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We present a new, fully generative model for constructing astronomical
catalogs from optical telescope image sets. Each pixel intensity is treated as
a random variable with parameters that depend on the latent properties of
stars and galaxies. These latent properties are themselves modeled as ran-
dom. We compare two procedures for posterior inference. One procedure is
based on Markov chain Monte Carlo (MCMC) while the other is based on
variational inference (VI). The MCMC procedure excels at quantifying un-
certainty, while the VI procedure is 1000 times faster. On a supercomputer,
the VI procedure efficiently uses 665,000 CPU cores to construct an astro-
nomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating
the scaling characteristics necessary to construct catalogs for upcoming as-
tronomical surveys.

1. Introduction. Astronomical surveys are the primary source of information
about the universe beyond our solar system. They are essential for addressing key
open questions in astronomy and cosmology about topics such as the life cycles of
stars and galaxies, the nature of dark energy, and the origin and evolution of the
universe.

The principal products of astronomical imaging surveys are catalogs of light
sources, such as stars and galaxies. These catalogs are generated by identifying
light sources in survey images (e.g., Figure 1) and characterizing each according
to physical parameters such as flux,2 color and morphology.

Received February 2018; revised April 2019.
1The National Energy Research Scientific Computing Center, a DOE Office of Science User Fa-

cility supported by the Office of Science of the U.S. Department of Energy, funded our research
through Contract No. DE-AC02-05CH11231. Funding for the Sloan Digital Sky Survey IV has been
provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and
the Participating Institutions. SDSS acknowledges support and resources from the Center for High-
Performance Computing at the University of Utah. The SDSS web site is www.sdss.org.

Key words and phrases. Astronomy, graphical model, MCMC, variational inference, high perfor-
mance computing.

2Flux is the amount of energy transferred from the light source per unit area (directly facing the
light source) per second. “Apparent brightness” is another term for flux.

1884

http://www.imstat.org/aoas/
https://doi.org/10.1214/19-AOAS1258
http://www.imstat.org
http://www.sdss.org


ASTRONOMICAL CATALOGING 1885

FIG. 1. Sample data from the Sloan Digital Sky Survey (SDSS). Image boundaries appear as grey
lines. All images have the same rectangular size; there is overlap.

Astronomical catalogs are the starting point for many scientific analyses. First,
catalogs enable demographic inference, which can address fundamental cosmolog-
ical questions. For example, researchers may need to know the spatial and lumi-
nosity distributions for specific classes (subpopulations) of stars or galaxies. For
these subpopulation-level analyses, accurate quantification of uncertainty in the
point estimates of parameters is as important as the accuracy of the point estimates
themselves. It is an open question how to infer a full-sky catalog using Bayesian in-
ference that is also well calibrated enough for these subpopulation analyses: mod-
eling assumptions that are reasonable for full-sky cataloging are typically too in-
accurate for final scientific analysis of subpopulations. Our work is a step toward
creating such a catalog, though this application is not our primary focus.

Second, catalogs inform the design of follow-on surveys using more advanced
or specialized instrumentation. For example, a primary use of the Sloan Digital Sky
Survey (SDSS) catalog was to select galaxies to target for follow-up study with a
spectrograph (York et al. (2000)). Whereas image data provides only a rough ap-
proximation of the colors of galaxies, spectographs can measure galaxy fluxes for
each of hundreds of wavelength bins. Typically a “portfolio” of galaxies to tar-
get is selected for each of several galaxy types, for example, main (Strauss et al.
(2002)), luminous red galaxies (Eisenstein et al. (2001)) and quasars (Richards
et al. (2002)). Selecting each portfolio of galaxies amounts to decision making un-
der uncertainty. At present this task is not handled in a statistically coherent way.
Using traditional catalogs, incorporation of uncertainty is not straightforward; as-
tronomers resort to heuristics, typically implemented through cuts based on the raw
point estimates appearing in the catalogs. In one case, a portfolio of galaxies was
chosen to maximize the sum of the z-values implied by point estimates (and ignor-
ing uncertainties). In the framework of Bayesian decision theory (Berger (1985)),
given an approximate posterior distribution, it is straightforward conceptually to
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select a portfolio of light sources that minimizes a particular cost function. This
second task is our main concern in this work.

Software pipelines for cataloging. Catalog construction today is based on soft-
ware pipelines. For concreteness, we describe the Hyper Suprime–Cam (HSC)
software pipeline (Bosch et al. (2018)). The contrasts we subsequently draw be-
tween our proposed approach and HSC, however, apply to catalog pipelines in
general. We focus on HSC because it is the state of the art in nearly all respects.
Its code has been merged into the cataloging pipeline for the Large Synoptic
Survey Telescope (LSST (2017))—one of the most important upcoming sky sur-
veys. HSC draws upon the algorithmic development of both the SDSS software
pipeline (Lupton et al. (2001)) and SExtractor (Bertin and Arnouts (1996)).

The HSC software pipeline comprises a sequence of steps, including (1) de-
trending, (2) cosmic ray masking, (3) “repair” of saturated and bad pixels through
interpolation, (4) estimating the sky background, (5) detecting candidate sources,
that is, localized “peaks,” (6) estimating the centroids of light sources, (7) estimat-
ing the shape of light sources, (8) estimating the flux of light sources, (9) matching
light sources to external catalogs, (10) estimating the point-spread function and
(11) performing star/galaxy separation. Most of these steps depend on estimates
from other steps, and many have circular dependencies. Steps with circular depen-
dencies are repeated multiple times. For example, at first a circular Gaussian serves
as a crude approximation of a star for masking cosmic rays. Later the cosmic ray
detector is rerun with a refined star model.

For the initial sequence of steps (i.e., a “stage”), the semi-iterative sequence
steps are executed on all images independently, regardless of any overlap. During
later stages, constraints are added that require the algorithm to use a shared esti-
mate for a light source in an overlapping region. The matching itself depends on
aligning the images correctly, which in turn depends on correctly detecting light
sources—an additional circular dependency. Ultimately, aligned, calibrated and
deblended images are “co-added” (superimposed) to create one image for each
light source. The final estimate of a light source’s properties is based on the co-
added images and accompanying per-pixel variance estimates.

The uncertainty estimates for a light source’s flux include only this pixel-level
variability. They do not account for all the other sources of uncertainty that cannot
reasonably be modeled as independent across pixels: uncertainty about the light
source’s centroid, the number of light sources, the image alignments, cosmic ray
detection, light sources’ shapes, and nearby light sources’ fluxes and shapes. The
reported uncertainties are based on a Gaussian statistical model of pixels, but one
that conditions on the previous stages’ estimates of all these quantities. Effectively,
the reported uncertainties are for a conditional distribution rather than a marginal
distribution.

Modern cataloging pipelines have struck a balance between algorithmic effi-
ciency and statistical rigor that has enabled much of the progress in astronomy
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to date. Upcoming surveys, however, will probe deeper into the visible universe,
creating new challenges. In particular, whereas blending currently affects just a
small number of light sources, in LSST it is estimated that 68% of light sources
will be blended, requiring new approaches to deblending (Bosch et al. (2018)). In
addition, new approaches may let us better interpret existing survey data. Our aim
in this work is to put catalog construction on sounder statistical footing.

Bayesian inference for cataloging. Our first contribution is a statistical
model (Section 2) that can simultaneously find centroids, determine photometry
(flux, color and galaxy morphology), deblend overlapping light sources, perform
star/galaxy separation and adjust estimates of all quantities based on prior infor-
mation. Our procedure for all these tasks is based on a single probabilistic model.
The properties of cataloged light sources are modeled as unobserved random vari-
ables. The number of photons recorded by each pixel is modeled by a Poisson
distribution with a rate parameter unique to the pixel. The posterior distribution
induced over the unobserved physical properties of the light sources encapsulates
knowledge about the catalog’s entries, combining prior knowledge of astrophysics
with survey imaging data in a statistically efficient manner. With the model, we
can reason about uncertainty for any quantity in our catalog without conditioning
on other estimates being known exactly.

Unfortunately, exact Bayesian posterior inference is intractable for most prob-
abilistic models of interest (Bishop (2006)), including this one. Approximate
Bayesian inference is an area of active research. Markov chain Monte Carlo
(MCMC) is the most common approach. Two recent studies demonstrate that
Bayesian modeling is the gold standard for astronomical inference, while casting
doubt on whether MCMC is viable for constructing a whole astronomical cata-
log. Brewer, Foreman-Mackey and Hogg (2013) use a single 10,000-pixel image
as the dataset for an MCMC procedure. Obtaining samples from the posterior dis-
tribution takes one day using a modern multi-core computer. Portillo et al. (2017)
run twelve Intel Xeon cores for an entire day to yield useful results on a similar
dataset. The Sloan Digital Sky Survey—a modern astronomical survey—contains
over a billion times as many pixels as these test images. The upcoming Large Syn-
optic Survey Telescope (LSST) will collect at least 10 terabytes nightly—hundreds
of petabytes in total (LSST (2017)). Even basic management of these data requires
substantial engineering effort.

Before our work, Tractor (Lang, Hogg and Mykytyn (2016)) was the only pro-
gram for Bayesian posterior inference that had been applied to a complete modern
astronomical imaging survey. Tractor is unpublished work. It relies on the Laplace
approximation: the posterior is approximated by a multivariate Gaussian distribu-
tion centered at the mode, having a covariance matrix equal to the negative Hes-
sian of the log-likelihood function at that mode. This approximation is not suit-
able for either categorical random variables or random variables with multi-modal
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posteriors—no Gaussian distribution approximates them well. Additionally, be-
cause Laplace approximation centers the Gaussian at the mode of the target, rather
than the mean, the solution depends on the problem parameterization (Bishop
(2006)).

Variational inference (VI) is an alternative to MCMC and the Laplace approxi-
mation. Like the latter, it uses numerical optimization, not sampling, to find a dis-
tribution that approximates the posterior (Blei, Kucukelbir and McAuliffe (2017)).
In practice, the resulting optimization problem is often orders of magnitude faster
to solve compared to MCMC approaches. It can be simpler, too. Whereas MCMC
transition operators must satisfy strict constraints for validity, the variational opti-
mization problem can in principle be solved using any off-the-shelf technique for
numerical optimization. Scaling VI to large datasets is nonetheless challenging.

