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Design of e�cient molecular organic
light-emitting diodes by a high-throughput virtual
screening and experimental approach
Rafael Gómez-Bombarelli1, Jorge Aguilera-Iparraguirre1, Timothy D. Hirzel1, David Duvenaud2,
Dougal Maclaurin2, Martin A. Blood-Forsythe1, Hyun Sik Chae3, Markus Einzinger4, Dong-Gwang Ha5,
Tony Wu4, Georgios Markopoulos6, Soonok Jeon7, Hosuk Kang7, Hiroshi Miyazaki7, Masaki Numata7,
Sunghan Kim7, Wenliang Huang6, Seong Ik Hong3, Marc Baldo4, Ryan P. Adams2

and Alán Aspuru-Guzik1*

Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available
computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic
functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine
learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing.
After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density
functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible
spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external
quantum e�ciencies for these synthesized candidates were as large as 22%.

The availability of unprecedented computational resources and
novel algorithms is opening pathways to solve problems
that were previously intractable due to their large scale.

For this reason, computational tools can become a disruptive
instrument for molecular discovery. Chemical space is infinite for
practical purposes1, but many important and desirable properties
of materials are predictable from simulation. However, computers
alone cannot meet this challenge, no matter how powerful. It
is only with experimental guidance and collaboration that a
computer-driven approach becomes a natural fit for this task.
High-throughput virtual screening (HTVS) combines quantum
chemical calculations and cheminformatics methods to search
molecular space for leads2–4. Advised by computational predictions,
experimental efforts are focused on only the most promising
molecular candidates. Recent applications of this approach include
screening for both inorganic5,6 and organic materials in application
areas such as electrolytes for flow batteries7,8 and photovoltaics9–11.
However, it is not often that HTVS predictions are confirmed
experimentally, due to factors such as access to experimental
partners, synthetic difficulty, poor predictive power, and instability
of candidate molecules.

The emissive layers of organic light-emitting diode (OLED)
devices are made from electroluminescent molecules. Because of

their high efficiency and superior colour properties, OLEDs have
wide application in small displays and the OLED technology has the
potential to become an attractive solution for larger displays such
as televisions, flexible displays, or lighting applications. Traditional
fluorescent emitters rely on the quantum-mechanically allowed
singlet–singlet transition, and therefore can harvest only one quarter
of the electron–hole recombination pairs formed in the device.
Current phosphorescent OLED technology leverages spin–orbit
coupling due to heavy atoms12, most often iridium. This makes
the triplet state emissive, and also harvests the singlet excitons
through these emissive triplets13. However, iridium is one of the
least abundant elements, and thus phosphorescent OLEDs face high
materials cost. Additionally, OLEDs face challenges in efficiency and
stability. In particular, deep-blue emitters magnify these problems
due to the large amount of energy stored in the excited state,
around 3 eV. The promises and challenges of OLED technology and
materials have sparked significant research interest, as detailed in
recent reviews14,15.

One particularly promising approach to circumvent the high cost
of phosphorescent OLED materials is thermally activated delayed
fluorescence (TADF)16–18. In TADF, non-emissive triplet states are
harvested via thermal fluctuations that repopulate the emissive
singlet state through a process known as reverse intersystem
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Figure 1 | Discovery pipeline. a, Diagram of the collaborative discovery approach: the search space decreases by over five orders of magnitude as the
screening progresses. The cubes represent the size of the chemical space considered at any given stage of the process. The distinct screening stages, from
left to right, involve di�erent theoretical and computational approaches as well as experimental input and testing. b, Dependency tree for the quantum
chemistry calculations employed in this study. The calculations labelled as backbone were performed for all analysed molecules, leading compounds were
also characterized using the methods labelled emission, and the benchmarking calculations were used to assess predictive power.

