
A Gaussian Process Model of Quasar
Spectral Energy Distributions

Andrew Miller∗ , Albert Wu
School of Engineering and Applied Sciences

Harvard University
acm@seas.harvard.edu, awu@college.harvard.edu

Jeffrey Regier, Jon McAuliffe
Department of Statistics

University of California, Berkeley
{jeff, jon}@stat.berkeley.edu

Dustin Lang
McWilliams Center for Cosmology

Carnegie Mellon University
dstn@cmu.edu

Prabhat, David Schlegel
Lawrence Berkeley National Laboratory

{prabhat, djschlegel}@lbl.gov

Ryan Adams †
School of Engineering and Applied Sciences

Harvard University
rpa@seas.harvard.edu

Abstract

We propose a method for combining two sources of astronomical data, spec-
troscopy and photometry, that carry information about sources of light (e.g., stars,
galaxies, and quasars) at extremely different spectral resolutions. Our model treats
the spectral energy distribution (SED) of the radiation from a source as a latent
variable that jointly explains both photometric and spectroscopic observations.
We place a flexible, nonparametric prior over the SED of a light source that ad-
mits a physically interpretable decomposition, and allows us to tractably perform
inference. We use our model to predict the distribution of the redshift of a quasar
from five-band (low spectral resolution) photometric data, the so called “photo-
z” problem. Our method shows that tools from machine learning and Bayesian
statistics allow us to leverage multiple resolutions of information to make accu-
rate predictions with well-characterized uncertainties.

1 Introduction

Enormous amounts of astronomical data are collected by a range of instruments at multiple spectral
resolutions, providing information about billions of sources of light in the observable universe [1,
10]. Among these data are measurements of the spectral energy distributions (SEDs) of sources of
light (e.g. stars, galaxies, and quasars). The SED describes the distribution of energy radiated by a
source over the spectrum of wavelengths or photon energy levels. SEDs are of interesting because
they convey information about a source’s physical properties, including type, chemical composition,
and redshift, which will be an estimand of interest in this work.

The SED can be thought of as a latent function of which we can only obtain noisy measurements.
Measurements of SEDs, however, are produced by instruments at widely varying spectral resolu-
tions – some instruments measure many wavelengths simultaneously (spectroscopy), while others
∗http://people.seas.harvard.edu/~acm/
†http://people.seas.harvard.edu/~rpa/
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Figure 1: Left: example of a BOSS-measured quasar SED with SDSS band filters, Sb(λ), b ∈
{u, g, r, i, z}, overlaid. Right: the same quasar’s photometrically measured band fluxes. Spectro-
scopic measurements include noisy samples at thousands of wavelengths, whereas SDSS photomet-
ric fluxes reflect the (weighted) response over a large range of wavelengths.

average over large swaths of the energy spectrum and report a low dimensional summary (pho-
tometry). Spectroscopic data describe a source’s SED in finer detail than broadband photometric
data. For example, the Baryonic Oscillation Spectroscopic Survey [5] measures SED samples at
over four thousand wavelengths between 3,500 and 10,500 Å. In contrast, the Sloan Digital Sky
Survey (SDSS) [1] collects spectral information in only 5 broad spectral bins by using broadband
filters (called u, g, r, i, and z), but at a much higher spatial resolution. Photometric preprocessing
models can then aggregate pixel information into five band-specific fluxes and their uncertainties
[17], reflecting the weighted average response over a large range of the wavelength spectrum. The
two methods of spectral information collection are graphically compared in Figure 1.

Despite carrying less spectral information, broadband photometry is more widely available and ex-
ists for a larger number of sources than spectroscopic measurements. This work develops a method
for inferring physical properties sources by jointly modeling spectroscopic and photometric data.
One use of our model is to measure the redshift of quasars for which we only have photometric ob-
servations. Redshift is a phenomenon in which the observed SED of a source of light is stretched to-
ward longer (redder) wavelengths. This effect is due to a combination of radial velocity with respect
to the observer and the expansion of the universe (termed cosmological redshift) [8, 7]. Quasars, or
quasi-stellar radio sources, are extremely distant and energetic sources of electromagnetic radiation
that can exhibit high redshift [16]. Accurate estimates and uncertainties of redshift measurements
from photometry have the potential to guide the use of higher spectral resolution instruments to study
sources of interest. Furthermore, accurate photometric models can aid the automation of identifying
source types and estimating physical characteristics of faintly observed sources in large photometric
surveys [14].