Our second contribution is to develop and compare two approximate poste-
rior inference procedures for our model: one based on MCMC (Section 3) and
the other based on VI (Section 4). Neither is a routine application of Bayesian
machinery. The MCMC procedure combines annealed importance sampling and
slice sampling (Neal (2001, 2003)). The VI procedure breaks with tradition by
optimizing with a variant of Newton’s method instead of closed-form coordinate
ascent. For synthetic images drawn from our model, MCMC better quantifies un-
certainty, whereas for real astronomical images taken from the Sloan Digital Sky
Survey (SDSS), model misspecification may be a more significant limitation than
the choice of posterior approximation (Section 5).

For either type of data, our VI procedure is orders of magnitude faster than
our MCMC procedure. We scale our VI procedure to the entire Sloan Digital Sky
Survey (SDSS) using a supercomputer (Section 6). To our knowledge, this is the
largest-scale reported application of VI by at least one order of magnitude.

While our statistical model and inference procedures are accurate on average,
the final scientific analysis of a subpopulation of stars or galaxies typically requires
priors that are accurate for that particular subpopulation. Several strategies are
available for downstream tasks requiring priors specific to the subpopulation, both
with and without reprocessing the image data (Section 7).

2. Statistical model. Stars and galaxies radiate photons. An astronomical im-
age records photons—each originating from a particular celestial body or from
background atmospheric and detector noise—that pass through a telescope’s lens
during an exposure. A single image contains photons from many light sources;
even a single pixel may capture photons from multiple sources.

Section 2.1 describes our model of light sources. Quantities of interest, such as
direction,3 color and flux, are random variables. Section 2.2 describes a genera-
tive model of astronomical images: the distribution of each pixel’s intensity—an

3A direction is a position on the celestial sphere. We use the term “direction,” not “location,”
because the distance to a light source, unlike its direction, is not directly observable.
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FIG. 2. The proposed graphical model. The shaded vertex represents observed random variables.
Empty vertices represent latent random variables. Black dots represent constants, set before inference
takes place. Edges signify conditional dependencies. Rectangles (“plates”) represent independent
replication. Tables 1, 2 and 3 summarize the variables.

observed random variable—depends on the latent variables that we aim to infer.
Pixel intensities are conditionally independent given these latent random variables.
Figure 2 presents our statistical model as a graphical model.

Table 1 lists the model’s structural constants, denoted by capital Roman letters.
All are positive integers. None are estimated.

Table 2 lists the model’s random variables for a light source s ∈ {1, . . . , S},
an image n ∈ {1, . . . ,N} and a pixel m ∈ {1, . . . ,M}. (S, N , and M appear in
Table 1.) All are denoted by lowercase Roman letters. All are scalars except for

TABLE 1
Structural constants in our model

Name Brief description SDSS value

B number of filter bands 5
E number of PSF “eigenimages” 4
F number of knots per PSF eigenimage 51 × 51
H number of rows of pixels per image 2048
I number of source types (i.e., star, galaxy) 2
J number of components in the color prior mixture 8
K number of components in the galaxy mixture model 8
L number of parameters in a WCS header 16
M number of pixels per image H × W

N number of images 4,690,230
Q number of knots for the sky background model 192 × 256
S number of light sources 469,053,874
W number of columns of pixels per image 1361
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TABLE 2
Random variables in our model

Name Brief description Units Domain

as galaxy/star indicator unitless {0, 1}
cs colors magnitude R

B−1

e
angle
s angle of galaxy’s major axis degrees [0,180)

eradius
s galaxy’s half-light radius arcseconds (0,∞)

e
profile
s galaxy’s profile mixing weight unitless [0,1]

eaxis
s galaxy’s minor-major axis ratio unitless (0,1)

rs reference-band flux density nanomaggies [0,∞)

us direction (longitude, latitude) degrees [0,360) × [−90,90]
xnm pixel intensity (observed) photon count {0,1,2, . . .}

the color vector cs and the direction vector us . Inferring the posterior distribution
of the unobserved random variables in Table 2 is the primary problem addressed
by this article.

Table 3 lists model parameters. The first eight rows describe hyperparameters;
they parameterize the prior and are distinguished by calligraphic font. They are
estimated a priori by maximum likelihood, as described in Section 2.1.3. The
remaining parameters, denoted by lowercase Greek letters, are set by the SDSS
pipeline.

TABLE 3
Parameters in our model

Name Brief description Domain

A prior probability a light source is a star [0,1]
Cweight color prior mixture weights R

I×J

Cmean color prior mixture component means R
I×J×(B−1)

Ccov color prior mixture component covariance matrices R
I×J×(B−1)×(B−1)

E radius galaxy half-light radius prior parameters R
2

Eprofile galaxy profile prior parameters R
2

Eaxis galaxy axis ratio prior parameters R
2

R reference-band flux prior parameters R
I×2

σn sky background model R
Q

ψcalib
n expected number of photons per nanomaggy R

H

ψwcs
n image alignment R

L

ψ
weight
n point spread function loadings R

E

ψ
image
n point spread function principal components R

E×F

βn filter band {1,2, . . . ,B}
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2.1. Light sources. An astronomical catalog is a table with one row for each
light source. The number of light sources, S, is treated as a known constant
here; we determine it by running existing cataloging software (Bertin and Arnouts
(1996)). Modeling S as random we defer to future work.

Light sources in our model are either stars or galaxies, as are the vast majority
of light sources in the universe. Exceptions include asteroids, planets, airplanes
and man-made satellites, which also occasionally appear in astronomical images.
For light source s = 1, . . . , S, the latent random variable

as ∼ Bernoulli(A)(1)

indicates whether it is a star (as = 1) or a galaxy (as = 0). Here A is the prior
probability that a light source is a star. (We discuss how we set A, and all other
prior hyperparameters, in Section 2.1.3.)

The latent random two-vector us denotes the direction of light source s in the
units of J2000.0 equatorial coordinates, a latitude and longitude system relative
to the Earth’s equator. Figure 9 illustrates this system of coordinates. The first
coordinate is longitude and the second coordinate is latitude. Both are measured in
degrees.

A priori, us is uniformly distributed over the sphere. Treating light sources as
uniformly distributed is a simplification—some regions of the sky are known a pri-
ori to have more light sources than others, for example, the galactic plane. This is
known as directional dependence. Additionally, it is a simplification to model light
sources as positioned independently of each other; gravity causes some clustering
among light sources.

2.1.1. Flux. The flux of light source s is defined as its expected total radiation
reaching a unit area of Earth’s surface directly facing s, per unit of time. We can
measure the flux as the portion of this radiation (per square meter per second) that
passes through each filter in a standardized filter set. Such a set is called a filter
system. These standardized filters are approximately band-pass: each allows most
of the energy in a certain band of wavelengths through, while blocking most of the
energy outside the band. The physical filters attached to a telescope lens closely
match the standardized filters of some filter systems.

The five SDSS filters are named for the wavelengths they are most likely to
let pass: ultraviolet (u′), green (g′), red (r ′), near infrared (i ′) and infrared (z′).
Figure 8 shows how likely a photon of a particular wavelength is to pass through
each filter. Fukugita et al. (1996) further describe the SDSS filter system.

We model flux with respect to the B = 5 filters of the SDSS filter system. We
designate a particular filter as the “reference” filter, letting the random variable rs
denote the flux of object s with respect to that filter. A priori,

rs |(as = i) ∼ LogNormal(Ri1,Ri2), i ∈ {0,1}.(2)
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Our prior depends on as to reflect that stars tend to have higher flux density than
galaxies. The flux density rs is measured in nanomaggies (SDSS (2018a, 2017)).
One nanomaggy is equivalent to 3.631 × 10−6 Jansky. A nanomaggy is a linear
unit; we expect to receive twice as many photons from a two-nanomaggy light
source as from a one-nanomaggy light source.

The log-normal distribution reflects that flux is nonnegative and that stars’ fluxes
often differ by orders of magnitude. Empirically, a log-normal distribution fits the
SDSS catalog better than any gamma distribution—another common model for
nonnegative real-valued variables. In future work, we may also explore a power
law distribution for galaxy fluxes, as there is some theoretical support for that
model.

The flux of light source s with respect to the remaining B − 1 filters is encoded
using colors. The color csβ is defined as the log ratio of fluxes with respect to filters
β and β + 1. Here, the filters are ordered by the wavelength bands they let pass.
The B − 1 colors for object s are collectively denoted by cs , a random (B − 1)-
vector. We denote the colors as u-g, g-r, r-i and i-z. The reference-filter flux rs
and the colors cs uniquely specify the flux for light source s through any filter β ,
denoted �sβ .

Our model uses the color parameterization because stars and galaxies have
very distinct prior distributions in color space. Indeed, for idealized stars—
blackbodies—all B − 1 colors lie on a one-dimensional manifold indexed by sur-
face temperature. On the other hand, though galaxies are composed of stars, theory
does not suggest they lie near the same manifold: the stars in a galaxy can have
many different surface temperatures, and some of the photons are re-processed to
other energies through interactions with dust and gas. Figure 3 demonstrates that
stars are much closer to a one-dimensional manifold in color space than galaxies
are.

We model the prior distribution on cs as a D-component Gaussian mixture
model (GMM):

cs |(as = i) ∼ GMM
(
Cweight

i ,Cmean
i ,Ccov

i

)
, i ∈ {0,1}.(3)

We discuss how we set D and the color priors’ hyperparameters in Section 2.1.3.

FIG. 3. Density plots for two colors, g-r and r-i, based on the SDSS DR10 catalog.
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2.1.2. Spatial extent. Consider a light source s, centered at some direction us .
Its flux density in filter band β , measured at a possibly different direction μ, is
given by

ϕsβ(μ) := hs(μ)�sβ.(4)

Here hs (a density) models the spatial characteristics of light source s, quantifying
its relative intensity at each direction μ specified in sky coordinates (not image-
specific “pixel coordinates”). We refer to hs as the “light kernel” for light source s.

The distance from Earth to any star other than the Sun exceeds the star’s radius
by many orders of magnitude. Therefore, we model stars as point sources. If light
source s is a star (i.e., as = 1), then hs is simply a delta function: one if μ = us ,
zero otherwise.