crossing (RISC). This process occurs most efficiently with a small
energy gap between the lowest singlet (S1) and triplet (T1) states.
TADF emitters feature two characteristic excited-state decay times.
The prompt component, on the order of nanoseconds, corresponds
to the draining of S1, and the slower delayed component, on
the order of microseconds, corresponds to the RISC followed by
fluorescent emission. The timescale of the prompt component
is typical of conventional fluorescent emitters, while the delayed
component lifetime can improve that of phosphorescent materials,
which typically plateau around 1 µs (ref. 19). Triplet harvesting
efficiencies close to 100% have been obtained through TADF20,21

even in undoped devices22. No heavy atoms are required for
TADF, and thus it presents a potentially efficient, cost-effective
OLED technology.

There is a growing literature where small families of
TADF compounds are explored experimentally23–28, or purely
computationally at a slightly larger scale29,30. Here, we report a
large-scale computer-driven search for novel TADFOLED emitters,
with a special focus on blue TADF emitters. This work employed
a collaborative approach encompassing computational quantum
chemistry, machine learning, organic synthesis, device fabrication
and testing, and the expertise of industrial partners. This integrated
cooperative effort aimed massive HTVS capabilities towards the
successful discovery of novel materials. Figure 1a summarizes our
screening approach, highlighting the roles of theory and experiment
as the candidate count is reduced by five orders of magnitude.

In the following sections, we will describe the different screening
stages that led to the discovery of OLED emitters with external
quantum efficiency (EQE) values of up to 22%.

Library generation
The molecular search space was a virtual chemical library: a
collection of graph representations of molecules stored in a
database. Our library of more than 1.6million candidates was
created using in-house software that relies on the RDKit package31.
Our software accepts a pool of starting fragments and provides a
constrained combinatorial enumeration. The growth of the library
took place in several generations, driven by chemical intuition,
quantum simulation and experimental results.

OLED molecules with TADF character must contain a donor
and an acceptor moiety, since only a charge-transfer excitation
can exhibit a low enough singlet–triplet gap (1EST) for efficient
thermal RISC. Thus, our candidate libraries obeyed a simple recipe:

donor-(bridge)x–acceptorwhere x is between 0 and 2. This structure
attempts to minimize the spatial overlap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). Some of the key aspects of our library
enumeration were control of symmetry in molecular substitution
patterns and chemically informed substitution schemes and binding
modes. Molecular size was limited by the requirement for vapour
processing, with molecular mass cutoff at 1,100 gmol−1.

A computational pre-screening of starting fragments was also
performed for favourable optical properties. Since the lowest
triplet excited state needs to be able to undergo RISC into a
blue singlet, local triplet excitations were required to lie above
a cutoff chosen at 2.60 eV. Moieties were flagged as donors,
acceptors or both, using cutoffs of EHOMO>−6.5 eV and ELUMO<

−1.0 eV. In aggregate, we combined 110 donor, 105 acceptor and
7 bridge moieties to generate over 1.6million molecules (the
fragments used to generate the library are available in section 3 of
the Supplementary Information). To prevent chemically unstable
patterns from emerging in the combinatorial growth process,
a blacklist of disallowed substructures was compiled. Ertl and
Schuffenhauer’s synthetic accessibility (SA) score was used to
estimate the synthetic accessibility of candidate molecules32.

Quantum chemical calculations
The quantum chemical calculation scheme (Fig. 1b) aimed to
strike a balance between predictive accuracy, robustness and
computational cost. Although OLED emitters function within
a device, their surrounding molecular environment is not as
structured as other optoelectronic systems such as crystalline
organic transistors or organic photovoltaics. Thus, environment
effects can often be corrected via experimental calibration or
approximated with minimal computational cost using implicit
solvent methods.