To jointly describe both resolutions of data, we directly model a quasar’s latent SED and the process
by which it generates spectroscopic and photometric observations. Representing a quasar’s SED as
a latent random measure, we describe a Bayesian inference procedure to compute the marginal prob-
ability distribution of a quasar’s redshift given observed photometric fluxes and their uncertainties.
The following section provides relevant application and statistical background. Section 3 describes
our probabilistic model of SEDs and broadband photometric measurements. Section 4 outlines
our MCMC-based inference method for efficiently computing statistics of the posterior distribu-
tion. Section 5 presents redshift and SED predictions from photometric measurements, among other
model summaries, and a quantitative comparison between our method and two existing “photo-z”.
We conclude with a discussion of directions for future work.

2 Background

The SEDs of most stars are roughly approximated by Planck’s law for black body radiators and
stellar atmosphere models [6]. Quasars, on the other hand, have complicated SEDs characterized by
some salient features, such as the Lyman-α forest, which is the absorption of light at many wave-
lengths from neutral hydrogen gas between the earth and the quasar [19]. One of the most interesting
properties of quasars (and galaxies) conveyed by the SED is redshift, which gives us insight into an
object’s distance and age. Redshift affects our observation of SEDs by “stretching” the wavelengths,
λ ∈ Λ, of the quasar’s rest frame SED, skewing toward longer (redder) wavelengths. Denoting the
rest frame SED of a quasar n as a function, f (rest)

n : Λ→ R+, the effect of redshift with value zn
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Figure 2: Spectroscopic measurements of multiple quasars at different redshifts, z. The upper graph
depicts the sample spectrograph in the observation frame, intuitively thought of as “stretched” by a
factor (1 + z). The lower figure depicts the “de-redshifted” (rest frame) version of the same quasar
spectra, The two lines show the corresponding locations of the characteristic peak in each reference
frame. Note that the x-axis has been changed to ease the visualization - the transformation is much
more dramatic. The appearance of translation is due to missing data; we don’t observe SED samples
outside the range 3,500-10,500 Å.

(typically between 0 and 7) on the observation-frame SED is described by the relationship

f (obs)
n (λ) = f (rest)

n

(
λ

1 + zn

)
. (1)

Some observed quasar spectra and their “de-redshifted” rest frame spectra are depicted in Figure 2.

3 Model

This section describes our probabilistic model of spectroscopic and photometric observations.

Spectroscopic flux model The SED of a quasar is a non-negative function f : Λ→ R+, where Λ
denotes the range of wavelengths and R+ are non-negative real numbers representing flux density.
Our model specifies a quasar’s rest frame SED as a latent random function. Quasar SEDs are highly
structured, and we model this structure by imposing the assumption that each SED is a convex
mixture of K latent, positive basis functions. The model assumes there are a small number (K) of
latent features or characteristics and that each quasar can be described by a short vector of mixing
weights over these features.

We place a normalized log-Gaussian process prior on each of these basis functions (described in
supplementary material). The generative procedure for quasar spectra begins with a shared basis

βk(·) iid∼ GP(0,Kθ), k = 1, . . . ,K, Bk(·) =
exp(βk(·))∫

Λ
exp(βk(λ)) dλ

, (2)

whereKθ is the kernel andBk is the exponentiated and normalized version of βk. For each quasar n,

wn ∼ p(w) , s.t.
∑
wk

wk = 1, mn ∼ p(m) , s.t. mn > 0, zn ∼ p(z), (3)

where wn mixes over the latent types, mn is the apparent brightness, zn is the quasar’s redshift,
and distributions p(w), p(m), and p(z) are priors to be specified later. As each positive SED basis
function, Bk, is normalized to integrate to one, and each quasar’s weight vector wn also sums to
one, the latent normalized SED is then constructed as