Modeling the two-dimensional appearance of galaxies as seen from Earth is
more involved. If light source s is a galaxy (i.e., as = 0), then hs is parameterized
by a latent random 4-vector

es := (
eprofile
s , eangle

s , eradius
s , eaxis

s

)
.(5)

We take hs to be a convex combination of two extremal profiles, known in astron-
omy as “de Vaucouleurs” and “exponential” profiles:

hs(μ) = eprofile
s hs1(μ) + (

1 − eprofile
s

)
hs2(μ).(6)

The de Vaucouleurs profile is characteristic of elliptical galaxies, whose luminosi-
ties vary gradually in space (Figure 6(a)), whereas the exponential profile matches
spiral galaxies (Figure 6(b)) (Feigelson and Babu (2012)). The profile functions
hs1(μ) and hs2(μ) also account for additional galaxy-specific parameters illus-
trated in Figure 4. In particular, each profile function is a rotated, scaled mixture of

FIG. 4. A schematic of the galaxy light kernel. The blue ellipse surrounds half of the light emissions
of this galaxy. The length of the major axis is the half-light radius eradius

s . The angle in degrees of the

major axis is e
angle
s = 45. The ratio of the lengths of minor and major axes is eaxis

s = 1/2. Because

this galaxy is purely elliptical, e
profile
s = 0.
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bivariate normal distributions. Rotation angle and scale are galaxy-specific, while
the remaining parameters of each mixture are not:

hsi(μ) =
J∑

j=1

αijφ(μ;us, τij
s), i ∈ {0,1}.(7)

Here the αij and the τij are prespecified constants that characterize the exponential
and de Vaucouleurs profiles; us is the center of the galaxy in sky coordinates; 
s

is a 2 × 2-covariance matrix shared across the components; and φ is the bivariate
normal density.

The light kernel hs(μ) is a finite scale mixture of Gaussians: its mixture compo-
nents have a common mean us ; the isophotes (level sets of hs(μ)) are concentric
ellipses. Although this model prevents us from fitting individual “arms,” like those
of the galaxy in Figure 6(b), most galaxies are not sufficiently resolved to see such
substructures. Figure 5 shows a more typical galaxy image.

The spatial covariance matrix 
s is parameterized by a rotation angle e
angle
s , an

eccentricity (minor-major axis ratio) eaxis
s , and an overall size scale eradius

s :


s := R�
s

[[
eradius
s

]2 0
0

[
eaxis
s

]2[
eradius
s

]2

]
Rs,(8)

where the rotation matrix is given by

Rs :=
[

cos eangle
s − sin eangle

s

sin eangle
s cos eangle

s

]
.(9)

The scale eradius
s is specified in terms of half-light radius—the radius of the disc

that contains half of the galaxy’s light emissions before applying the eccentricity
e

angle
s .

FIG. 5. A distant galaxy approximately 20 pixels in height, estimated to have half-light ra-

dius eradius
s = 0.6 arcseconds, rotation angle e

angle
s = 80 degrees and minor-major axis ra-

tio eaxis
s = 0.17.
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FIG. 6. Extremal galaxy profiles.

All four entries of es are random. The mixing weight prior is given by

eprofile
s ∼ Beta

(
Eprofile

1 ,Eprofile
2

)
.(10)

Every angle is equally likely, and galaxies are symmetric, so

eangle
s ∼ Uniform

([0,180]).(11)

We found that the following half-light-radius distribution fit well empirically:

eradius
s ∼ LogNormal

(
E radius

1 ,E radius
2

)
.(12)

The “fatter” tail of a log-normal distribution fits better than a gamma distribution,
for example. A priori, the minor-major axis ratio is beta distributed:

eaxis
s ∼ Beta

(
Eaxis

1 ,Eaxis
2

)
.(13)

2.1.3. Setting the priors’ parameters. The light source prior is parameterized
by 1099 real-valued scalars. All but 10 are for the GMM color prior. Empirical
Bayes is an appealing way to fit this prior because the number of parameters is
small relative to the number of light sources (hundreds of millions for SDSS).

Unfortunately, re-fitting the prior parameters iteratively during inference—
a common way of performing empirical Bayes—is difficult in a distributed setting:
fitting the global prior parameters during inference couples together numerical op-
timization for disparate regions of sky. Instead, we fit the prior parameters based
on existing SDSS catalogs through maximum likelihood estimation. Because these
prior parameters are fit to a catalog based on the same data we subsequently ana-
lyze, our procedure is in the spirit of empirical Bayes. However, using maximum
likelihood in this way to assign priors ignores measurement error (and classifica-
tion error) and therefore will produce priors that are overdispersed. It produces
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estimates that are formally inconsistent, unlike conventional empirical Bayes ap-
proaches that iteratively refit the prior.

If the depth of our catalog were much greater than existing SDSS catalogs,
we too might refit these prior parameters periodically while performing inference.
Refitting in this way could be interpreted as a block coordinate ascent scheme.
However, in our work to date, the depth of our catalog is limited by the peak-
finding preprocessing routine, just as in SDSS. Therefore, for simplicity, we hold
these prior parameters fixed during inference.

Fitting the color prior warrants some additional discussion. First, maximum-
likelihood estimation for a GMM is nonconvex, so the optimization path may mat-
ter: we use the GaussianMixture.jl software (van Leeuwen (2018)). Second, we
set the number of GMM components D based on computational considerations. In
principle, D could be set with a statistical model-selection criterion. In practice,
we set D = 8 without any apparent accuracy reduction for the point estimates,
which is the primary way we assess our model in Section 5. Because we have so
much data (millions of light sources), there is no risk of overfitting with D = 8:
held-out log-likelihood improves as D increases up to D = 256, the largest set-
ting our hardware allowed us to test. There is also little risk that D = 8 underfits:
setting D = 16 does not substantively change our estimates.

Empirical Bayes seems broadly applicable to sky-survey data; the number of
light sources in typical surveys is large relative to the number of hyperparameters.
But the details of our procedure (e.g., how to set D, or whether to update the
hyperparameters iteratively during inference) may need to be tailored based on the
research goals. If so, our fitted priors may be considered “interim” priors.

2.2. Images. Astronomical images are taken through telescopes. Photons that
enter the telescope reach a camera that records the pixel each photon hits, thus con-
tributing an electron. The SDSS camera (Figure 7) consists of 30 charge-coupled
devices (CCDs) arranged in a grid of six columns and five rows. Each row is cov-
ered by a different filter—transparent colored glass that limits which photons can
pass through and potentially be recorded. Each of the five filters selects, stochasti-
cally, for photons of different wavelengths (Figure 8). Multiple images of the same
region of the sky with different filters reveal the colors of stars and galaxies.

The SDSS telescope collects images by drift scanning, an imaging regime where
the camera reads the CCDs continuously as the photons arrive. Each night the
telescope images a contiguous “arc” of sky (Figure 9).

Each arc is divided into multiple image files. SDSS Data Release 13 contains
N = 4,690,230 of these images, each taken through one of the 30 CCDs. For
n = 1, . . . ,N , the constant βn denotes the filter color for image n.

Each image is a grid of M = 2048 × 1361 pixels. The random variable xnm

denotes the count of photons that, during the exposure for image n, entered the
telescope, passed through the filter, and were recorded by pixel m.
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FIG. 7. The SDSS camera. Its CCDs—each 2048 × 2048 pixels—are arranged in six columns and
five rows. A different filter covers each row. Credit: SDSS (2018b).

2.2.1. Skyglow. The night sky is not completely dark, even in directions with-
out resolvable light sources. This is due to both artificial light production (e.g.,
light pollution from cities) and natural phenomena. The background flux is called
“skyglow.” Sources of natural skyglow include sunlight reflected off dust particles
in the solar system, nebulosity (i.e., glowing gas—a constituent of the interstellar
medium), extragalactic background light from distant unresolved galaxies, night
airglow from molecules in Earth’s atmosphere, and scattered starlight and moon-
light. The flux from skyglow (“sky intensity”) varies by the time of the exposure,
due to changing atmospheric conditions. It also varies with direction; for example,
sky intensity is typically greater near the galactic plane. We model skyglow as a

FIG. 8. SDSS filter curves. Filter response is the probability that a photon of a particular wave-
length will pass through the filter. (Data for this graph is reported in Doi et al. (2010), but the graph
itself is an original creation.)
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FIG. 9. SDSS sky coverage map. Each monocolor arc represents the sky photographed during a
particular night. Axes’ units are degrees of right ascension (longitude) and declination (latitude).
Credit: SDSS (2018c).

spatial Poisson process whose rate varies gradually by pixel, independent of stars
and galaxies. For the vast majority of pixels, the skyglow is the only source of
photons.

Sky intensity is estimated during preprocessing by pre-existing software (Bertin
and Arnouts (1996)) and fixed during inference. This software fits a smooth para-
metric model to the intensities of the pixels that it determines are not near any light
source. The sky intensity could, in principle, be fit within our inference procedure;
we defer this idea to future work.

The sky intensity for image n is stored as a grid of Q intensities in the matrix σn.
Typically Q � M because the sky intensity varies slowly. To form the sky intensity
for a particular pixel, σn is interpolated linearly. We denote the sky intensity for a
particular pixel by σn(m).

2.2.2. Point-spread functions. Astronomical images are blurred by a combi-
nation of small-angle scattering in Earth’s atmosphere, the diffraction limit of the
telescope, optical distortions in the camera and charge diffusion within the silicon
of the CCD detectors. Together these effects are represented by the “point-spread
function” (PSF) of a given image. Stars are essentially point sources, but the PSF
represents how their photons are spread over dozens of adjacent pixels.

The PSF is set during preprocessing by pre-existing software (Lupton et al.
(2001)). This software fits the PSF based on several stars with extremely high flux
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in each image whose characteristics are well established by previous studies using
different instrumentation (e.g., spectrographs). As with sky intensity, we could fit
the PSF jointly with light sources through our approximate inference procedure,
but we do not pursue this idea here.

The PSF is specified through several image-specific parameters that are bun-
dled together in ψn. The vector ψcalib

n gives the expected number of photons per
nanomaggy for each column of image n. The vector ψwcs

n specifies a mapping from
sky direction to pixel coordinates. This mapping is linear—an approximation that
holds up well locally. The rows of the matrix ψ

image
n give the top principal com-

ponents from an eigendecomposition of the PSF as rendered on a grid centered at
a light source. The vector ψ

weight
n gives the loading of the PSF at any point in the

image. It has smooth spatial variation.
Consider a one-nanomaggy star having direction μ. We denote its expected con-

tribution of photons to the mth pixel of image n as gnm(μ); this is derived as
needed from the explicitly represented quantities discussed above.

