to forecast training

curves, and an early stopping rule is given based on the

probability of improvement using the forecasted value.

An alternative view of this procedure is to consider GP
models that incorporate partial feedback. This view is used

in [122], where the authors construct a GP with

nonstationary noise process that starts high when the

experiment begins, and decays over time.

IX. CONCLUDING REMARKS

In this paper, we have introduced Bayesian optimiza-

tion from a modeling perspective. Beginning with the

beta-Bernoulli and linear models, and extending them

to nonparametric models, we recover a wide range of

Fig. 11. (Left) Three correlated functions drawn from a multioutput GP. (Middle) The GP posterior predictive distribution of function (3) when the

functions are assumed to be independent. This is equivalent to ignoring observations from functions (1) and (2). (Right) Posterior predictive

distribution of function (3) when the correlations are taken into account. Here, the observations from functions (1) and (2) act as weak

observations for function (3). This results in a much more accurate prediction.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 171

approaches to Bayesian optimization that have been
introduced in the literature. There has been a great deal

of work that has focused heavily on designing acquisition

functions; however, we have taken the perspective that the

importance of this plays a secondary role to the choice of

the underlying surrogate model.

In addition to outlining different modeling choices, we

have considered many of the design decisions that are used

to build Bayesian optimization systems. We further high-
lighted relevant theory as well as practical considerations

that are used when applying these techniques to real-world

problems. We provided a history of Bayesian optimization

and related fields and surveyed some of the many successful
applications of these methods. We finally discussed exten-

sions of the basic framework to new problem domains,

which often require new kinds of surrogate models.

Although the underpinnings of Bayesian optimization

are quite old, the field itself is undergoing a resurgence,

aided by new problems, models, theory, and software

implementations. In this paper, we have attempted to

summarize the current state of Bayesian optimization
methods; however, it is clear that the field itself has only

scratched the surface and that there will surely be many

new problems, discoveries, and insights in the future. h

REF ERENCE S

[1] R. P. Adams and O. Stegle, ‘‘Gaussian process
product models for nonparametric
nonstationarity,’’ in Proc. Int. Conf. Mach.
Learn., 2008, pp. 1–8.

[2] S. Agrawal and N. Goyal, ‘‘Thompson
sampling for contextual bandits with linear
payoffs,’’ in Proc. Int. Conf. Mach. Learn.,
2013, pp. 127–135.

[3] E. B. Anderes and M. L. Stein, ‘‘Estimating
deformations of isotropic Gaussian random
fields on the plane,’’ Ann. Stat., vol. 36, no. 2,
pp. 719–741, 2008.

[4] C. Andrieu, N. de Freitas, A. Doucet, and
M. I. Jordan, ‘‘An introduction to MCMC for
machine learning,’’ Mach. Learn., vol. 50,
no. 1–2, pp. 5–43, 2003.

[5] J.-A. M. Assael, Z. Wang, and N. de Freitas,
‘‘Heteroscedastic treed Bayesian
optimisation,’’ 2014. [Online]. Available:
http://abs/abs/1410.7172.

[6] C. Audet, J. J. Dennis, D. W. Moore,
A. Booker, and P. D. Frank, ‘‘Surrogate-
model-based method for constrained
optimization,’’ in Proc. AIAA/USAF/NASA/
ISSMO Symp. Multidisciplinary Anal. Optim.,
2000, DOI: 10.2514/6.2000-4891.

[7] J. Audibert, S. Bubeck, and R. Munos, ‘‘Best
arm identification in multi-armed bandits,’’
in Proc. Conf. Learn. Theory, 2010, pp. 41–53.

[8] P. Auer, ‘‘Using confidence bounds for
exploitation-exploration trade-offs,’’
J. Mach. Learn. Res., vol. 3, pp. 397–422,
2003.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. E. Schapire, ‘‘Gambling in a rigged casino:
The adversarial multi-armed bandit
problem,’’ in Proc. Symp. Found. Comput. Sci.,
1995, pp. 322–331.

[10] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. E. Schapire, ‘‘The nonstochastic
multiarmed bandit problem,’’ SIAM J.
Comput., vol. 32, no. 1, pp. 48–77, 2002.

[11] J. Azimi, A. Jalali, and X. Fern, ‘‘Hybrid batch
Bayesian optimization,’’ in Proc. Int. Conf.
Mach. Learn., 2012, pp. 1215–1222.

[12] R. Bardenet, M. Brendel, B. Kégl, and
M. Sebag, ‘‘Collaborative hyperparameter
tuning,’’ in Proc. Int. Conf. Mach. Learn.,
2013, pp. 199–207.

[13] R. Bardenet and B. Kégl, ‘‘Surrogating the
surrogate: Accelerating Gaussian-process-
based global optimization with a mixture
cross-entropy algorithm,’’ in Proc. Int. Conf.
Mach. Learn., 2010, pp. 55–62.

[14] T. Bartz-Beielstein, C. Lasarczyk, and
M. Preuss, ‘‘Sequential parameter
optimization,’’ in Proc. IEEE Congr. Evol.
Comput., 2005, pp. 773–780.