f (rest)
n (·) =

∑
k

wn,kBk(·) (4)

and we define the unnormalized SED f̃
(rest)
n (·) ≡ mn · f (rest)

n (·). This parameterization admits the
interpretation of f (rest)

n (·) as a probability density scaled by mn. This interpretation allows us to
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Figure 3: Graphical model representation
of the joint photometry and spectroscopy
model. The left shaded variables represent
spectroscopically measured samples and
their variances. The right shaded variables
represent photometrically measured fluxes
and their variances. The upper box rep-
resents the latent basis, with GP prior pa-
rameters ` and ν. Note that Nspec +Nphoto
replicates of wn,mn and zn are instanti-
ated.

separate out the apparent brightness, which is a function of distance and overall luminosity, from the
SED itself, which carries information pertinent to the estimand of interest, redshift.

For each quasar with spectroscopic data, we observe noisy samples of the redshifted and scaled spec-
tral energy distribution at a grid of P wavelengths λ ∈ {λ1, . . . , λP }. For quasar n, our observation
frame samples are conditionally distributed as

xn,λ|zn,wn, {Bk}
ind∼ N

(
f̃ (rest)
n

(
λ

1 + zn

)
, σ2
n,λ

)
(5)

where σ2
n,λ is known measurement variance from the instruments used to make the observations.

The BOSS spectra (and our rest frame basis) are stored in units 10−17 · erg · cm−2 · s−1 · Å−1
.

Photometric flux model Photometric data summarize the amount of energy observed over a
large swath of the wavelength spectrum. Roughly, a photometric flux measures (proportionally) the
number of photons recorded by the instrument over the duration of an exposure, filtered by a band-
specific sensitivity curve. We express flux in nanomaggies [15]. Photometric fluxes and measure-
ment error derived from broadband imagery have been computed directly from pixels [17]. For each
quasar n, SDSS photometric data are measured in five bands, b ∈ {u, g, r, i, z}, yielding a vector of
five flux values and their variances, yn and τ2

n,b. Each band, b, measures photon observations at each
wavelength in proportion to a known filter sensitivity, Sb(λ). The filter sensitivities for the SDSS
ugriz bands are depicted in Figure 1, with an example observation frame quasar SED overlaid. The
actual measured fluxes can be computed by integrating the full object’s spectrum, mn · f (obs)

n (λ)
against the filters. For a band b ∈ {u, g, r, i, z}

µb(f
(rest)
n , zn) =

∫
f (obs)
n (λ)Sb(λ)C(λ) dλ , (6)

where C(λ) is a conversion factor to go from the units of fn(λ) to nanomaggies (details of this
conversion are available in the supplementary material). The function µb takes in a rest frame SED,
a redshift (z) and maps it to the observed b-band specific flux. The results of this projection onto
SDSS bands are modeled as independent Gaussian random variables with known variance

yn,b | f (rest)
n , zn

ind∼ N (µb(f
(rest)
n , zn), τ2

n,b) . (7)

Conditioned on the basis, B = {Bk}, we can represent f (rest)
n with a low-dimensional vector. Note

that f (rest)
n is a function of wn, zn,mn, and B (see Equation 4), so we can think of µb as a function

of wn, zn,mn, and B. We overload notation, and re-write the conditional likelihood of photometric
observations as

yn,b |wn, zn,mn, B ∼ N (µb(wn, zn,mn, B), τ2
n,b) . (8)

Intuitively, what gives us statistical traction in inferring the posterior distribution over zn is the struc-
ture learned in the latent basis, B, and weights w, i.e., the features that correspond to distinguishing
bumps and dips in the SED.