2.2.3. The likelihood. Let zs := (as, rs, cs, es, us) denote the latent random
variables for light source s. Let z := {zs}Ss=1 denote all the latent random variables.
Then, for the number of photons received by pixel m of image n, we take the
likelihood to be

xnm|z ∼ Poisson(λnm).(14)

The dependence of λnm on z is not notated here. We model xnm as observed,
though the reality is more complicated (SDSS (2018d)): at the end of an exposure,
the CCD readout process transfers the electrons to a small capacitor, converting
the (discrete) charge to a voltage that is amplified and forms the output of the CCD
chip. The net voltage is measured and digitized by an analog-to-digital converter
(ADC). The conversion is characterized by a conversion gain. The ADC output is
an integer called a digital number (DN). The conversion gain is specified in terms
of electrons per DN. While in our model xnm is the number of photons received,
in practice we set xnm to a value determined by scaling DN according to gain
and rounding it to the nearest integer. The Poisson mass function is fairly constant
across the quantization range.4

Because of these complexities, it is not clear whether a Poisson distribution is
more suitable here than a Gaussian distribution with its mean equal to its variance.
We make no claims about the superiority of one or the other. In the SDSS, the sky
background is typically at least 500 electrons per pixel, so it seems unlikely that the
choice of a Gaussian (with its mean equal to its variance) or a Poisson distribution

4An alternate perspective is that xnm is not approximated in practice: rather, xnm is our approx-
imation. We do not take this perspective so that we can explain our model at a high level before
introducing low-level details of CCD technology.
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would matter. Furthermore, neither likelihood simplifies the subsequent inferential
calculations.

In Equation (14), the rate parameter λnm is unique to pixel m in image n. It is a
deterministic function of the catalog (which includes random quantities) given by

λnm := σn(m) +
S∑

s=1

�sβn

∫
gnm(μ)hs(μ)dμ.(15)

The summation over light sources reflects the assumption that light sources do not
occlude one another, or the skyglow. The integral is over all sky locations. In prac-
tice, it can be restricted to pixels near pixel m—distant light sources contribute a
negligible number of photons. Our implementation bases this distance measure-
ment on conservative estimates of light sources’ extents from SExtractor (Bertin
and Arnouts (1996)). As shorthand, we denote the integral as

fnms :=
∫

gnm(μ)hs(μ)dμ.(16)

If light source s is a star, then it is straightforward to express fnms analytically:

fnms = gnm(us).(17)

If light source s is a galaxy, the same integral is more complex because galaxies
have spatial extent. Our approach is to approximate gnm with a mixure of bivariate
normal densities. Because Gaussian–Gaussian convolution is analytic, we get an
analytic approximation to fnms .

Our primary use for the model is computing the posterior distribution of its
unobserved random variables conditional on a particular collection of astronomical
images. We denote the posterior by p(z|x), where x := {xnm}N,M

n=1,m=1 represents
all the pixel intensities. Exact posterior inference is computationally intractable
for the proposed model, as it is for most nontrivial probabilistic models. The next
two sections consider two approaches to approximate posterior inference: Markov
chain Monte Carlo (MCMC) and variational inference (VI).

3. Markov chain Monte Carlo. Markov chain Monte Carlo (MCMC) is a
common approach for approximating posterior distributions in computationally
challenging Bayesian models. MCMC draws samples from a stochastic process
on the parameter space whose stationary distribution is the posterior distribution
of interest. The stochastic process is specified by a transition kernel, denoted T .
The empirical distribution of these samples approximates the posterior distribu-
tion. Statistics of this empirical distribution, such as its mean and its quantiles,
approximate the same statistics of the posterior distribution.

Our problem presents two challenges for MCMC. First, the state space is ex-
tremely high-dimensional—there are multiple random variables for each of mil-
lions of light sources. We cannot consider transition kernels that require hand-
tuning of dimension-specific parameters, such as step size, proposal variance, or
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temperature schedule. Second, the state space is trans-dimensional. Galaxies have
more parameters than stars, and light-source types (star/galaxy) are themselves
random.

We propose a multi-level sampling procedure. In an outer loop based on (block)
Gibbs sampling (Robert and Casella (1999)), light sources are treated sequentially.
Each light source’s latent variables are sampled with any overlapping light sources’
latent variables, denoted z−s , held fixed. Formally, in Gibbs iteration k = 1, . . . ,K ,
we draw

z(k)
s ∼ p

(
zs |x, z

(k−1)
−s

)
(18)

for light sources s = 1, . . . , S in sequence. To speed up convergence, we initial-
ize z

(0)
1 , . . . , z

(0)
S with approximately correct values determined by a preprocessing

routine.
Our strategy for generating samples from the distribution in equation (18) is to

first draw a sample from the marginal posterior over the source’s type as (star or
galaxy) and then draw samples from the conditional posterior over the remaining
source parameters, ws � (rs, cs, es, us):

as ∼ p(as |x, z−s) marginal source type;(19)

ws | as ∼ p(ws |as, x, z−s)) conditional source parameters.(20)

To generate a sample from equation (19) we use annealed importance sampling
(AIS) (Neal (2001)), initialized with outputs of the AIS step. To generate a con-
ditional sample from equation (20) we use slice sampling (Neal (2003)). We will
explain each sampler in turn in Sections 3.1 and 3.2.

Recall that as is the Bernoulli random variable that indexes the source type
(star/galaxy), and thus the dimension of our state space. This two-step sampling
strategy allows us to avoid using a trans-dimensional sampler like reversible-jump
MCMC (Green (1995)), a technique that requires constructing a potentially com-
plex trans-dimensional proposal function (Fan and Sisson (2011)).

3.1. Sampling the posterior over as . To generate a sample from the marginal
posterior over as , we estimate the marginal posterior probabilities of as = 1 and 0
(which together sum to one). By Bayes’s rule, we can write the marginal posterior

p(as = 1|x, z−s) ∝ p(x|as = 1, z−s)p(as = 1|z−s).(21)

The term p(x|as = 1, z−s) is the marginal likelihood of the observation x given the
source is of type as = 1, which is the type of estimand AIS is designed to estimate.
The term p(as = 1|z−s) = p(as = 1) is the prior over source type.

AIS is an iterative procedure to estimate the normalizing constant (i.e., the inte-
gral) of an unnormalized probability density π . In order to estimate the marginal
likelihood p(x|as, z−s), we estimate the normalizing constant of the distribution

π(ws) := p(x|ws, as, z−s)p(ws |as, z−s)(22)
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for both source types, as = 0 and as = 1. This normalizing constant is p(x|as, z−s).
Given an estimate of p(x|as, z−s) (for both settings of as ) and a prior over as ,
we can construct an estimate of p(as = 1|x, z−s) using Bayes’ rule as in Equa-
tion (21). Then we can sample from p(as |x, z−s).

In addition to the target π , AIS takes as input a sequence of T distributions
π0, π1, . . . , πT that approach the target. The statistical efficiency of AIS depends
on the similarity of intermediate distributions πt−1(zs)/πt (zs). We set π0(zs) :=
p(ws |as, z−s)—a normalized density. For t = 1, . . . , T , we set

πt(ws) = π0(ws)
1−γt π(ws)

γt(23)

for a sequence of temperatures 0 = γ0 < γ1 < · · · < γT = 1. These (unnormalized)
distributions interpolate between the prior and the posterior.

For t = 1, . . . , T , let Tt be a Markov chain transition that leaves (the normal-
ized version of) πt invariant. To implement each transition kernel, Tt , we use slice
sampling, a Markov chain Monte Carlo method that requires little tuning and auto-
matically adapts to the local scale for each variable (Neal (2003)). We iterate over
each variable in zs , forming a slice-sampling-within-Gibbs transition kernel.

We begin by sampling w
(0)
s ∼ π0. Then, for t = 1, . . . , T , we draw

w(t)
s |w(t−1)

s ∼ Tt

(
w(t−1)

s ,w(t)
s

)
.(24)

After T iterations, w
(T )
s is approximately distributed according to (the normalized

version of) πT = π , and

Zs := exp
T∑

t=1

log
πt(w

(t−1)
s )

πt−1(w
(t−1)
s )

(25)

is a consistent estimator of p(x|as, z−s) (Neal (2001)). AIS can be viewed as im-
portance sampling over an augmented state space where the expanded dimensions
begin with the prior distribution and gradually anneal to the targeted posterior ac-
cording to T temperatures. Thus, the ratio of these weights is a consistent estimator
of the marginal likelihood.

Estimating the marginal likelihood (also referred to as the model evidence) is a
rich area of methodological development. Skilling (2004) presents another popular
approach for computing marginal likelihood estimates, known as nested sampling.
However, Friel and Wyse (2012) show cases where nested sampling is less efficient
statistically and computationally than AIS, motivating our use of AIS in this work.

3.2. Sampling source parameters conditioned on as . The final step of our
AIS procedure draws samples from p(ws |as, x, z−s). For each source type
(star/galaxy), we run N ′ independent repetitions of our AIS procedure. We use
the resulting samples as independent starting positions for N ′ Markov chains. We
run these N ′ chains for B ′ more steps, monitoring convergence and mixing crite-
ria (Gelman and Rubin (1992)). This process yields N ′ estimates of the marginal
likelihood, and N ′ × B ′ (correlated) samples drawn from the Markov chain.
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To summarize, the overall AIS-MCMC sampling procedure corresponding to
equation (18) is as follows:

• For each source type as = a ∈ {0,1} (e.g., star or galaxy)
– Run N ′ independent marginal likelihood estimators, each with T annealing

steps. This results in N ′ independent estimates of logp(x|as = a, z−s) and
N ′ approximate posterior samples from p(ws |as = a, x, z−s).

– For each of the N ′ approximate posterior samples, run an MCMC chain of
length B ′, using slice-sampling-within-Gibbs transitions.

• Use the logp(x|as = 0, z−s) and logp(x|as = 1, z−s) estimates to approximate
p(as = 1|x, z−s).

• Use the estimate of p(as = 1|x, z−s) to sample a source type a
(k)
s , approximat-

ing the distribution in equation (19).
• Randomly choose one of the N ′ × B ′ posterior samples corresponding to the

realized a
(k)
s , which approximates the distribution w

(k)
s ∼ p(ws |x, z−s, as) from

equation (20); or collect all N ′ × B ′ samples to approximate posterior function-
als.

The AIS-MCMC procedure described above requires us to choose a number of
samples and iterations. For the experiments we describe in Section 5, we use T =
200 annealing steps and N ′ = 25 independent samples of the marginal likelihood.
For each of the N ′ samples, we run an additional slice-sampling MCMC chain for
B ′ = 25 iterations, producing a total of N ′ ×B ′ = 625 correlated posterior samples
of zs .