[15] R. Benassi, J. Bect, and E. Vazquez, ‘‘Robust
Gaussian process-based global optimization
using a fully Bayesian expected improvement
criterion,’’ in Learning and Intelligent
Optimization, vol. 6683, C. Coello, Ed.
Berlin, Germany: Springer-Verlag, 2011,
pp. 176–190.

[16] J. Bergstra, R. Bardenet, Y. Bengio, and
B. Kégl, ‘‘Algorithms for hyper-parameter
optimization,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 2546–2554.

[17] J. Bergstra and Y. Bengio, ‘‘Random search
for hyper-parameter optimization,’’ J. Mach.
Learn. Res., vol. 13, pp. 281–305, 2012.

[18] J. Bergstra, B. Komer, C. Eliasmith, and
D. Warde-Farley, ‘‘Preliminary evaluation of
hyperopt algorithms on HPOLib,’’ in Proc.
Int. Conf. Mach. Learn. AutoML Workshop,
2014.

[19] J. Bergstra, D. Yamins, and D. D. Cox,
‘‘Making a science of model search:
Hyperparameter optimization in hundreds of
dimensions for vision architectures,’’ in Proc.
Int. Conf. Mach. Learn., 2013, pp. 115–123.

[20] S. Bochner, Lectures on Fourier Integrals.
Princeton, NJ, USA: Princeton Univ. Press,
1959.

[21] E. V. Bonilla, K. M. A. Chai, and
C. K. I. Williams, ‘‘Multi-task Gaussian
process prediction,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2008, pp. 153–160.

[22] L. Bornn, G. Shaddick, and J. V. Zidek,
‘‘Modeling nonstationary processes through
dimension expansion,’’ J. Amer. Stat. Soc.,
vol. 107, no. 497, 2012, pp. 281–289.

[23] P. Boyle, ‘‘Gaussian processes for regression
and optimisation,’’ Ph.D. dissertation,
Victoria Univ. Wellington, Wellington,
New Zealand, 2007.

[24] L. Breiman, ‘‘Random forests,’’ Mach. Learn.,
vol. 45, no. 1, pp. 5–32, 2001.

[25] L. Breiman, J. Friedman, R. Olshen, and
C. Stone, Classification and Regression
Trees. New York, NY, USA: Wadsworth
and Brooks, 1984.

[26] E. Brochu, T. Brochu, and N. de Freitas,
‘‘A Bayesian interactive optimization
approach to procedural animation design,’’ in
Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animat., 2010, pp. 103–112.

[27] E. Brochu, V. M. Cora, and N. de Freitas,
‘‘A tutorial on Bayesian optimization of
expensive cost functions, with application to
active user modeling and hierarchical
reinforcement learning,’’ Dept. Comput. Sci.,
Univ. British Columbia, Vancouver, BC,
Canada, Tech. Rep. UBC TR-2009-23, 2009.

[28] E. Brochu, N. de Freitas, and A. Ghosh,
‘‘Active preference learning with discrete
choice data,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2007, pp. 409–416.

[29] S. Bubeck and N. Cesa-Bianchi, ‘‘Regret
analysis of stochastic and nonstochastic
multi-armed bandit problems,’’ Found.
Trends Mach. Learn., vol. 5, no. 1, pp. 1–122,
2012.

[30] S. Bubeck, R. Munos, and G. Stoltz, ‘‘Pure
exploration in multi-armed bandits
problems,’’ in Proc. Int. Conf. Algorithmic
Learn. Theory, 2009, pp. 23–37.

[31] S. Bubeck, R. Munos, G. Stoltz, and
C. Szepesvari, ‘‘X-armed bandits,’’ J. Mach.
Learn. Res., vol. 12, pp. 1655–1695, 2011.

[32] A. D. Bull, ‘‘Convergence rates of efficient
global optimization algorithms,’’ J. Mach.
Learn. Res., vol. 12, pp. 2879–2904, 2011.

[33] D. Busby, ‘‘Hierarchical adaptive
experimental design for Gaussian process
emulators,’’ Reliab. Eng. Syst. Safety, vol. 94,
no. 7, pp. 1183–1193, Jul. 2009.

[34] R. Calandra, J. Peters, C. E. Rasmussen, and
M. P. Deisenroth, Manifold Gaussian
processes for regression, 2014. [Online].
Available: arXiv:1402.5876.

[35] A. Carpentier and R. Munos, ‘‘Bandit theory
meets compressed sensing for high
dimensional stochastic linear bandit,’’ in
Proc. 15th Int. Conf. Artif. Intell. Stat., 2012,
pp. 190–198.

[36] N. Cesa-Bianchi and G. Lugosi, Prediction,
Learning, Games. New York, NY, USA:
Cambridge Univ. Press, 2006.

[37] K. Chaloner and I. Verdinelli, ‘‘Bayesian
experimental design: A review,’’ Stat. Sci.,
vol. 10, no. 3, pp. 273–304, 1995.

[38] O. Chapelle and L. Li, ‘‘An empirical
evaluation of Thompson sampling,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2011,
pp. 2249–2257.