Note on priors For photometric weight and redshift inference, we use a flat prior on zn ∈ [0, 8],
and empirically derived priors for mn and wn, from the sample of spectroscopically measured
sources. Choice of priors is described in the supplementary material.
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4 Inference

Basis estimation For computational tractability, we first compute a maximum a posteriori (MAP)
estimate of the basis, Bmap to condition on. Using the spectroscopic data, {xn,λ, σ2

n,λ, zn}, we com-
pute a discretized MAP estimate of {Bk} by directly optimizing the unnormalized (log) posterior
implied by the likelihood in Equation 5, the GP prior over B, and diffuse priors over wn and mn,

p
(
{wn,mn}, {Bk}|{xn,λ, σ2

n,λ, zn}
)
∝

N∏
n=1

p(xn,λ|zn,wn,mn, {Bk})p({Bk})p(wn)p(mn) .

(9)

We use gradient descent with momentum and LBFGS [12] directly on the parameters βk, ωn,k, and
log(mn) for theNspec spectroscopically measured quasars. Gradients were automatically computed
using autograd [9]. Following [18], we first resample the observed spectra into a common rest
frame grid, λ0 = (λ0,1, . . . , λ0,V ), easing computation of the likelihood. We note that although our
model places a full distribution over Bk, efficiently integrating out those parameters is left for future
work.

Sampling wn,mn, and zn The Bayesian “photo-z” task requires that we compute posterior
marginal distributions of z, integrating out w, and m. To compute these distributions, we con-
struct a Markov chain over the state space including z, w, and m that leaves the target posterior
distribution invariant. We treat the inference problem for each photometrically measured quasar,
yn, independently. Conditioned on a basis Bk, k = 1, . . . ,K, our goal is to draw posterior samples
of wn, mn and zn for each n. The unnormalized posterior can be expressed

p(wn,mn, zn|yn, B) ∝ p(yn|wn,mn, zn, B)p(wn,mn, zn) (10)

where the left likelihood term is defined in Equation 8. Note that due to analytic intractability, we
numerically integrate expressions involving

∫
Λ
f

(obs)
n (λ)dλ and Sb(λ). Because the observation yn

can often be well explained by various redshifts and weight settings, the resulting marginal poste-
rior, p(zn|X,yn, B), is often multi-modal, with regions of near zero probability between modes.
Intuitively, this is due to the information loss in the SED-to-photometric flux integration step.

This multi-modal property is problematic for many standard MCMC techniques. Single chain
MCMC methods have to jump between modes or travel through a region of near-zero probabil-
ity, resulting in slow mixing. To combat this effect, we use parallel tempering [4], a method that is
well-suited to constructing Markov chains on multi-modal distributions. Parallel tempering instan-
tiates C independent chains, each sampling from the target distribution raised to an inverse temper-
ature. Given a target distribution, π(x), the constructed chains sample πc(x) ∝ π(x)1/Tc , where Tc
controls how “hot” (i.e., how close to uniform) each chain is. At each iteration, swaps between
chains are proposed and accepted with a standard Metropolis-Hastings acceptance probability

Pr(accept swap c, c′) =
πc(xc′)πc′(xc)

πc(xc)πc′(xc′)
. (11)

Within each chain, we use component-wise slice sampling [11] to generate samples that leave each
chain’s distribution invariant. Slice-sampling is a (relatively) tuning-free MCMC method, a conve-
nient property when sampling from thousands of independent posteriors. We found parallel tem-
pering to be essential for convincing posterior simulations. MCMC diagnostics and comparisons to
single-chain samplers are available in the supplemental material.

5 Experiments and Results

We conduct three experiments to test our model, where each experiment measures redshift predictive
accuracy for a different train/test split of spectroscopically measured quasars from the DR10QSO
dataset [13] with confirmed redshifts in the range z ∈ (.01, 5.85). Our experiments split train/test
in the following ways: (i) randomly, (ii) by r-band fluxes, (iii) by redshift values. In split (ii), we
train on the brightest 90% of quasars, and test on a subset of the remaining. Split (iii) takes the
lowest 85% of quasars as training data, and a subset of the brightest 15% as test cases. Splits (ii)
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Figure 4: Top: MAP estimate of the
latent bases B = {Bk}Kk=1. Note the
different ranges of the x-axis (wave-
length). Each basis function distributes
its mass across different regions of the
spectrum to explain different salient
features of quasar spectra in the rest
frame. Bottom: model reconstruction
of a training-sample SED.

and (iii) are intended to test the method’s robustness to different training and testing distributions,
mimicking the discovery of fainter and farther sources. For each split, we find a MAP estimate of the
basis, B1, . . . , BK , and weights, wn to use as a prior for photometric inference. For computational
purposes, we limit our training sample to a random subsample of 2,000 quasars. The following
sections outline the resulting model fit and inferred SEDs and redshifts.