4. Variational inference. Variational inference (VI) chooses an approxima-
tion to the posterior distribution p(z|x) from a class of candidate distributions via
numerical optimization. The candidate approximating distributions qθ (z), called
“variational distributions,” are parameterized by a real-valued vector θ . Through
numerical optimization, VI minimizes (with respect to θ ) the KL divergence be-
tween qθ (z) and p(z|x).

For an introduction to VI, we recommend Blei, Kucukelbir and McAuliffe
(2017) to statisticians, MacKay (1995) to physicists and Šmídl and Quinn (2008)
to readers with a background in signal processing.

4.1. The variational distributions. We restrict the variational distributions to
a class that makes KL minimization tractable. Our variational distributions all fac-
torize:

qθ (z) =
S∏

s=1

q(as)q(us)q(es)q(rs |as)q(cs |as).(26)

We have suppressed the subscript θ in the variational factors. This is not quite
mean-field variational inference (Blei, Kucukelbir and McAuliffe (2017)), where
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the variational distribution factorizes across all random variables, because some
factors are conditional on as (i.e., whether a light source is a star or a galaxy). The
next equations show the constituents of θ . We use “acute” and “hat” accents to
denote variational parameters. For s = 1, . . . , S and i ∈ {0,1} we take

q(as) ∼ Bernoulli(ás),(27)

q(rs |as = i) ∼ LogNormal(ŕsi , r̂si),(28)

q(cs |as = i) ∼ MvNormal(ćsi , I ĉsi),(29)

q(us) ∼ PointMass(ús),(30)

q(es) ∼ PointMass(és).(31)

Here és := (é
angle
s , éradius

s , é
profile
s , éaxis

s ).
Approximating the posterior for us and es with a point mass is a strong assump-

tion. It is analogous to performing maximum a posteriori (MAP) inference for
these parameters. We do so only because of computational considerations: it lets
us write the objective function as an analytic expression. Analytic expressions can
be optimized efficiently by deterministic numerical optimization routines, which
in turn can converge much faster than stochastic optimization (Bubeck (2015)).
Ongoing research aims to expand the class of models and variational distributions
that can be optimized with deterministic VI, though limitations persist (Fraysse
and Rodet (2014), Giordano, Broderick and Jordan (2015), Zheng, Fraysse and
Rodet (2015)).

4.2. The variational lower bound. Because p(x) is constant with respect to θ ,
minimizing DKL(qθ (z),p(z|x)) is equivalent to maximizing

L(θ) := Eqθ

[
logp(x|z)] − DKL

(
qθ (z),p(z)

)
.(32)

Maximization of L(θ) is the standard approach; see Blei, Kucukelbir and
McAuliffe (2017) for discussion.

The first term of L(θ) is the expected log likelihood of the data. It is

Eq

[
logp(x|z)] =

N∑
n=1

M∑
m=1

{−Eq[λnm] + xnmEq[logλnm] − log(xnm!)}.
(33)

4.2.1. Expectation of the rate parameter. The first expectation is

Eq[λnm] = σnm +
S∑

s=1

Eq[�sβnfnms].(34)
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We can factorize the right-hand expectation based on the factorization of the vari-
ational distribution, upon conditioning on as :

Eq[�sβnfnms] = (1 − ás)Eq[�sβn |as = 0]Eq[fnms |as = 0]
+ ásEq[�sβn |as = 1]Eq[fnms |as = 1].(35)

The integral Eq[�sβ |as] is tractable because flux rs and each entry of cs (the colors)
are independent in the variational distribution given as . The integral Eq[fnms |as]
is tractable because us is a point mass in the variational distribution.

4.2.2. Expectation of the log rate parameter. We approximate the expected
logarithm of λnm using the delta method for moments (Bickel and Doksum
(2016)). We replace the integrand with a second-order Taylor expansion around
its mean:

log(λnm) ≈ logEq[λnm] + 1

Eq[λnm]
(
λnm −Eq[λnm])

− 1

2Eq[λnm]2

(
λnm −Eq[λnm])2

.

(36)

Then, taking expectations,

Eq

[
log(λnm)

] ≈ logEq[λnm] − Vq[λnm]
2Eq[λnm]2 ,(37)

where Vq denotes variance with respect to the variational distribution q . That term
may be further expanded:

Vq[λnm] =
S∑

s=1

Vq[�sβnfnms](38)

=
S∑

s=1

Eq

[
�2
sβn

f 2
nms

] − (
Eq[�sβnfnms])2

.(39)

The second expectation on the right-hand side is given in equation (35). The first
is

Eq

[
�2
sβn

f 2
nms

] = (1 − ás)Eq

[
�2
sβn

|as = 0
]
Eq

[
f 2

nms |as = 0
]

+ ásEq

[
�2
sβn

|as = 1
]
Eq

[
f 2

nms |as = 1
]
.

(40)

4.2.3. KL divergence. Because of the factorization of the variational distribu-
tion, the KL term in equation (32) separates across sources:

DKL
(
q(z),p(z)

) =
S∑

s=1

DKL
(
q(zs),p(zs)

)
.(41)
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It separates further within each source:

DKL
(
q(zs),p(zs)

) = DKL
(
q(as),p(as)

)
+ DKL

(
q(us),p(us)

) + DKL
(
q(es),p(es)

)

+
1∑

i=0

q(as = i)
[
DKL

(
q(rs |as = i),p(rs |as = i)

)

+ DKL
(
q(cs |as = i),p(cs |as = i)

)]
.

(42)

Except for the last, these KL divergences are between common exponential family
distributions. We give formulas for them in Supplementary Material (Regier et al.
(2019)).

The last KL divergence is more complicated because the prior on cs is a Gaus-
sian mixture model. We take the eighth approach from Hershey and Olsen (2007)
to identify an upper bound on this KL divergence:

DKL
(
q(cs |as = i),p(cs |as = i)

)

≤ DKL
(
ξi,Cweights

i

) +
J∑

j=1

ξijDKL
(
q(cs |as = i),Cij

)
.

(43)

Here Cweights
i is the categorical distribution over the color prior’s mixture compo-

nents, Cij is the color prior’s j th mixture component, and ξi ∈ [0,1]J is a vector of
free parameters. To make the bound as tight as possible, we optimize the ξi along
with the variational lower bound. The optimal ξi can also be expressed analytically
in terms of Ci :

ξ�
ij ∝ Cweights

ij exp
{−DKL

(
q(cs |as = i),Cij

)}
.(44)

4.3. Numerical optimization. Traditionally, variational lower bounds are max-
imized through coordinate ascent: each update sets a variational parameter to its
optimal value with the others held fixed (Bishop (2006), Murphy (2012)). This
approach is simple to implement because gradients and Hessians do not need to
be explicitly computed. Each update increases the variational lower bound. The
algorithm converges to a local optimum even for nonconvex objective functions.
However, coordinate ascent can take many iterations to converge when the Hessian
of the objective function is not diagonal. Additionally, for many models, including
ours, optimal coordinate ascent updates cannot be expressed analytically.

Instead, we propose an optimization procedure based on block coordinate as-
cent. Each light source corresponds to a block of 44 parameters: the 37 variational
parameters in equations (27)–(31) and the 7-dimensional parameter ξ . We opti-
mize each block using a subsolver, explained in the next paragraph. Because most
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pairs of light sources do not overlap, the Hessian has low fill off the block diago-
nal. Block coordinate ascent converges quickly in this setting: for light sources that
do not overlap with any other light source, just one update step, based on one call
to a subsolver, is required to reach a local maximum. For groups of light sources
that overlap with each other, a few passes over each light source suffice in practice.
Light sources may be optimized in a round-robin order or at random.

As a subsolver to optimize one block of parameters with all others fixed, we
use Newton’s method with a trust-region constraint that restricts each step to a
Euclidean ball centered at the previous iterate (Nocedal and Wright (2006)). The
trust-region constraint ensures that we find a local maximum even though the vari-
ational objective is nonconvex. The method consistently converges in tens of it-
erations, whereas first-order methods take thousands. BFGS (Nocedal and Wright
(2006)) also on occasion required thousands of iterations per call. Newton itera-
tions are more expensive computationally than the iterations of first-order methods
because the former require computing a dense Hessian along with each gradient.
For our objective function, computing both a Hessian and a gradient takes 3×
longer than computing a gradient alone. In the end, we gain at least an order of
magnitude speedup by using Newton’s method rather than a gradient-only method
because the former requires many fewer iterations.

4.4. Distributed optimization. Modern compute clusters and supercomputers
contain many individual compute nodes that execute instructions in parallel. Addi-
tionally, each compute node runs many threads in parallel—at least one per CPU
core. Communication among compute nodes is orders of magnitude slower than
communication among threads on the same node.

Block coordinate ascent (the outer loop of our optimization procedure) is a se-
rial algorithm: if multiple blocks of parameters are updated simultaneously based
on the current iterate, the objective value may decrease, and the algorithm may
diverge. By taking of advantage of the structure of our problem, however, we
parallelize block coordinate ascent across both compute nodes and CPU cores.
Equation (33) is a sum over pixels and equation (41) is a sum over light sources.
Therefore, our objective function may be expressed as a sum whose terms each de-
pend on the parameters for at most one light source from any particular collection
of nonoverlapping light sources. Thus, for any collection of nonoverlapping light
sources, maximizing over each light source’s parameters serially is equivalent to
maximizing over all these light sources’ parameters in parallel.

Each compute node is tasked with optimizing all the light sources in a region
of the sky. Because these light sources are physically near each other, they appear
in many of the same images; we only need to load these images once to infer
parameters for all these light sources. Each node implements a locking mechanism
that prevents its threads from optimizing overlapping light sources simultaneously.
Because within-node communication is fast, there is almost no overhead from this
type of locking mechanism.
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Communication between nodes is relatively slow. We avoid using an inter-node
locking mechanism by assigning each node to optimize different regions of the sky.
Because the boundaries of these regions are small relative to the interior, we find
an iterate near a stationary point with this approach. A second pass with shifted
boundaries ensures that even light sources near a boundary during the first pass are
fully optimized.

5. Experimental results. Our experiments aim to assess (1) how MCMC and
VI compare, statistically and computationally; and (2) how well our procedures
quantify uncertainty.