[39] B. Chen, R. Castro, and A. Krause, ‘‘Joint
optimization and variable selection of high-
dimensional Gaussian processes,’’ in Proc.
Int. Conf. Mach. Learn., 2012, pp. 1423–1430.

[40] S. Clark, ‘‘Parallel machine learning
algorithms in bioinformatics and global
optimization,’’ Ph.D. dissertation, Cornell
Univ., Ithaca, NY, USA, 2012.

[41] E. Contal, V. Perchet, and N. Vayatis,
‘‘Gaussian process optimization with mutual
information,’’ in Proc. Int. Conf. Mach. Learn.,
2013, pp. 253–261.

[42] A. Criminisi, J. Shotton, and E. Konukoglu,
‘‘Decision forests: A unified framework for
classification, regression, density estimation,
manifold learning and semi-supervised
learning,’’ Found. Trends Comput. Graph. Vis.,
vol. 7, pp. 81–227, 2011.

[43] N. de Freitas, A. Smola, and M. Zoghi,
‘‘Exponential regret bounds for Gaussian
process bandits with deterministic

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

172 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

observations,’’ in Proc. Int. Conf. Mach.
Learn., 2012, pp. 1743–1750.

[44] M. Denil, L. Bazzani, H. Larochelle, and
N. de Freitas, ‘‘Learning where to attend with
deep architectures for image tracking,’’
Neural Comput., vol. 24, no. 8,
pp. 2151–2184, 2012.

[45] T. Desautels, A. Krause, and J. Burdick,
‘‘Parallelizing exploration-exploitation
tradeoffs with Gaussian process bandit
optimization,’’ J. Mach. Learn. Res., vol. 15,
pp. 4053–4103, 2014.

[46] J. Djolonga, A. Krause, and V. Cevher, ‘‘High
dimensional Gaussian process bandits,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1025–1033.

[47] T. Domhan, J. T. Springenberg, and
F. Hutter, ‘‘Speeding up automatic
hyperparameter optimization of deep neural
networks by extrapolation of learning
curves,’’ in Proc. 24th Int. Joint Conf. Artif.
Intell., Jul. 2015, pp. 3460–3468.

[48] T. Domhan, T. Springenberg, and F. Hutter,
‘‘Extrapolating learning curves of deep neural
networks,’’ in Proc. Int. Conf. Mach. Learn.
AutoML Workshop, 2014.

[49] M. Feurer, T. Springenberg, and F. Hutter,
‘‘Initializing Bayesian hyperparameter
optimization via meta-learning,’’ in Proc. Nat.
Conf. Artif. Intell., 2015, pp. 1128–1135.

[50] V. Gabillon, M. Ghavamzadeh, and
A. Lazaric, ‘‘Best arm identification: A
unified approach to fixed budget and fixed
confidence,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 3212–3220.

[51] V. Gabillon, M. Ghavamzadeh, A. Lazaric,
and S. Bubeck, ‘‘Multi-bandit best arm
identification,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 2222–2230.

[52] J. R. Gardner, M. J. Kusner, Z. Xu,
K. Q. Weinberger, and J. P. Cunningham,
‘‘Bayesian optimization with inequality
constraints,’’ in Proc. Int. Conf. Mach. Learn.,
2014, pp. 937–945.

[53] R. Garnett, M. A. Osborne, and P. Hennig,
‘‘Active learning of linear embeddings for
Gaussian processes,’’ in Proc. Conf.
Uncertainty Artif. Intell., 2014, pp. 24–33.

[54] R. Garnett, M. A. Osborne, S. Reece,
A. Rogers, and S. J. Roberts, ‘‘Sequential
Bayesian prediction in the presence of
changepoints and faults,’’ Comput. J., vol. 53,
no. 9, pp. 1430–1446, 2010.

[55] R. Garnett, M. A. Osborne, and S. J. Roberts,
‘‘Bayesian optimization for sensor set
selection,’’ in Proc. ACM/IEEE Int. Conf. Inf.
Process. Sensor Netw., 2010, pp. 209–219.

[56] M. A. Gelbart, J. Snoek, and R. P. Adams,
‘‘Bayesian optimization with unknown
constraints,’’ in Proc. Conf. Uncertainty Artif.
Intell., 2014, pp. 250–259.

[57] D. Ginsbourger, R. Le Riche, and L. Carraro,
‘‘Kriging is well-suited to parallelize
optimization,’’ in Proc. Comput. Intell.
Expensive Optim. Problems, 2010, pp. 131–162.

[58] D. Ginsbourger and R. L. Riche, ‘‘Dealing
with asynchronicity in parallel Gaussian
process based global optimization,’’ 2010.
[Online]. Available: http://hal.archives-
ouvertes.fr/hal-00507632.

[59] J. C. Gittins, ‘‘Bandit processes and dynamic
allocation indices J. Roy. Stat. Soc. B,
Methodol., vol. 2, pp. 148–177, 1979.