Basis validation We examined multiple choices of K using out of sample likelihood on a valida-
tion set. In the following experiments we set K = 4, which balances generalizability and computa-
tional tradeoffs. Discussion of this validation is provided in the supplementary material.

SED Basis We depict a MAP estimate of B1, . . . , BK in Figure 4. Our basis decomposition
enjoys the benefit of physical interpretability due to our density-estimate formulation of the problem.
Basis B4 places mass on the Lyman-α peak around 1,216 Å, allowing the model to capture the co-
occurrence of more peaked SEDs with a bump around 1,550 Å. Basis B1 captures the H-α emission
line at around 6,500 Å. Because of the flexible nonparametric priors on Bk our model is able to
automatically learn these features from data. The positivity of the basis and weights distinguishes
our model from PCA-based methods, which sacrifice physical interpretability.

Photometric measurements For each test quasar, we construct an 8-chain parallel tempering sam-
pler and run for 8,000 iterations, and discard the first 4,000 samples as burn-in. Given posterior sam-
ples of zn, we take the posterior mean as a point estimate. Figure 5 compares the posterior mean to
spectroscopic measurements (for three different data-split experiments), where the gray lines denote
posterior sample quantiles. In general there is a strong correspondence between spectroscopically
measured redshift and our posterior estimate. In cases where the posterior mean is off, our distri-
bution often covers the spectroscopically confirmed value with probability mass. This is clear upon
inspection of posterior marginal distributions that exhibit extreme multi-modal behavior. To combat
this multi-modality, it is necessary to inject the model with more information to eliminate plausible
hypotheses; this information could come from another measurement (e.g., a new photometric band),
or from structured prior knowledge over the relationship between zn,wn, and mn. Our method
simply fits a mixture of Gaussians to the spectroscopically measured wn,mn sample to formulate
a prior distribution. However, incorporating dependencies between zn, wn and mn, similar to the
XDQSOz technique, will be incorporated in future work.

5.1 Comparisons

We compare the performance of our redshift estimator with two recent photometric redshift estima-
tors, XDQSOz [2] and a neural network [3]. The method in [2] is a conditional density estimator
that discretizes the range of one flux band (the i-band) and fits a mixture of Gaussians to the joint
distribution over the remaining fluxes and redshifts. One disadvantage to this approach is there there
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Figure 5: Comparison of spectroscopically (x-axis) and photometrically (y-axis) measured redshifts
from the SED model for three different data splits. The left reflects a random selection of 4,000
quasars from the DR10QSO dataset. The right graph reflects a selection of 4,000 test quasars from
the upper 15% (zcutoff ≈ 2.7), where all training was done on lower redshifts. The red estimates
are posterior means.

Figure 6: Left: inferred SEDs from photometric data. The black line is a smoothed approximation to
the “true” SED using information from the full spectral data. The red line is a sample from the pos-
terior, f (obs)

n (λ)|X,yn, B, which imputes the entire SED from only five flux measurements. Note
that the bottom sample is from the left mode, which under-predicts redshift. Right: correspond-
ing posterior predictive distributions, p(zn|X,yn, B). The black line marks the spectroscopically
confirmed redshift; the red line marks the posterior mean. Note the difference in scale of the x-axis.

is no physical significance to the mixture of Gaussians, and no model of the latent SED. Further-
more, the original method trains and tests the model on a pre-specified range of i-magnitudes, which
is problematic when predicting redshifts on much brighter or dimmer stars. The regression approach
from [3] employs a neural network with two hidden layers, and the SDSS fluxes as inputs. More
features (e.g., more photometric bands) can be incorporated into all models, but we limit our exper-
iments to the five SDSS bands for the sake of comparison. Further detail on these two methods and
a broader review of “photo-z” approaches are available in the supplementary material.