We base our experiments both on synthetic images drawn from our model (Sec-
tion 5.1) and images from the Sloan Digital Sky Survey (Section 5.2). For both
datasets, we run both the MCMC procedure from Section 3 (henceforth, MCMC)
and the variational inference procedure from Section 4 (henceforth, VI), and com-
pare their posterior approximations.5

We assess the accuracy of point estimates (e.g., posterior means/modes) and
uncertainties (e.g., posterior variances), as well as star/galaxy classification ac-
curacy. Our accuracy measures are averaged over a population of light sources.
While no single metric of quality suffices for all downstream uses of catalogs,
good performance on the metrics we report is necessary (though not sufficient) for
good performance on most downstream tasks. These error metrics, which are an
unweighted average across light sources, are likely more representative of perfor-
mance at spectrograph targeting than for demographic inference. (Demographic
inference and spectrograph targeting are the two downstream applications we in-
troduced in Section 1.)

5.1. Synthetic images. Synthetic images let us compare inference methods
without model misspecification. On synthetic images, “ground truth” for the la-
tent random variables is known. Synthetic images also let us validate our model
by visually checking their similarity to real images. To generate realistic synthetic
images, we take the noninferred parameter values from real SDSS images, includ-
ing the point-spread function ψn, the sky background σn, and structural constants
like the dimensions of the images. To illustrate that synthetic data resemble real
images, Figure 10 depicts a synthetic image generated using parameters from an
existing catalog. In our experiments, the light sources in synthetic images are in-
stead drawn from the prior. Our synthetic study set comprises five overlapping
2048 × 1489-pixel images. Each image is for a different filter band. The images
contain approximately 500 detectable light sources.

5Open-source software implementing our inference procedures is available from https://github.
com/jeff-regier/Celeste.jl. Jupyter notebooks demonstrating how to replicate all reported results are
stored in the experiments directory.

https://github.com/jeff-regier/Celeste.jl
https://github.com/jeff-regier/Celeste.jl
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FIG. 10. Left: An image from SDSS containing approximately 1000 detectable light sources. Pixels
in error are “masked” (black strips). Right: A synthetic image for the same region, generated from
our model by conditioning on an SDSS catalog for that region. (Several of the light sources with
extremely high flux are excluded—the CCDs cannot record such high flux.)

Empirically, MCMC performs better for star/galaxy classification than VI for
all thresholds of a receiver operating characteristic (ROC) curve (Figure 11). Both
methods have a high area under the curve (AUC). For MCMC, the AUC is 0.994.
For VI, the AUC is 0.981.

Both methods estimate means well for all continuous latent random variables
(Table 4). MCMC outperforms VI significantly for some point estimates. “Direc-
tion” is error, in arcseconds (0.396 pixels), for the directions of the light sources’
centers. “Flux” measures the reference band (r-band) flux. “Colors” are ratios of
fluxes in consecutive bands. “Galaxy profile” is a proportion indicating whether
a galaxy is de Vaucouleurs or exponential. “Galaxy axis” is the ratio between the
lengths of a galaxy’s minor and major axes. “Galaxy radius” is the half-light radius
of a galaxy in arcseconds. “Galaxy angle” is the orientation of a galaxy in degrees.

For color and flux, MCMC often has larger posterior uncertainty. MCMC as-
signs substantial probability density to the truth more often than VI (Figure 12).
For light sources where posterior means are particularly poor predictors of the
truth, VI severely underestimates the uncertainty, whereas MCMC assigns much

FIG. 11. ROC curve for star/galaxy classification on synthetic data.
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TABLE 4
Left columns: Mean absolute error on synthetic data. Right column: Pairwise error differences (and

standard error). Statistically significant differences appear in bold font

MCMC VI VI-MCMC

direction 0.111 0.121 0.010 (± 0.003)
flux 0.093 0.118 0.025 (± 0.006)
color u-g 0.327 0.333 0.006 (± 0.008)
color g-r 0.128 0.126 −0.002 (± 0.004)
color r-i 0.112 0.110 −0.002 (± 0.005)
color i-z 0.154 0.144 −0.010 (± 0.005)
galaxy profile 0.158 0.229 0.072 (± 0.011)
galaxy axis 0.074 0.106 0.032 (± 0.006)
galaxy radius 0.450 0.688 0.237 (± 0.043)
galaxy angle 9.642 8.943 −0.699 (± 0.437)

greater posterior density to the true values (Figure 13). For color and log flux—
both normally distributed quantities in this synthetic data—errors from MCMC
are more nearly normally distributed than those of VI. Table 5 reports the frac-
tion of sources covered by equal-tailed posterior credible intervals of increasing
width. The MCMC uncertainty estimates are more accurately calibrated. The typ-
ical range of effectively independent samples generated MCMC is between 100
and 150 per source. For a single source, 140 samples is sufficient to approximate a
60% credible interval with high probability (Booth and Sarkar (1998)). However,

FIG. 12. VI and MCMC performance on synthetic data. Each pair depicts VI (left, blue) and
MCMC (right, orange) with the ground truth along the x-axis and the posterior distribution (showing
equal-tailed 95.4% credible intervals) along the y-axis.
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FIG. 13. Comparison of posterior uncertainty for the flux of three synthetic light sources where
the posterior mean is a poor prediction of the true parameter value. VI underestimates posterior
uncertainty. MCMC assigns much greater posterior density to the true values.

we note that we are averaging over 500 sources, each with independent samples,
allowing us to resolve population posterior coverage with higher fidelity.

These empirical results are anticipated by theory: VI underestimates the poste-
rior uncertainty because independence assumptions in the variational distribution
do not hold in the posterior (Bishop (2006)). Additionally, differences between the
candidate variational distributions’ marginals and the posteriors’ marginals are a
source of bias. For the marginals we approximate with point masses (those of us

and es ), that may be a particularly important source of bias.

5.2. Real images from SDSS. Absolute truth is not currently knowable for as-
tronomical catalogs. Fortunately, one area of the sky, called “Stripe 82,” has been
imaged many times in SDSS. This region provides a convenient validation strat-
egy: combine exposures from all Stripe-82 runs to produce a high signal-to-noise
image, then use parameters estimated from the combined exposure as a surrogate
ground truth.

TABLE 5
Proportion of light sources having posterior means found by VI (left) and MCMC (right) near the
ground truth for synthetic images. The VI credible intervals correspond to the estimated posterior
standard deviation. For MCMC, we match these with equal-tailed credible intervals derived from
samples, where one-half standard deviation (sd) covers 38.2% of probability mass, 1 sd covers

68.3%, 2 sds covers 95.4% and 3 sds covers 99.7%

VI

Within
1/2 sd 1 sd 2 sd 3 sd

log flux 0.18 0.31 0.55 0.68
color u-g 0.29 0.52 0.79 0.89
color g-r 0.26 0.46 0.71 0.80
color r-i 0.22 0.43 0.72 0.84
color i-z 0.32 0.58 0.82 0.93

MCMC

Within
1/2 sd 1 sd 2 sd 3 sd

log_flux_r 0.35 0.63 0.91 0.98
color ug 0.40 0.71 0.94 0.99
color gr 0.38 0.65 0.93 0.99
color ri 0.38 0.65 0.93 0.99
color iz 0.37 0.67 0.95 0.99
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FIG. 14. The receiver operating characteristic (ROC) curve for star/galaxy classification on Stripe
82 data. The area under the curve (AUC) for MCMC is 0.991 and for VI is 0.985.

Photo (Lupton, Ivezic et al. (2005)) is the primary software pipeline for cata-
loging SDSS. We use Photo’s estimated parameters from the combined Stripe 82
imagery as ground truth. We then run Photo and our method on just one of the 80
image sets, comparing the results from each to the ground truth.

To reduce the runtime of our algorithms, we test them on only a subset of Stripe
82. Our Stripe 82 study set comprises five overlapping 2048 × 1489-pixel images
for a typical region of sky. Each of these images is captured through a different
filter. The images contain approximately 500 detectable light sources.

For star/galaxy classification in SDSS data, MCMC outperforms VI at some
thresholds and performs slightly worse than VI at others (Figure 14). In addition
to point estimates, our inference procedures approximate posterior uncertainty for
source type (star or galaxy), flux, and colors. This is a novel feature of a Bayesian
approach, offering astronomers a principled measure of the quality of inference for
each light source; Photo gives only conditional uncertainty estimates.

The MCMC procedure is certain (> 99% certainty) about the classification (star
vs. galaxy) for 321 out of 385 light sources. Of these classifications, 319 (99.4%)
are correct. Of the remaining classifications (>1% uncertainty), 50 (78.1%) are
correct. The VI procedure is certain (> 99% certainty) about the classification for
322 out of 385 light sources. Of these classifications, 318 (98.8%) are correct. Of
the remaining classifications (>1% uncertainty), 53 (84.1%) are correct.

Table 6 quantifies point-estimate error from MCMC and VI for the real-valued
latent random variables, as well as providing a paired error comparison between
each method. Point-estimate errors for MCMC and VI differed significantly only
for galaxy profile and galaxy axis ratio. For galaxy axis, MCMC outperformed
VI, repeating our experience with synthetic data. For galaxy profile, however, VI
outperformed MCMC—the opposite of how the methods compared on synthetic
data. Sampler diagnostics, though not conclusive, suggest that insufficient mixing
was not to blame. Model misfit, though an obvious explanation for any result not
shared by synthetic data, seems inadequate because MCMC recovered the other
galaxy shape parameters at least as well as VI.
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TABLE 6
Left columns: Mean absolute error on Stripe 82 data. Right columns: Pairwise error differences for each pair of methods (and standard error).

Statistically significant differences appear in bold font

MCMC VI Photo Photo-VI Photo-MCMC VI-MCMC

direction 0.266 0.268 0.271 0.003 (± 0.011) 0.004 (± 0.010) 0.001 (± 0.002)
flux 0.163 0.159 0.168 0.009 (± 0.013) 0.005 (± 0.013) −0.005 (± 0.008)
color u-g 0.574 0.589 0.943 0.417 (± 0.063) 0.428 (± 0.063) 0.015 (± 0.008)
color g-r 0.146 0.146 0.293 0.147 (± 0.020) 0.147 (± 0.019) 0.0005 (± 0.003)
color r-i 0.096 0.097 0.175 0.078 (± 0.010) 0.079 (± 0.010) 0.001 (± 0.002)
color i-z 0.158 0.153 0.336 0.184 (± 0.026) 0.179 (± 0.026) −0.005 (± 0.003)
galaxy profile 0.268 0.195 0.245 0.050 (± 0.019) −0.023 (± 0.018) −0.073 (± 0.015)
galaxy axis 0.115 0.146 0.219 0.073 (± 0.012) 0.104 (± 0.012) 0.031 (± 0.005)
galaxy radius 0.572 0.692 1.274 0.582 (± 0.299) 0.701 (± 0.293) 0.120 (± 0.067)
galaxy angle 19.32 19.54 20.39 0.838 (± 1.164) 1.062 (± 1.165) 0.225 (± 0.549)
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FIG. 15. VI and MCMC performance on real data from Stripe 82. Each pair depicts VI (left, blue)
and MCMC (right, orange), with the ground truth along the x-axis and the posterior distribution
(showing equal-tailed 95.4% credible intervals) along the y-axis.