[60] P. Goovaerts, Geostatistics for Natural
Resources Evaluation. Oxford, U.K.: Oxford
Univ. Press, 1997.

[61] R. B. Gramacy et al., ‘‘Modeling an
augmented Lagrangian for improved

blackbox constrained optimization,’’ 2014.
[Online]. Available: arXiv:1403.4890.

[62] R. B. Gramacy and H. K. Lee, ‘‘Optimization
under unknown constraints,’’ 2010.
[Online]. Available: arXiv:1004.4027.

[63] R. B. Gramacy, H. K. H. Lee, and
W. G. Macready, ‘‘Parameter space
exploration with Gaussian process trees,’’ in
Proc. Int. Conf. Mach. Learn., 2004,
pp. 45–52.

[64] S. Grunewalder, J. Audibert, M. Opper, and
J. Shawe-Taylor, ‘‘Regret bounds for
Gaussian process bandit problems,’’ in Proc.
13th Int. Conf. Artif. Intell. Stat., 2010,
pp. 273–280.

[65] F. Hamze, Z. Wang, and N. de Freitas,
‘‘Self-avoiding random dynamics on integer
complex systems,’’ ACM Trans. Model.
Comput. Simul., vol. 23, no. 1, p. 9, 2013.

[66] N. Hansen and A. Ostermeier, ‘‘Completely
derandomized self-adaptation in evolution
strategies,’’ Evol. Comput, vol. 9, no. 2,
pp. 159–195, 2001.

[67] P. Hennig and C. Schuler, ‘‘Entropy search
for information-efficient global
optimization,’’ J. Mach. Learn. Res., vol. 13,
no. 1, pp. 1809–1837, 2012.

[68] J. M. Hernández-Lobato, M. A. Gelbart,
M. W. Hoffman, R. P. Adams, and
Z. Ghahramani, ‘‘Predictive entropy search
for Bayesian optimization with unknown
constraints,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 1699–1707.

[69] J. M. Hernández-Lobato, M. W. Hoffman,
and Z. Ghahramani, ‘‘Predictive entropy
search for efficient global optimization of
black-box functions,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 918–926.

[70] D. Higdon, J. Swall, and J. Kern,
‘‘Non-stationary spatial modeling,’’ Bayesian
Stat., vol. 6, 1998, pp. 761–768.

[71] G. E. Hinton and R. Salakhutdinov,
‘‘Using deep belief nets to learn covariance
kernels for Gaussian processes,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2008,
pp. 1249–1256.

[72] M. Hoffman, B. Shahriari, and N. de Freitas,
‘‘On correlation and budget constraints in
model-based bandit optimization with
application to automatic machine learning,’’
in Proc. 17th Int. Conf. Artif. Intell. Stat., 2014,
pp. 365–374.

[73] M. W. Hoffman, E. Brochu, and N. de Freitas,
‘‘Portfolio allocation for Bayesian
optimization,’’ in Proc. Conf. Uncertainty Artif.
Intell., 2011, pp. 327–336.

[74] H. H. Hoos, ‘‘Programming by optimization,’’
Commun. ACM, vol. 55, no. 2, pp. 70–80,
2012.

[75] D. Huang, T. Allen, W. Notz, and N. Zeng,
‘‘Global optimization of stochastic
black-box systems via sequential Kriging
meta-models,’’ J. Global Optim., vol. 34, no. 3,
pp. 441–466, 2006.

[76] F. Hutter, ‘‘Automated configuration of
algorithms for solving hard computational
problems,’’ Ph.D. dissertation, Univ. British
Columbia, Vancouver, BC, Canada, 2009.

[77] F. Hutter, H. Hoos, and K. Leyton-Brown,
‘‘Identifying key algorithm parameters and
instance features using forward selection,’’ in
Learning and Intelligent Optimization,
vol. 7997, Berlin, Germany: Springer-Verlag,
2013, pp. 364–381.

[78] F. Hutter, H. H. Hoos, and K. Leyton-Brown,
‘‘Automated configuration of mixed integer
programming solvers,’’ in Integration of AI and
OR Techniques in Constraint Programming for

Combinatorial Optimization Problems, Berlin,
Germany: Springer-Verlag, 2010, pp. 186–202.

[79] F. Hutter, H. H. Hoos, and K. Leyton-Brown,
‘‘Sequential model-based optimization for
general algorithm configuration,’’ Learning
and Intelligent Optimization, Berlin, Germany:
Springer-Verlag, 2011, pp. 507–523.

[80] F. Hutter, H. H. Hoos, and K. Leyton-Brown,
‘‘Parallel algorithm configuration,’’ Learning
and Intelligent Optimization, Berlin,
Germany: Springer-Verlag, 2012, pp. 55–70.

[81] D. Jones, ‘‘A taxonomy of global optimization
methods based on response surfaces,’’
J. Global Optim., vol. 21, no. 4, pp. 345–383,
2001.

[82] D. Jones, M. Schonlau, and W. Welch,
‘‘Efficient global optimization of expensive
black-box functions,’’ J. Global Optim., vol. 13,
no. 4, pp. 455–492, 1998.