Emission colour was estimated using time-dependent density
functional theory (TD-DFT) vertical absorption energies, which
are more affordable than emission wavelength calculations,
since the later require optimized excited-state geometries. We
obtained excellent accuracy by calibrating vertical absorption to
photoluminescent emission colour in toluene solution (Fig. 2a).
The effect of excited-state relaxation on both the T1 and S1 surfaces
was also considered by conducting geometry optimization on the
respective unrestricted density functional theory (UDFT) and
TD-DFT potential energy surfaces.
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Figure 2 | Experiment–theory calibration. a, TD-DFT/B3LYP/6-31G(d) vertical absorption against photoluminescent emission maximum in toluene
solution. Data in red represent measurements reported in the literature, while data in blue correspond to compounds synthesized in this screening work.
The lines indicate a linear fit against the literature data (solid) with 95% confidence bounds (dashed). b, Experiment–theory comparison of
TD-DFT/B3LYP/6-31G(d) singlet–triplet gap against experimental values, determined via the thermal activation energy method, measured in frozen
toluene solution. The lines indicate a linear fit against the literature data (solid) with 95% confidence bounds (dashed).

To maximize the EQE in a TADF emitter it is necessary to boost
the quantum yield of both the prompt and delayed components.
For this, the rate of radiative emission of both the singlet and
triplet excitons needs to be maximized, via fluorescence and
delayed fluorescence, respectively, while minimizing the competing
non-radiative pathways. Whereas the non-radiative decay rates
are theoretically and computationally challenging to predict, and
therefore unsuitable for HTVS, simple models can provide useful
estimates for the radiative rates of both processes.

The radiative rate of fluorescence is proportional to the oscillator
strength (f ) of the S1→S0 transition, which is proportional to the
square of the transition dipole moment

∫
ψa(r)rψb(r)d3r , where

ψa and ψb are the wavefunctions of the initial and final state
respectively. f is easily obtainable from excited-state quantum
chemical calculations. The rate of TADF is more complex, since,
from a molecular perspective, two essentially opposing quantities
need to be optimized. On the one hand, f is maximized, to speed
up the draining of S1. On the other hand, 1EST is minimized, since
it is exponentially related to the rate of RISC. In the case of singlet
and triplet excitations involving the same orbitals,1EST corresponds
to the exchange integral

∫
ψa(r1)ψb(r2)(1/r12)ψa(r2)ψb(r1)d3r1d3r2,

which directed the choice ofmolecular fragmentswith small frontier
orbital overlap (ψa and ψb are the wavefunctions of electron 1 and
2, ri is their position in space and r12 is the interelectronic distance).

For the purpose of evaluating candidates, it is useful to have
a single-parameter figure of merit for TADF character. An upper
bound on the delayed fluorescence rate constant (kTADF) was
estimated for this goal. Since the rate constants of RISC (kRISC) and
non-radiative decay (kTnr and kSnr for triplet and singlet, respectively)
are inaccessible to HTVS calculations, an approximate value for the
TADF rate constant was derived under the assumptions that kTnr≈
kSnr≈0, and the intersystem crossing quantum yield from S1 to T1 is
unity33. The accuracy of these approximations in a variety of regimes
is discussed in section 1.3 of the Supplementary Information.

The pre-equilibrium approximation was assumed in a regime
where the thermal equilibration between T1 and S1 is fast, and
employed a Boltzmann factor weighted by the ratio of triplet
to singlet states. The radiative fluorescent lifetime of S1(kf) is
estimated using a standard approach34, and the product of kf and
the Boltzmann factor allows an estimated upper bound on the kTADF
rate constant (equation (1)), within the accuracy of TD-DFT. In the
provided kTADF equation e is the elementary charge, n is the refractive
index of themedium, ε0 is the vacuumpermittivity,me is the electron

rest mass, c is the speed of light in vacuum, λ is the wavelength of
the excitation, k is the Boltzmann constant and T is temperature.

kTADF=
2πe2n3f
ε0mecλ2

×
1

1+3exp(1EST/kT )
(1)