Our leading explanation is that “ground truth” is unreliable for galaxy profile,
and that VI more accurately recreates the ground-truth mistakes. Recall ground
truth is determined by additively combining many overlapping images. These im-
ages were taken through a variety of atmospheric conditions. Errors in the point-
spread function (PSF) are likely compounded by the addition of more data. Galaxy
profile may be particularly susceptible to errors in the PSF because it has the ca-
pacity to model image blur that should have been attributed to the PSF.

For SDSS images, MCMC had better calibrated uncertainty estimates, particu-
larly for log flux (Figure 15, Figure 16 and Table 7). Recall that on the synthetic
data, MCMC substantially outperformed VI at modeling uncertainty, producing
empirical uncertainties that followed their theoretical distribution almost exactly
(Table 5). On real data, uncertainty estimates for both MCMC and VI are worse
than on synthetic data. Model misspecification appears to have an effect on MCMC

FIG. 16. Comparison of posterior uncertainty for the flux of three light sources from Stripe 82
where the posterior mean is a poor prediction of the true parameter value. VI underestimates poste-
rior uncertainty. MCMC assigns much greater posterior density to the true values.
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TABLE 7
Proportion of light sources having posterior means found by VI (left) and MCMC (right) near the
ground truth for SDSS images. Credible interval widths match standard deviations as described in

Table 5

VI

Within
1/2 sd 1 sd 2 sd 3 sd

log flux 0.12 0.21 0.39 0.58
color u-g 0.25 0.44 0.75 0.89
color g-r 0.25 0.48 0.76 0.91
color r-i 0.22 0.41 0.72 0.87
color i-z 0.27 0.51 0.81 0.94

MCMC

Within
1/2 sd 1 sd 2 sd 3 sd

log flux 0.18 0.37 0.67 0.82
color u-g 0.30 0.57 0.85 0.91
color g-r 0.34 0.59 0.85 0.94
color r-i 0.30 0.58 0.88 0.95
color i-z 0.33 0.57 0.87 0.95

that is comparable to the effect of the bias introduced by the independence assump-
tions of the variational distribution.

Table 6 also shows that both MCMC and VI have lower error than Photo (pre-
vious work) on many metrics. It should be noted, however, that Photo does not
make use of prior information, whereas both MCMC and VI do. For many down-
stream applications, something like Bayesian shrinkage (e.g., via corrections for
Eddington bias, or use of default or empirical priors in a Bayesian setting) would
first be applied to Photo’s estimates—our comparison is not directly applicable for
these applications. For the downstream application of selecting spectrograph tar-
gets, Photo’s estimates are typically used without adjusting for prior information.
For this application our results suggest that either our VI or our MCMC proce-
dure may work better than Photo. Hence, these results, though suggestive, do not
conclusively establish that our method outperforms Photo.

5.3. Runtime comparison. MCMC took approximately 1000× longer in wall-
clock time than VI to attain good results. The implementations for MCMC and VI
were both carefully optimized for speed, to make their runtimes comparable. In
fact, the majority of runtime for MCMC was spent in code also used by VI, since
the most computationally intensive calculations (across pixels) are shared by both
the variational lower bound and the log likelihood function. This largely rules out
“implementation differences” as an explanation for the disparity in runtime.

The same hardware was used for all timing experiments: a single core of an
Intel Xeon E5-2698 v3 clocked at 2.30 GHz.

Our MCMC experiments use a temperature schedule of length 200 for annealed
importance sampling (AIS). We repeated AIS 25 times to generate 25 independent
estimates of the normalizing constant for each model. We then ran each of these
25 independent posterior samples for 25 more slice sampling steps, generating 625
correlated samples. For MCMC, the number of samples drawn scales linearly with



1916 J. REGIER ET AL.

runtime, presenting a speed/accuracy trade-off. However, the quality of an MCMC
posterior approximation is a function of the number of effectively independent
samples (Gelman et al. (2014)). We measure the rate at which slice sampling is
able to compute effectively independent samples for a single source (52×52 image
patch). For stars, we compute 0.225 effectively independent samples per second.
For galaxies, we compute 0.138 effectively independent samples per second. VI
is able to compute an approximate posterior distribution for one light source in 9
seconds, on average, for a region of sky imaged once in each of five filter bands.
This runtime holds for either synthetic or SDSS data; runtime is largely determined
by the number of pixels.

5.4. Deblending. For the proposed model, overlapping light sources are not a
special case requiring special processing logic. Existing cataloging pipelines, on
the other hand, invoke specialized “deblending” routines to deal with overlapping
light sources, to avoid, for example, double counting photons. In this section, we
evaluate our procedure using simulated astronomical images from GalSim (Rowe
et al. (2015)). Using simulated rather than real data is particularly important for
deblending experiments, because ground truth is particularly difficult to establish
for overlapping light sources. In contrast to our synthetic data (Section 5.1), the
simulated data is not drawn from our model, so there is the potential for model
misfit.

First, we consider images where three or more peaks in a blend appear in
a straight line, because this case was the “single biggest failure mode” for
the deblending algorithm used by the Hyper Suprime-Cam (HSC) software
pipeline (Bosch et al. (2018)). To verify that this represents no special challenge
to our model, we generated the astronomical image in Figure 17(a). The correct

FIG. 17. Simulated astronomical images from GalSim.
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r-band fluxes of the light sources, ordered from bottom to top, are 10 nanomag-
gies, 3 nanomaggies, and 3 nanomaggies. Our VI procedure correctly classifies
all three and determines that their respective flux densities are 9.98 nanomaggies,
2.90 nanomaggies, and 3.01 nanomaggies. The classifications are correct (assign-
ing greater than 99% probability to the truth), and mean galaxy angles are both
within a few degrees of the truth. We do not report the HSC pipline’s estimation
on this image because we could not get it to run without errors.

Second, we consider images with more severe blending and compare our al-
gorithm to SExtractor (Bertin and Arnouts (1996)). Unlike the SDSS and HSC
pipelines, SExtractor is relatively straightforward to run on new data. Recently
released Python bindings make using it particularly straightforward (Barbary
(2016)). SExtractor is among the most used cataloging software today.

Figure 17(b) shows a second simulated image we used for testing. These
light sources all have high flux density—10 nanomaggies each. The approximate
posterior mean recovered by our VI procedure assigns 9.87 nanomaggies, 9.95
nanomaggies and 10.12 nanomaggies to these light sources. SExtractor, on the
other hand, estimates their flux densities to be 10.85 nanomaggies, 12.81 nanomag-
gies and 14.91 nanomaggies.

Melchior et al. (2018) propose a new deblending algorithm, called SCARLET,
and report improvements over the HSC approach to deblending. SCARLET ap-
pears at first glance to be quite different from our approach: it is based on nonneg-
ative matrix factorization (NMF) rather than Bayesian statistics. However, NMF
algorithms can be cast as computing a maximum a posteriori (MAP) estimate un-
der some assumptions on the distribution of the data and the factors (Schmidt,
Winther and Hansen (2009)), so SCARLET may have some similarity to what we
propose.

6. Bayesian inference at petascale. Catalog inference is a “big data” prob-
lem that does not parallelize trivially. This section introduces high-performance
computing (HPC) to a statistics audience by describing large-scale runs of our
variational inference procedure. We construct a catalog from the entire 50-terabyte
SDSS dataset. More importantly, we attain the computational efficiency needed to
process the next generation of surveys, which will include O(100) petabytes of
image data.

6.1. Hardware. Our test platform was the Cori supercomputer—currently
ranked eighth in the global “Top 500” rankings (Top500.org (2017)). Cori com-
prises 9688 compute nodes connected by a high-speed network (NERSC (2018)).
Each compute node has 112 GB of memory and one processor, an Intel Xeon Phi
7250, commonly referred to as “Knights Landing.” Though Knights Landing runs
at only 1.4 GHz, it more than makes up for this relatively slow clock by execut-
ing many instructions in parallel during each clock cycle. A single Knights Land-
ing processor has 68 cores—physically distinct regions of the processor that exe-
cute instructions in parallel. Each core simultaneously runs two hardware threads
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that appear to the operating system as separate cores. A hardware thread executes
batches of instructions twice per clock cycle: once on the “up-tick” and once on the
“down-tick.” During each tick, a hardware thread may execute the same instruc-
tion on eight different 64-byte floating point numbers. This is known as single-
instruction multiple-data (SIMD) parallelism.

6.2. Efficient thread-level execution. Supercomputer programs are written al-
most exclusively in verbose languages like assembly, Fortran, C, and C++. Many
statisticians, however, prefer very high-level (VHL) languages like R and Python.
These languages often require 5× to 10× fewer lines of code to express the
same algorithm. Unfortunately, they also often run 10×, 100×, or even 1000×
slower than equivalent C code (Julia developers (2018)). For high-performance
computing, these languages are therefore limited to serving as “glue” code that
connects libraries (e.g., BLAS, TensorFlow) that are implemented in more effi-
cient languages. In turn, writing code in two languages prevents many optimiza-
tions (Bezanson et al. (2017)).

Our work uses the Julia programming language (Bezanson et al. (2017)) for
the first time in an HPC setting. Julia matches both the succinctness of scripting
languages and the speed of C. The “hot spots” in a Julia codebase, however, must
be written carefully to attain C-like speed.

The process of tuning Julia code to run in an HPC setting is iterative. It be-
gins with profiling a typical execution of the code to find bottlenecks; intuition
about which lines of code are hotspots is a poor substitute for measurement. Our
first round of bottlenecks involved memory allocation, where the program requests
that the operating system assign it more memory. We removed all these memory
allocations from loops that contributed significantly to runtime by allocating the
memory up front (i.e., “pre-allocating” memory).