[83] D. R. Jones, C. D. Perttunen, and
B. E. Stuckman, ‘‘Lipschitzian optimization
without the Lipschitz constant,’’ J. Optim.
Theory Appl., vol. 79, no. 1, pp. 157–181,
1993.

[84] E. Kaufmann, O. Cappé, and A. Garivier, ‘‘On
Bayesian upper confidence bounds for bandit
problems,’’ in Proc. Int. Conf. Artif. Intell.
Stat., 2012, pp. 592–600.

[85] E. Kaufmann, N. Korda, and R. Munos,
‘‘Thompson sampling: An asymptotically
optimal finite-time analysis,’’ in Algorithmic
Learning Theory, vol. 7568, Berlin, Germany:
Springer-Verlag, 2012, pp. 199–213.

[86] K. Kersting, C. Plagemann, P. Pfaff, and
W. Burgard, ‘‘Most likely heteroscedastic
Gaussian process regression,’’ in Proc. Int.
Conf. Mach. Learn., 2007, pp. 393–400.

[87] L. Kocsis and C. Szepesvári, ‘‘Bandit based
Monte-Carlo planning,’’ in Proc. Eur. Conf.
Mach. Learn., 2006, pp. 282–293.

[88] R. Kohavi, R. Longbotham, D. Sommerfield,
and R. M. Henne, ‘‘Controlled experiments
on the web: Survey and practical guide,’’
Data Mining Knowl. Disc., vol. 18, no. 1,
pp. 140–181, 2009.

[89] A. Krause and C. S. Ong, ‘‘Contextual
Gaussian process bandit optimization,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 2447–2455.

[90] D. G. Krige, ‘‘A statistical approach to some
basic mine valuation problems on the
witwatersrand,’’ in J. Chem. Metallurgical
Mining Soc. South Africa, vol. 94, no. 3, 1951,
pp. 95–111.

[91] H. J. Kushner, ‘‘A new method of locating the
maximum point of an arbitrary multipeak
curve in the presence of noise,’’ J. Fluids Eng.,
vol. 86, no. 1, pp. 97–106, 1964.

[92] T. L. Lai and H. Robbins, ‘‘Asymptotically
efficient adaptive allocation rules,’’ Adv. Appl.
Math., vol. 6, no. 1, pp. 4–22, 1985.

[93] M. Lázaro-Gredilla and A. R. Figueiras-Vidal,
‘‘Marginalized neural network mixtures for
large-scale regression,’’ IEEE Trans. Neural
Netw., vol. 21, no. 8, pp. 1345–1351,
Aug. 2010.

[94] M. Lázaro-Gredilla, J. Quiñnonero-Candela,
C. E. Rasmussen, and A. R. Figueiras-Vidal,
‘‘Sparse spectrum Gaussian process
regression,’’ J. Mach. Learn. Res., vol. 11,
pp. 1865–1881, 2010.

[95] Q. V. Le, A. J. Smola, and S. Canu,
‘‘Heteroscedastic Gaussian process
regression,’’ in Proc. Int. Conf. Mach. Learn.,
2005, pp. 489–496.

[96] K. Leyton-Brown, E. Nudelman, and
Y. Shoham, ‘‘Learning the empirical hardness
of optimization problems: The case of
combinatorial auctions,’’ in Principles and

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 173

Practice of Constraint Programming,
ser. Lecture Notes in Computer Science,
Berlin, Germany: Springer-Verlag, 2002,
pp. 556–572.

[97] L. Li, W. Chu, J. Langford, and R. E. Schapire,
‘‘A contextual-bandit approach to
personalized news article recommendation,’’
in Proc. World Wide Web, 2010, pp. 661–670.

[98] D. V. Lindley, ‘‘On a measure of the
information provided by an experiment,’’
Ann. Math. Stat., vol. 27, no. 4,
pp. 986–1005, 1956.

[99] D. Lizotte, ‘‘Practical Bayesian optimization,’’
Ph.D. dissertation, Univ. Alberta, Edmonton,
AB, Canada, 2008.

[100] D. Lizotte, R. Greiner, and D. Schuurmans,
‘‘An experimental methodology for response
surface optimization methods,’’ J. Global
Optim., vol. 53, pp. 1–38, 2011.

[101] D. Lizotte, T. Wang, M. Bowling, and
D. Schuurmans, ‘‘Automatic gait
optimization with Gaussian process
regression,’’ in Proc. Int. Joint Conf. Artif.
Intell., 2007, pp. 944–949.

[102] M. Locatelli, ‘‘Bayesian algorithms for
one-dimensional global optimization,’’
J. Global Optim., vol. 10, pp. 57–76, 1997.

[103] M. Lzaro-gredilla and M. K. Titsias,
‘‘Variational heteroscedastic Gaussian
process regression,’’ in Proc. Int. Conf. Mach.
Learn., 2011, pp. 841–848, ACM.

[104] O. Madani, D. Lizotte, and R. Greiner,
‘‘Active model selection,’’ in Proc. Conf.
Uncertainty Artif. Intell., 2004, pp. 357–365.