Experimental calibrations
TD-DFT calculations with many functionals pathologically
underestimate the excitation energy of charge-transfer excitations
due to the semi-local nature of the density functional theory
(DFT) exchange–correlation kernel35,36. Interestingly, the amount
of exact Hartree–Fock exchange in the B3LYP functional results
in cost-effective accuracy for TADF donor–acceptor systems,
performing on-par or better than long-range corrected and other
hybrid functionals37–39. To confirm the accuracy of this approach,
we performed a linear calibration scheme using 46 experimental
data points from the literature, and verified our calibration
against 17 in-house measurements. The calibration is reported
in Fig. 2a. It was found that experimental data for the maximum
photoluminescent emission wavelength in toluene solution, itself
a commonly accepted proxy for electroluminescence wavelength,
showed excellent correlation with the vertical absorption calculated
with TD-DFT/B3LYP/6-31G(d).We used this calibration scheme to
account for the systematic error of DFT, the effects of the molecular
environment and the magnitude of the Stokes shift. Inclusion
of continuous solvent models in the calculations to account for
the effect of the dielectric screening of the host material did not
result in appreciable improvement to the calibration. Performance
was also not improved with other DFT functionals M06-2X,
BH&HLYP, LC-ωPBE0, CAM-B3LYP, and ω-B97X-D or using
the polarizable continuum model (ε= 3) (the molecules included
in the calibration, together with the performance of the different
functionals are described in section 4 of the Supplementary
Information). Calculations using the equilibrium geometries from
the TD-DFT geometry optimizations on the S1 surface were found
to afford inferior results. Despite the fact that the amount of
Hartree–Fock exchange in B3LYP results in accurate predictions
for vertical absorption, the TD-B3LYP potential energy surface
overestimates the charge-transfer character of the S1 state by
predicting very low values of 1EST and f . Since all the chosen
candidates featured charge-transfer excitations, where the singlet
and triplet states have similar electronic density distributions, we
used UDFT on the T1 surface for the geometry optimization and
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Figure 3 | E�ectiveness of machine learning. a, Fraction of molecules in the test set correctly ranked in the top 5%, as a function of the amount of training
data. b, Root mean square error (RMSE) in log(kTADF) as a function of the amount of training data. c, Linear model predictions against the TD-DFT-derived
data with the largest training set. R2

=0.80. d, Neural network predictions against the TD-DFT-derived data with the largest training set. R2
=0.94.

obtained slightly superior performance to that of the S0 minima,
but at an increased computational cost.

Empirical1EST values have significant experimental uncertainty.
The three most commonly used methods to measure1EST are peak
and onset spectroscopic estimates of the S1 and T1 energies and
thermal activation energies extracted from Arrhenius plots. These
approaches are known to report widely varying estimates of1EST for
the same compounds. Spectroscopic estimates have added difficulty
in extracting accurate energies from the broad emission spectra of
charge-transfer compounds.

TD-DFT calculations afford reasonably accurate results for the
Arrhenius activation energy, yielding a linear fit with coefficient
of determination (R2) of 0.84 and root mean square error (RMSE)
of 0.08 eV, (Fig. 2b), but perform less well for the spectroscopic
estimates. Favourable error cancellation arises in particular when
both the singlet and the triplet states involve the same orbital
transitions, as is often the case in TADF emitters. However, for
large-distance charge-transfer excitations, the incorrect asymptotic
behaviour of DFT exchange results in the underestimation of1EST.
This statistical uncertainty is of particular relevance because kTADF
depends exponentially on 1EST. Since 1EST is limited to positive
values in TADF emitters, the random error for low predicted 1EST
values is one-sided, with a floor at1EST =0.

Machine learning for pre-screening
At over 1.6million candidates, the pool of potential molecules was
too large to be screened exhaustively with quantum simulation. It
was, however, possible to use results from previous calculations to
predict which molecules were likely to have good outcomes, and
prioritize the molecules to be simulated next.