Average error and test distribution We compute mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE) to measure predictive performance.
Table 1 compares prediction errors for the three different approaches (XD, NN, Spec). Our ex-
periments show that accurate redshift measurements are attainable even when the distribution of
training set is different from test set by directly modeling the SED itself. Our method dramatically
outperforms [2] and [3] in split (iii), particularly for very high redshift fluxes. We also note that
our training set is derived from only 2,000 examples, whereas the training set for XDQSOz and the
neural network were ≈ 80,000 quasars and 50,000 quasars, respectively. This shortcoming can be
overcome with more sophisticated inference techniques for the non-negative basis. Despite this, the
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MAE MAPE RMSE
split XD NN Spec XD NN Spec XD NN Spec
random (all) 0.359 0.773 0.485 0.293 0.533 0.430 0.519 0.974 0.808
flux (all) 0.308 0.483 0.497 0.188 0.283 0.339 0.461 0.660 0.886
redshift (all) 0.841 0.736 0.619 0.237 0.214 0.183 1.189 0.923 0.831
random (z > 2.35) 0.247 0.530 0.255 0.091 0.183 0.092 0.347 0.673 0.421
flux (z > 2.33) 0.292 0.399 0.326 0.108 0.143 0.124 0.421 0.550 0.531
redshift (z > 3.20) 1.327 1.149 0.806 0.357 0.317 0.226 1.623 1.306 0.997
random (z > 3.11) 0.171 0.418 0.289 0.050 0.117 0.082 0.278 0.540 0.529
flux (z > 2.86) 0.373 0.493 0.334 0.112 0.144 0.103 0.606 0.693 0.643
redshift (z > 3.80) 2.389 2.348 0.829 0.582 0.569 0.198 2.504 2.405 1.108

Table 1: Prediction error for three train-test splits, (i) random, (ii) flux-based, (iii) redshift-based,
corresponding to XDQSOz [2] (XD), the neural network approach [3] (NN), our SED-based model
(Spec). The middle and lowest sections correspond to test redshifts in the upper 50% and 10%,
respectively. The XDQSOz and NN models were trained on (roughly) 80,000 and 50,000 example
quasars, respectively, while the Spec models were trained on 2,000.

SED-based predictions are comparable. Additionally, because we are directly modeling the latent
SED, our method admits a posterior estimate of the entire SED. Figure 6 displays posterior SED
samples and their corresponding redshift marginals for test-set quasars inferred from only SDSS
photometric measurements.

6 Discussion

We have presented a generative model of two sources of information at very different spectral res-
olutions to form an estimate of the latent spectral energy distribution of quasars. We also described
an efficient MCMC-based inference algorithm for computing posterior statistics given photometric
observations. Our model accurately predicts and characterizes uncertainty about redshifts from only
photometric observations and a small number of separate spectroscopic examples. Moreover, we
showed that we can make reasonable estimates of the unobserved SED itself, from which we can
make inferences about other physical properties informed by the full SED.

We see multiple avenues of future work. Firstly, we can extend the model of SEDs to incorporate
more expert knowledge. One such augmentation would include a fixed collection of features, cu-
rated by an expert, corresponding to physical properties already known about a class of sources.
Furthermore, we can also extend our model to directly incorporate photometric pixel observations,
as opposed to preprocessed flux measurements. Secondly, we note that our method is more more
computationally burdensome than XDQSOz and the neural network approach. Another avenue of
future work is to find accurate approximations of these posterior distributions that are cheaper to
compute. Lastly, we can extend our methodology to galaxies, whose SEDs can be quite compli-
cated. Galaxy observations have spatial extent, complicating their SEDs. The combination of SED
and spatial appearance modeling and computationally efficient inference procedures is a promising
route toward the automatic characterization of millions of sources from the enormous amounts of
data available in massive photometric surveys.
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