[105] N. Mahendran, Z. Wang, F. Hamze, and
N. de Freitas, ‘‘Adaptive MCMC with
Bayesian optimization,’’ J. Mach. Learn. Res.,
vol. 22, pp. 751–760, 2012.

[106] R. Marchant and F. Ramos, ‘‘Bayesian
optimisation for intelligent environmental
monitoring,’’ in NIPS Workshop Bayesian
Optim. Decision Making, 2012.

[107] O. Maron and A. W. Moore, ‘‘Hoeffding
races: Accelerating model selection search for
classification and function approximation,’’
Robot. Inst., vol. 6, pp. 59–66, 1993.

[108] R. Martinez-Cantin, N. de Freitas, E. Brochu,
J. Castellanos, and A. Doucet, ‘‘A Bayesian
exploration-exploitation approach for
optimal online sensing and planning with a
visually guided mobile robot,’’ Autonom.
Robots, vol. 27, no. 2, pp. 93–103, 2009.

[109] J. Martinez, J. J. Little, and N. de Freitas,
‘‘Bayesian optimization with an empirical
hardness model for approximate nearest
neighbour search,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis., 2014, pp. 588–595.

[110] R. Martinez-Cantin, N. de Freitas, A. Doucet,
and J. A. Castellanos, ‘‘Active policy learning
for robot planning and exploration under
uncertainty,’’ in Proc. Robot. Sci. Syst.,
pp. 321–328, 2007.

[111] G. Matheron, ‘‘The theory of regionalized
variables and its applications,’’ in Cahier du
Centre de Morphologie Mathematique, Ecoles
des Mines, 1971.

[112] B. C. May, N. Korda, A. Lee, and D. S. Leslie,
‘‘Optimistic Bayesian sampling in contextual
bandit problems,’’ Stat. Group, Schl. Math.,
Univ. Bristol, Bristol, U.K., Tech. Rep. 11:01,
2011.

[113] V. Mnih, C. Szepesvári, and J.-Y. Audibert,
‘‘Empirical Bernstein stopping,’’ in Proc. Int.
Conf. Mach. Learn., 2008, pp. 672–679.

[114] J. Močkus, ‘‘Application of Bayesian
approach to numerical methods of global and
stochastic optimization,’’ J. Global Optim.,
vol. 4, no. 4, pp. 347–365, 1994.

[115] J. Močkus, V. Tiesis, and A. Žilinskas, ‘‘The
application of Bayesian methods for seeking
the extremum,’’ in Toward Global
Optimization, vol. 2, L. Dixon and G. Szego,
Eds. Amsterdam, The Netherlands:
Elsevier, 1978.

[116] R. Munos, ‘‘Optimistic optimization of a
deterministic function without the
knowledge of its smoothness,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2011, pp. 783–791.

[117] R. Munos, ‘‘From bandits to Monte-Carlo
tree search: The optimistic principle applied
to optimization and planning,’’ INRIA Lille,
France, Tech. Rep. hal-00747575, 2014.

[118] R. M. Neal, ‘‘Bayesian learning for neural
networks,’’ Ph.D. dissertation, Univ.
Toronto, Toronto, ON, Canada, 1995.

[119] J. Nelder and R. Wedderburn, ‘‘Generalized
linear models,’’ J. Roy. Stat. Soc. A, vol. 135,
no. 3, pp. 370–384, 1972.

[120] M. A. Osborne, R. Garnett, and S. J. Roberts,
‘‘Gaussian processes for global optimisation
Learning and Intelligent Optimization, Berlin,
Germany: Springer-Verlag, pp. 1–15, 2009.

[121] C. Paciorek and M. Schervish,
‘‘Nonstationary covariance functions for
Gaussian process regression,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2004, vol. 16,
pp. 273–280.

[122] V. Picheny and D. Ginsbourger,
‘‘A nonstationary space-time Gaussian
process model for partially converged
simulations,’’ SIAM/ASA J. Uncertainty
Quantif., vol. 1, no. 1, pp. 57–78, 2013.

[123] J. C. Pinheiro and D. M. Bates,
‘‘Unconstrained parametrizations for
variance-covariance matrices,’’ Stat. Comput.,
vol. 6, no. 3, pp. 289–296, 1996.

[124] J. Qui nonero-Candela and C. E. Rasmussen,
‘‘A unifying view of sparse approximate
Gaussian process regression,’’ J. Mach. Learn.
Res., vol. 6, pp. 1939–1959, 2005.

[125] A. Rahimi and B. Recht, ‘‘Random features
for large-scale kernel machines,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2007,
pp. 1177–1184.

[126] C. E. Rasmussen and C. K. I. Williams,
Gaussian Processes for Machine Learning.
Cambridge, MA, USA: MIT Press, 2006.

[127] D. Russo and B. Van Roy, ‘‘Learning to
optimize via posterior sampling,’’ Math. Oper.
Res., vol. 39, no. 4, pp. 1221–1243, 2014.