An empirical model of TD-DFT simulations was built based
on the molecules that had already been screened40,41. This model
estimates a function whose input is a molecule, and whose
output is a prediction for kTADF. We used a neural network
to create this model42. First, each molecule was converted

from a simplified molecular-input line-entry system (SMILES)
representation to a fixed-dimensional vector using Extended-
Connectivity Fingerprints (ECFP)43. The network had two hidden
layers with 100 rectified linear (ReLu)44 units each. The network
was regularized using dropout45. The number of hidden units, the
learning rate, and momentum decay were determined using 100
iterations of Bayesian optimization46. The network was trained to
minimize the RMSE of predicted log(kTADF) using the Autograd
automatic differentiation package47.

Figure 3a,b compares the accuracy of linear regression against
the accuracy of the neural network on a validation data set, as
the amount of training data increases. Figure 3c,d shows predicted
versus quantum-chemically determined kTADF for both models. The
training data used for these plots was chosen randomly from the
candidate pool.

During screening, the molecules ranked highest according to
neural network predictions were promoted to TD-DFT simulation.
The neural network was periodically re-trained as new calculations
were added to the data set, to improve accuracy. Because no training
data was available initially, the first 40,000molecules screened were
chosen randomly from the candidate library.

Analysis and lead discovery
The results from the quantum calculations exposed thousands of
emitters expected to be highly efficient, with about 900 (0.25% of
the screened molecules) being extremely promising, having f >0.1
and 1EST < 0.15 eV, and approximately 3,000 with f > 0.05 and
1EST<0.175 eV. These values are expected to be optimal for both
the prompt and delayed quantum yields, and result in high EQE
if incorporated into an appropriately optimized device. Using a
threshold of f > 0.025 and 1EST< 0.15 eV, the search was able to
recovermanywell-knownTADF emitters, such as 4CzIpn, 4CzTPN,
Cis-BOx2, Trans-BOx2, PXZ-OXD, 2PXZ-OXD, PXZ-TRZ,
m-ATP-CDP, bis-PXZ-TRZ, TXO-TPA or methylated derivatives
of DPA-CZ TRZ14.
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Figure 4a,b shows aggregate statistics for the predicted optical
properties of over 400,000 emitters. The well-known tradeoff
between f and 1EST, whose overcoming is at the core of current
molecular design efforts,28,48 is evident in Fig. 4a. The contour lines
surround the areas where high kTADF character is expected, and
thus high quantum yield in the delayed component. Regarding
the prompt component, the radiative rate, and thus EQE, increase
along the f axis for any given kTADF contour. Figure 4b shows
the counts of emitters as a function of kTADF and the S1 energy.
By design, the dyes are expected to have local excitations in the
ultraviolet and deep blue, and only afford redshifted states when
charge-transfer transitions are available. Our screening approach
is highly efficient in generating potential TADF compounds all
across the visible spectrum. Both Fig. 4a and b show the low
abundance of molecules with high kTADF and the rapid fall as kTADF
reaches 1 µs−1. Our theoretical predictions for a combined data set
of over 1.6million molecules suggest that the delayed decay rates
in TADF emitters have an upper bound above the 1 µs−1 decay
rate at which phosphorescent materials plateau, underscoring the
competitiveness of TADF emitters with phosphors. In addition, the
Pareto frontiers in Fig. 4a,b demonstrate an apparent fundamental
limit to the decay rate. This underscores the potential of HTVS to
explore the intrinsic boundaries of chemical space.

Collaborative decision-making
After computation, the search space was reduced to human-
tractable decision batches using a web-based selection process that
included data visualization and sorting interfaces. The predicted

properties of the batches are summarized in Fig. 4c. Each batch
contained around one hundred lead candidates that shared some
structural features and represented the most promising candidates
screened thus far regarding predicted optical properties. The
total number of candidates analysed through batches nears 2,500.
Human experts assessed the candidates in each cycle using
custom web voting tools (Fig. 4d). Voters were asked to consider
predicted properties, novelty and synthetic accessibility. A group
of two to six synthetic organic chemists rated the molecules
on a positive/neutral/negative scale. Finally, a small consensus
set of molecules from the batch was selected for synthesis and
characterization in devices. The web tools also provided a catalyst
for group discussion. The effort can be quantified around 4 h per
person per batch for this decision-making step.