The next round of bottlenecks was due to memory access: processors cannot
execute instructions until data has been transferred from main memory to the pro-
cessor’s registers. A hardware thread may remain idle for approximately 200 clock
cycles while fetching one number from main memory. Memory-access bottlenecks
need to be fixed on a case-by-case basis. The solution typically involves some re-
ordering of the computation to enable better prefetching of data from main mem-
ory. In some cases, we save time by recomputing values rather than fetching them.

6.3. Multi-node scaling. In HPC, “scalability” refers to how a program’s per-
formance varies with the capacity of the hardware devoted to executing the pro-
gram (Hager and Wellein (1992)). We assess scaling empirically in two ways. First,
we vary the number of compute nodes while keeping the amount of work constant
per compute node (“weak scaling”); many compute nodes can solve a much larger
problem. Here the problem size is the area of the sky that we are constructing a
catalog for. Second, we vary the number of compute nodes while keeping the total
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FIG. 18. Scaling results. Load imbalance is due to the limited size of our study dataset—real
datasets will be much larger. See text for additional discussion.

job size constant (“strong scaling”); many compute nodes have to further subdi-
vide the problem. The two scaling metrics give different perspectives to inform
predictions about how a particular supercomputer program will perform on future
datasets, which may be much larger than any of the datasets used for testing.

Generally, it is harder to use more compute nodes efficiently. Ideal weak scaling
is constant runtime as the number of compute nodes increases. Figure 18(a) shows
instead that our runtime roughly doubles as the number of compute nodes increases
from 1 to 8192. Ideal strong scaling is runtime that drops by a factor of 1/c when
the number of compute nodes grows by a factor of c. Figure 18(b) shows instead
that our runtime roughly halves as the number of compute nodes quadruples from
2048 to 8192.

Additionally, the scaling graphs break out runtime by component. The image
loading component is the time taken to load images while worker threads are idle.
After the first task, images are prefetched in the background, so the majority of
image loading time accrues up front. Image loading time is constant in the weak
scaling graph and proportional to the inverse of the number of nodes in the strong
scaling graph—exactly what we want. We are not I/O bound even at high node
counts.

The load imbalance component is time when processes are idle because no tasks
remain, but the job has not ended because at least one process has not finished
its current task. Both scaling graphs indicate that load imbalance is our primary
scaling bottleneck. Fortunately, the load imbalance is due to having only 4 tasks
per process. With at least 1000× more data, the volume we expect from LSST, the
load imbalance should become negligible.

The task processing component is the main work loop. It involves no network or
disk I/O, only computation and shared memory access. Because of this, task pro-
cessing serves as a sanity check for both graphs: it should, and does, stay roughly
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constant in the weak scaling graph and vary in inverse proportion to the number of
nodes in the strong scaling graph.

The other component is everything else. It is always a small fraction of the total
runtime. It includes scheduling overhead, network I/O (excluding image loading),
and writing output to disk.

6.4. Peak performance. To assess the peak performance that can be achieved
for Bayesian inference at scale, we prepared a specialized configuration for per-
formance measurement in which the processes synchronize after loading images,
prior to task processing. We ran this configuration on 9568 Cori Intel Xeon Phi
nodes, each running 17 processes of eight threads each, for a total of 1,303,832
threads. 57.8 TB of SDSS image data was loaded over a ten-minute interval. (Some
regions were loaded multiple times, as prescribed by our algorithm.) The peak
performance achieved was 1.54 PFLOP/s in double-precision. To the best of our
knowledge, this experiment (conducted in May 2017) was the first time a super-
computer program in any language other than C, C++, Fortran, or assembly has
exceeded one petaflop in double-precision.

6.5. Complete SDSS catalog. In a long-running job with 256 compute nodes,
we constructed a preliminary astronomical catalog based on the entire SDSS. The
catalog is 21 GB and contains 112 million light sources. Spot checking results
gives us high confidence that distributed executions of our program give the same
results as serial executions.

Our catalog contains the parameters of the optimal variational distribution—a
vector with 44 single-precision floating point numbers for each light source. We
are considering both the FITS file format (Wells and Greisen (1979)) and the HDF5
file format (Folk et al. (2011)) for distributing future catalogs. FITS is the standard
format for astronomical images and catalogs, whereas the HDF5 format has better
I/O speed and compression (Price, Barsdell and Greenhill (2015)).

6.6. Future hardware. In July, 2018, it was reported that Intel will discon-
tinue development of the Xeon Phi line of processors (Morgan (2018)). Future
supercomputers will likely be based instead on the Xeon Scalable Family line of
processors (Mujtaba (2018)) and the AMD Epyc (Smith (2018)). Both are “many
core” processors having tens of cores, like the Xeon Phi, but they are clocked at a
higher rate. Running efficiently on these processors should not require significant
changes to our algorithm or to our Julia implementation. The Julia compiler and
LLVM, on the other hand, may require optimizations to fully exploit the capabili-
ties of these processors.

The next generation of supercomputers may also rely more on GPUs to attain
exascale performance (Feldman (2018)). The variable size of imaged light sources
makes SIMD parallelization across light sources somewhat challenging. A differ-
ent approach to parallelization may be advisable for astronomical cataloging on
GPU-based clusters.
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7. Discussion. We introduced our work by identifying a limitation of existing
cataloging pipelines: centroiding, deblending, photometry, star/galaxy separation
and incorporation of priors happen in distinct stages. Uncertainty is typically not
propagated between stages. Any uncertainty estimates these pipelines produce are
based on conditional distributions—that is, they are conditional on the output of
the previous stages.

We developed a joint model of light sources’ centers, colors, fluxes, shapes
and types (star/galaxy). Whereas previous approaches to cataloging have been
framed in algorithmic terms, statistical formalisms let us characterize our infer-
ences without ambiguity. Statistical formalisms also make modeling assumptions
transparent—whether the assumptions are appropriate ultimately depends on the
downstream application. We highlighted limitations of the model to guide further
development.

A model is only useful when it can be applied to data. We proposed two pro-
cedures: one based on MCMC and the other on VI. Neither MCMC nor VI could
be applied to our model without customization. The need for problem-specific ad-
justments is a barrier to the broader adoption of both techniques. With MCMC,
for example, we went through several iterations before settling on slice sam-
pling and AIS, including Metropolis–Hastings (MH) and reversible jump (Green
(1995)). Compared to slice sampling, we found MH difficult to tune. We found
that reversible-jump MCMC required carefully constructed proposals to jump of-
ten enough between the star and galaxy models and was also difficult to tune.

VI required even more problem-specific customization. Our VI techniques in-
clude the following: (1) approximating an integrand with its second-order Taylor
expansion; (2) approximating the point-spread function with a mixture of Gaus-
sians; (3) upper bounding the KL divergence between the color and a GMM prior;
(4) limiting the variational distribution to a structured mean-field form; (5) limiting
the variational distribution to point masses for some parameters; and (6) optimiz-
ing the variational lower bound with a variant of Newton’s method rather than
coordinate ascent. This final technique was particularly laborious, as it involved
manually deriving and implementing both gradients and Hessians for a compli-
cated function.

On synthetic data, MCMC was better at quantifying uncertainty, which is likely
due to the restrictive form of the variational distribution. Additionally, MCMC pro-
vided uncertainty estimates for all latent random variables, whereas VI modeled
some random variables as point masses—in effect recovering maximum a posteri-
ori (MAP) estimates for them. However, MCMC was approximately 1000× slower
than VI.

On real data, point estimates from VI were not always worse than point es-
timates from MCMC. Neither procedures’ uncertainty estimates were perfectly
calibrated for galaxies, suggesting some degree of model misspecification. Imper-
fectly calibrated uncertainties can nonetheless be useful, for example, for flag-
ging particularly unreliable point estimates. Additionally, even if the uncertainties
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are ignored by downstream analyses, point estimates typically improve when un-
certainty is modeled. For questions requiring calibrated uncertainties, enhancing
the galaxy model may help to reduce model misspecification. Though the galaxy
model we use—one with elliptical contours—is standard in astronomy, a more
flexible galaxy model shows promise (Regier, McAuliffe and Prabhat (2015)).

For spectrographic targeting, our current catalog should nonetheless be an im-
provement over what came before: previously, uncertainty estimates and prior in-
formation were ignored. For analysis of subpopulations, however, we stress a key
difference between our catalog and traditional astronomical catalogs: our catalog is
based on prior information, whereas traditional catalogs are not. Moreover, though
our prior is accurate enough for large-scale cataloging and deblending, it likely
is not accurate enough for a final scientific analysis of a particular subpopulation
of light sources (e.g., the galaxies with an “active galactic nucleus”). For this use
case, which is beyond the scope of our work, we suggest two approaches. First,
a user can form a Laplace approximation, to “remove” our priors from the cata-
log and replace them with priors that are more suitable for their subpopulation. To
facilitate, any catalog generated with our method should also contain parameters
of the priors used to generate it. Catalog users can then apply new priors directly
to the catalog, without revisiting the image data; astronomers typically prefer to
work with catalogs rather than images because catalogs are so much smaller.

We would prefer that users deal differently, however, with model misspecifi-
cation that affects their analysis: instead of trying to work around model mis-
specification, enhance our model. Then, rerun our cataloging software, with the
new model, on the images. This approach encourages users to adapt the statistical
model and the priors to their needs and to treat the catalog as an intermediate data
product (Turon et al. (2010)). While some work would be required to modify our
model, the techniques we illustrate in this paper could still be followed to perform
inference. The MCMC procedure makes it particularly straightforward to make
changes.

Because astronomical surveys are large (comprising terabytes of data now, and
petabytes in the near future), scalability is of paramount concern. We approximated
the posterior for a large image dataset and demonstrated the scaling characteristics
necessary to apply approximate Bayesian inference to hundreds of petabytes of
images from the next generation of astronomical surveys. Our optimization pro-
cedure found a stationary point, even though doing so required treating the full
dataset as a single optimization problem.

Because of the relative ease of deriving and implementing MCMC, it could be
a useful tool for trying different models and testing for misspecification prior to
implementing VI. In some cases, it may be simpler to expend more computational
resources to scale up the MCMC procedure than to implement VI. For the most
computationally intensive problems, however, only VI can currently perform ap-
proximate inference.



ASTRONOMICAL CATALOGING 1923

SUPPLEMENTARY MATERIAL

Supplement: Kullback-Leibler divergences (DOI: 10.1214/19-AOAS1258
SUPP; .pdf). Formulas for KL divergences between common distributions that
appear in the derivation of the variational lower bound.
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