[128] J. Sacks, W. J. Welch, T. J. Welch, and
H. P. Wynn, ‘‘Design and analysis of
computer experiments,’’ Stat. Sci., vol. 4,
no. 4, pp. 409–423, 1989.

[129] P. D. Sampson and P. Guttorp,
‘‘Nonparametric estimation of nonstationary
spatial covariance structure,’’ J. Amer. Stat.
Assoc., vol. 87, no. 417, pp. 108–119, 1992.

[130] T. J. Santner, B. Williams, and W. Notz,
The Design and Analysis of Computer
Experiments. New York, NY, USA:
Springer-Verlag, 2003.

[131] M. J. Sasena, ‘‘Flexibility and efficiency
enhancement for constrained global design
optimization with Kriging approximations,’’
Ph.D. dissertation, Univ. Michigan, Ann
Arbor, MI, USA, 2002.

[132] A. M. Schmidt and A. O’Hagan, ‘‘Bayesian
inference for nonstationary spatial
covariance structures via spatial
deformations,’’ J. Roy. Stat. Soc. B, vol. 65,
pp. 743–758, 2003.

[133] M. Schonlau, ‘‘Computer experiments and
global optimization,’’ Ph.D. dissertation,
Univ. Waterloo, Waterloo, ON, Canada, 1997.

[134] M. Schonlau, W. J. Welch, and D. R. Jones,
‘‘Global versus local search in constrained

optimization of computer models,’’ Lecture
Notes-Monograph Series, vol. 34, pp. 11–25,
1998.

[135] S. L. Scott, ‘‘A modern Bayesian look at the
multi-armed bandit,’’ Appl. Stochastic Models
Business Ind., vol. 26, no. 6, pp. 639–658,
2010.

[136] M. Seeger, Y.-W. Teh, and M. I. Jordan,
‘‘Semiparametric latent factor models,’’ in
Proc. Int. Conf. Artif. Intell. Stat., 2005,
pp. 333–340.

[137] M. Seeger, C. Williams, and N. Lawrence,
‘‘Fast forward selection to speed up sparse
Gaussian process regression,’’ in Proc. Artif.
Intell. Stat. 9, 2003, pp. 1–8.

[138] A. Shah, A. G. Wilson, and Z. Ghahramani,
‘‘Student-t processes as alternatives to
Gaussian processes,’’ in Proc. Int. Conf. Artif.
Intell. Stat., 2014, pp. 877–885.

[139] B. Shahriari, Z. Wang, M. W. Hoffman,
A. Bouchard-Côté, and N. de Freitas, ‘‘An
entropy search portfolio,’’ in Proc. NIPS
Workshop Bayesian Optim., 2014.

[140] E. Snelson and Z. Ghahramani, ‘‘Sparse
Gaussian processes using pseudo-inputs,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 1257–1264.

[141] E. Snelson, C. E. Rasmussen, and
Z. Ghahramani, ‘‘Warped Gaussian
processes,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2003, pp. 337–344.

[142] J. Snoek, ‘‘Bayesian optimization and
semiparametric models with applications to
assistive technology,’’ Ph.D. dissertation,
Univ. Toronto, Toronto, ON, Canada, 2013.

[143] J. Snoek, H. Larochelle, and R. P. Adams,
‘‘Practical Bayesian optimization of
machine learning algorithms,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2012,
pp. 2951–2959.

[144] J. Snoek et al., ‘‘Scalable Bayesian optimization
using deep neural networks,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 2171–2180.

[145] J. Snoek, K. Swersky, R. S. Zemel, and
R. P. Adams, ‘‘Input warping for Bayesian
optimization of non-stationary functions,’’ in
Proc. Int. Conf. Mach. Learn., 2014,
pp. 1674–1682.

[146] N. Srinivas, A. Krause, S. M. Kakade, and
M. Seeger, ‘‘Gaussian process optimization in
the bandit setting: No regret and
experimental design,’’ in Proc. Int. Conf.
Mach. Learn., 2010, pp. 1015–1022.

[147] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter,
and M. A. Osborne, ‘‘Raiders of the lost
architecture: Kernels for Bayesian
optimization in conditional parameter
spaces,’’ 2014. [Online]. Available: arXiv:
1409.4011.

[148] K. Swersky, J. Snoek, and R. P. Adams,
‘‘Multi-task Bayesian optimization,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013,
pp. 2004–2012.

[149] K. Swersky, J. Snoek, and R. P. Adams,
‘‘Freeze-thaw Bayesian optimization,’’ 2014.
[Online]. Available: arXiv:1406.3896.

[150] W. R. Thompson, ‘‘On the likelihood that
one unknown probability exceeds another in
view of the evidence of two samples,’’
Biometrika, vol. 25, no. 3/4, pp. 285–294,
1933.

[151] C. Thornton, F. Hutter, H. H. Hoos, and
K. Leyton-Brown, ‘‘Auto-WEKA: Combined
selection and hyperparameter optimization of
classification algorithms,’’ in Proc. Knowl.
Disc. Data Mining, 2013, pp. 847–855.