Experimental validation
Selected candidates from the search described above were
synthesized and tested experimentally to assess the predictive
power of the screening process (Fig. 5a). The molecules contain
phenoxazine, indolocarbazole, and 3-diphenylaminocarbazole
donors combined with pyridine and pyrimidine acceptors.

The candidates were used to explore the balance between
pure fluorescence (high f , high 1EST) and pure TADF (low f ,
low 1EST) with emphasis in the high-performing intermediate
regime where both can be leveraged (1EST∼ 0.1–0.2 eV, f >0.1).
Table 1 reports the predicted electronic properties of the four
emitters and experimental measurements in solution, thin films
and optoelectronic devices. Section 1.2 of the Supplementary
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Figure 5 | Lead candidates and optoelectronic characterization. a, Promising molecules that were synthesized and tested. Compound abbreviations are
composed by the first letter of the batch of origin and a running index. b, Device structure and energy band diagram of lead candidates. Energies in eV.
Thickness in nm. c, Electroluminescence spectra. d, External quantum e�ciency as a function of current density. e, Current density and luminance as a
function of applied voltage.

Information provides a detailed description of experimental
procedures and the spectroscopic results. In general, our theoretical
predictions agree with experiments within the known accuracy of
TD-DFT and the noise in experimental measurements, which is
particularly significant for1EST. The estimated values for emission
wavelength in toluene, 1EST, f and kTADF all show to be predictive
in the context of an HTVS effort, with mean unsigned errors of
7 nm, 0.1 eV, 0.05 and 0.1 µs−1, respectively. TD-DFT calculations
at the T1 (UDFT) and S1 (TD-DFT) energy surfaces minima are
reported in section 4 of the Supplementary Information. The T1
approach results in qualitatively similar results, whereas the S1
calculations largely overestimate the charge-transfer character of the
four emitters.

For ease of comparison, a common device architecture
(Fig. 5b) was used for all candidates, based on initial tests of J1.
This leaves room for optimization around any given candidate.
Electroluminescence spectra are reported in Fig. 5c, where the broad

features of charge-transfer excited states that are characteristic
in TADF are evident. Figure 5d shows the EQE as a function of
current density, and L1 is observed to have a less severe roll-off
than the other emitters, which is suggestive of higher chemical
and operational stability. Figure 5e reports the electrical and
electroluminescent properties of the devices as a function of
applied voltage.

F1 was chosen for its high predicted kTADF value and very
low predicted f and 1EST; thus, it would be expected to display
high TADF character. These predictions are in keeping with the
experimental 1EST and f values and also with the low observed
photoluminescence quantum yield (PLQY). The maximum EQE
of F1 is over 20%, despite the low fluorescence PLQY, confirming
an extreme TADF character and very efficient RISC in the device.
J1, J2 and L1 explore the balance and tradeoffs between prompt
and delayed components. J1 and J2 also highlight the subtlety
of structure–property relationships in TADF and the ability of
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Table 1 | Selected molecules and devices tested.

Theory Experiment

1EST Tol. (meV) PLmax (nm)∗ PLQY Tol. (%) f
Cpd PL

(nm)
1EST
(meV)

f kTADF
(µs−1)

Onset Max Tol. Thin
film

Air N2 Abs†† Em‡‡ τp
(ns)

τd (µs)
[kd]

ELmax
(nm)§§

Max
EQE

F1 485 15 0.003 0.141 100 −160 486 456‖ 10 13 0.020 0.016 6.6 6.1 [0.16] 507 20.6
J1 485 104 0.124 0.221 60 −140 490 503¶ 42 67 0.153 0.060 7.4 2.2 [0.45] 524 22.0
J2 485 36 0.001 0.004 180 0 462 502¶ 24 40 0.051 0.025 10 9.2 [0.11] 520 12.7
L1 451 179 0.257 0.029 320 110 451 494¶ 48 67 0.107 0.040 11 9.5 [0.10] 501 11.9
∗Maximum wavelength of photoluminescence. †Determined from absorption spectra in toluene solution (details in section 1.2 of the Supplementary Information). ‡Determined from prompt rate in
DPEPO films (details in section 1.2 of the Supplementary Information). §Maximum wavelength of electroluminescence. ‖Drop-cast thin film. ¶Co-evaporation in DPEPO. τp=τprompt;τd=τdelay;kd=kdelay .

TD-DFT screening to detect them: the position of one heteroatom
on the pyrimidine ring is enough to shift between regimes. J1
displays large f , high prompt PLQY and low measured 1EST, and
it is highly efficient in the device, with a maximum EQE of 22%
combining both fluorescent and RISC yield. J2 also has significant
TADF character, but its poor fluorescent character (low f and low
PLQY) lowers both the prompt and delayed yield, affording a lower
maximum EQE of around 12%. L1 shows high PLQY and large f ,
suggesting efficient prompt fluorescence, but the larger1EST results
in lower efficiency in RISC.

Conclusions
We have performed an integrated computation-driven search
targeting novel TADF OLED emitters. The discovery process
has explored over a million candidates by combining hundreds
of thousands of quantum simulations, machine learning, and
domain expertise from synthetic chemists, device scientists and
industry partners, and ultimately the experimental realization of
lead candidates. Excellent predictive power has resulted in the report
of devices with over 22%EQE. Nearly one thousand of the identified
molecules across the visible spectrum are expected to match or
surpass this performance. Detailed predictions for untested leading
candidates from the batches A–N are reported in section 2 of
the Supplementary Information. Our large data set thoroughly
charts the intrinsic limitations of TADF emitters, suggesting that
computational exploration of chemical space can be leveraged not
only to single out promising new molecules, but also to reveal
fundamental chemical insight.

In addition to the present realization in the area of TADF
emitters, it must be stressed that this approach to molecular
discovery and optimization is more universal. Its modular and
collaborative nature make it applicable both in the area of organic
electronics and beyond, to fields such as catalysis, high-performance
materials, or polymers, where predictive theory, state-of-the-art
computer science and accumulated chemical intuition can be
combined to expedite discovery.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Quantum chemistry.Molecular libraries were enumerated using the RDKit
cheminformatics package31. Initial 3D conformations were generated at the
force-field level (MMFF94) using a random distance-matrix approach as
implemented in RDKit49. Ground-state geometries were re-optimized using
PBE/6-31(d) and then refined at the B3LYP/6-31(d) level. Excited-state calculations
were carried out with TD-DFT/B3LYP/6-31(d) using both the Tamm–Dancoff
approximation (TDA) and the random phase approximation (RPA). Molecules
were screened using the lowest energy force-field conformation, and for the more
promising candidates the search was expanded to other conformers. In this case,
the Boltzmann averages of DFT properties are reported. Candidate molecules were
first assessed using ground-state geometries to estimate both f and1EST, and thus
kTADF. Promising leads were further filtered based on1EST using equilibrium
geometries on the T1 surface. Ground-state DFT calculations were performed on
CPUs with Q-Chem v4.1.250 and GPUs with Terachem v1.551. TD-DFT
calculations were performed using Q-Chem v4.1.2. The average total run time for
each molecule through the computational tree was 39 core-hours and the grand
total of CPU time for the entire HTVS project is around 13 million core-hours.

Chemical synthesis. The procedures followed for the chemical synthesis and
characterization of novel compounds is reported in section 1.1 of the
Supplementary Information.