[152] M. K. Titsias, ‘‘Variational learning of
inducing variables in sparse Gaussian

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

174 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

processes,’’ in Proc. Int. Conf. Artif. Intell.
Stat., 2009, pp. 567–574.

[153] H. P. Vanchinathan, I. Nikolic, F. De Bona,
and A. Krause, ‘‘Explore-exploit in top-N
recommender systems via Gaussian
processes,’’ in Proc. 8th ACM Conf.
Recommender Syst., 2014, pp. 225–232.

[154] E. Vazquez and J. Bect, ‘‘Convergence
properties of the expected improvement
algorithm with fixed mean and covariance
functions,’’ J. Stat. Planning Inference,
vol. 140, no. 11, pp. 3088–3095, 2010.

[155] J. Villemonteix, E. Vazquez, and E. Walter,
‘‘An informational approach to the global
optimization of expensive-to-evaluate
functions,’’ J. Global Optim., vol. 44, no. 4,
pp. 509–534, 2009.

[156] Z. Wang and N. de Freitas, ‘‘Theoretical
analysis of Bayesian optimisation

with unknown Gaussian process
hyper-parameters,’’ 2014. [Online].
Available: arXiv:1406.7758.

[157] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas,
‘‘Bayesian multi-scale optimistic
optimization,’’ in Proc. Int. Conf. Artif. Intell.
Stat., 2014, pp. 1005–1014.

[158] Z. Wang, M. Zoghi, D. Matheson, F. Hutter,
and N. de Freitas, ‘‘Bayesian optimization in
high dimensions via random embeddings,’’ in
Proc. Int. Joint Conf. Artif. Intell., 2013,
pp. 1778–1784.

[159] B. J. Williams, T. J. Santner, and W. I. Notz,
‘‘Sequential design of computer experiments
to minimize integrated response functions,’’
Statistica Sinica, vol. 10, pp. 1133–1152,
2000.

[160] D. Yogatama and G. Mann, ‘‘Efficient
transfer learning method for automatic

hyperparameter tuning,’’ in Proc. Int. Conf.
Artif. Intell. Stat., 2014, pp. 1077–1085.

[161] D. Yogatama and N. A. Smith, ‘‘Bayesian
optimization of text representations,’’ 2015.
[Online]. Available: arXiv:1503.00693.

[162] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and
H. Lee, ‘‘Improving object detection with
deep convolutional networks via Bayesian
optimization and structured prediction,’’ in
Proc. IEEE Comput. Vis. Pattern Recognit.
Conf., 2015, pp. 249–258.

[163] A. Žilinskas and J. Žilinskas, ‘‘Global
optimization based on a statistical model and
simplical partitioning,’’ Comput. Math. Appl.,
vol. 44, pp. 957–967, 2002.

ABOUT T HE AUTHO RS

Bobak Shahriari is currently working toward the

Ph.D. degree at the University of British Columbia,

Vancouver, BC, Canada, under the supervision of

N. de Freitas and A. Bouchard-Côté.

His current research focuses on developing

new techniques and software to make Bayesian

optimization more robust and broadly accessible

to the scientific community and to industry.

Kevin Swersky is currently working toward the

Ph.D. degree at the University of Toronto, Toronto,

ON, Canada.

He is also a Research Scientist with Twitter

Cortex. His main area of research is deep learning.

He is interested in using Bayesian optimization to

make deep learning systems more effective and

accessible, both within the machine learning

community and beyond.

Ziyu Wang is currently working toward the D.Phil.

degree at the University of Oxford, Oxford, U.K.,

under the supervision of Prof. N. de Freitas.

He is a Research Scientist at Google DeepMind,

U.K. His doctoral research has mostly focused on

attacking the weaknesses of Bayesian optimiza-

tion as well as applications thereof for adaptive

Markov chain Monte Carlo (MCMC) algorithms.

Ryan P. Adams received the Ph.D. degree in

physics from the University of Cambridge,

Cambridge, U.K., in 2009.

He is Head of Research at Twitter Cortex and an

Assistant Professor of Computer Science in the

School of Engineering and Applied Sciences,

Harvard University, Cambridge, MA, USA. His

research interests include machine learning, com-

putational statistics, and theoretical neuroscience.

Nando de Freitas received the Ph.D. degree in

Bayesian methods for neural networks from

Trinity College, Cambridge University, Cambridge,

U.K., in 2000.

He is a Machine Learning Professor at Oxford

University, Oxford, U.K. and a Senior Staff Re-

search Scientist at Google DeepMind, U.K. From

1999 to 2001, he was a Postdoctoral Fellow at the

University of California Berkeley, Berkeley, CA,

USA, in the artificial intelligence group. He was a

Professor at the University of British Columbia, Vancouver, BC, Canada,

from 2001 to 2013.

Prof. de Freitas is a Fellow of the Canadian Institute For Advanced

Research (CIFAR) in the successful Neural Computation and Adaptive

Perception program. Among his recent awards are the 2012 Charles A.

McDowell Award for Excellence in Research and the 2010 Mathematics of

Information Technology and Complex Systems (MITACS) Young Re-

searcher Award.

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 175

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