Optical and redox characterization. The ultraviolet–visible (UV–Vis) absorption
and solution photoluminescence (PL) emission spectra of materials were obtained
from dilute toluene solution (1× 10−5 M), while the solid PL spectra were obtained
from thin films prepared by vacuum evaporation. UV–Vis spectra were obtained by
means of a Varian model UV–Vis–NIR spectrophotometer 5000 and the
fluorescence spectra were measured on a HITACHI F7000 spectrometer for the
experiments in solution. Thin films of compounds F1, J1, J2 and L1 doped at
10 vol% in bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO) with a
thickness of 70 nm were prepared by thermal evaporation on quartz substrates. We
performed optical measurements on those samples through the substrate using a
microscope set-up with a λ=405 nm pulsed 31.25 kHz excitation laser (PicoQuant
LDH) focused to an approximately 10 µm spot size. Time-resolved PL
measurements were taken using an avalanche photodiode single-photon detector
(PicoQuant PDM). We used a 450 nm longpass filter to block excitation light.
Prompt and delayed lifetimes were then obtained from exponential fits. Triplet
energy values of the TADF materials were obtained from the photoluminescence
spectra at 77K using liquid nitrogen. PL quantum yields in solution were
determined with a Hamamatsu absolute PL quantum yield spectrometer C11347
(Quantaurus-QY). Energy levels were measured by using cyclic voltammetry (CV).
Each material was dissolved in anhydrous dichloromethane with 0.1M
tetrabutylammonium hexafluorophosphate as the electrolyte to measure the

oxidation from which the HOMO energy level was estimated. A glassy carbon
electrode used as the working electrode, a platinum wire used as a counter
electrode, and saturated Ag/AgCl was used a reference electrode. Ferrocene was
used as the standard reference. All solutions were purged with nitrogen for 10min
before each experiment.

OLED devices. ITO substrates from Luminescence Technology were cleaned by
sonicating them in diluted detergent (Micro-90), DI water, acetone and isopropyl
alcohol. Subsequently they were boiled in isopropyl alcohol and treated under
oxygen plasma for 6min. The OLED devices with an active area of 1.6mm2 for
testing the molecules J1 and J3 are composed of the following thin films: indium tin
oxide (ITO, 160 nm), 4,4′-cyclohexylidenebis[N ,N -bis(4-methylphenyl)
benzenamine] (TAPC, 150 nm), 10% emissive molecules doped in DPEPO
(30 nm), DPEPO (5 nm), 1,3,5-tris(3-pyridyl-3-phenyl)benzene (TmPyPb, 45 nm),
lithium fluoride (LiF, 1 nm) and aluminium (Al, 100 nm). The organic thin films
were deposited on cleaned ITO substrates in a vacuum chamber by thermal
evaporation at a base pressure below∼10−7 torr, at rates below 0.1 nm s−1. LiF and
aluminium were deposited in the same thermal evaporator at base pressures below
∼10−7 torr, at rates below 0.2 nm s−1. The devices were encapsulated using a cover
glass and epoxy in a nitrogen glovebox, where the oxygen and moisture levels were
kept below 1 ppm. We obtained the voltage, current and electroluminescence data
using a precision semiconductor parameter analyzer (4156C, Agilent) and a silicon
photodetector (FDS1010, Thorlabs). The OLED was placed directly on top of the
photodetector without any intervening optics and the area of the detector is
considerably larger than the active area of the device. Consequently, the measured
quantum yields are independent of the angular emission of each OLED and the
measurement does not require any correction for wide-angle light not collected by
the detector. The electroluminescence spectrum of the device was recorded using a
spectrometer (SP2300, Princeton Instruments).

Code availability.With the exception of the open source toolkit for
cheminformatics RDKit (http://www.rdkit.org), the computer code used in this
work is proprietary. The Terachem (http://www.petachem.com) and QChem
(http://www.q-chem.com) packages are commercially available.
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