
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums

Alex Beatson 1 Ryan P. Adams 1

Abstract
We consider optimization problems in which the
objective requires an inner loop with many steps
or is the limit of a sequence of increasingly costly
approximations. Meta-learning, training recurrent
neural networks, and optimization of the solu-
tions to differential equations are all examples
of optimization problems with this character. In
such problems, it can be expensive to compute
the objective function value and its gradient, but
truncating the loop or using less accurate approxi-
mations can induce biases that damage the overall
solution. We propose randomized telescope (RT)
gradient estimators, which represent the objec-
tive as the sum of a telescoping series and sample
linear combinations of terms to provide cheap un-
biased gradient estimates. We identify conditions
under which RT estimators achieve optimization
convergence rates independent of the length of
the loop or the required accuracy of the approxi-
mation. We also derive a method for tuning RT
estimators online to maximize a lower bound on
the expected decrease in loss per unit of computa-
tion. We evaluate our adaptive RT estimators on a
range of applications including meta-optimization
of learning rates, variational inference of ODE pa-
rameters, and training an LSTM to model long
sequences.

1. Introduction
Many important optimization problems consist of objective
functions that can only be computed iteratively or as the
limit of an approximation. Machine learning and scientific
computing provide many important examples. In meta-
learning, evaluation of the objective typically requires the
training of a model, a case of bi-level optimization. When
training a model on sequential data or to make decisions

1Department of Computer Science, Princeton University,
Princeton, NJ, USA. Correspondence to: Alex Beatson <abeat-
son@cs.princeton.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

over time, each learning step requires looping over time
steps. More broadly, in many scientific and engineering
applications one wishes to optimize an objective that is
defined as the limit of a sequence of approximations with
both fidelity and computational cost increasing according
to a natural number n ≥ 1. Inner-loop examples include:
integration by Monte Carlo or quadrature with n evaluation
points; solving ordinary differential equations (ODEs) with
an Euler or Runge Kutta method with n steps andO(1

n) step
size; and solving partial differential equations (PDEs) with
a finite element basis with size or order increasing with n.

Whether the task is fitting parameters to data, identifying
the parameters of a natural system, or optimizing the design
of a mechanical part, in this work we seek to more rapidly
solve problems in which the objective function demands
a tradeoff between computational cost and accuracy. We
formalize this by considering parameters θ ∈ RD and a loss
function L(θ) that is the uniform limit of a sequence Ln(θ):

min
θ
L(θ) = min

θ
lim
n→H

Ln(θ) . (1)

Some problems may involve a finite horizon H , in
other cases H =∞. We also introduce a cost func-
tion C : N+ → R that is nondecreasing in n to represent the
cost of computing Ln and its gradient.

A principal challenge of optimization problems with the
form in Eq. 1 is selecting a finite N such that the minimum
of the surrogate LN is close to that of L, but without LN (or
its gradients) being too expensive. Choosing a large N can
be computationally prohibitive, while choosing a small N
may bias optimization. Meta-optimizing learning rates with
truncated horizons can choose wrong hyperparameters by
orders of magnitude (Wu et al., 2018). Truncating backpro-
pogation through time for recurrent neural networks (RNNs)
favors short term dependencies (Tallec & Ollivier, 2017).
Using too coarse a discretization to solve an ODE or PDE
can cause error in the solution and bias outer-loop optimiza-
tion. These optimization problems thus experience a sharp
trade-off between efficient computation and bias.

We propose randomized telescope (RT) gradient estimators,
which provide cheap unbiased gradient estimates to allow
efficient optimization of these objectives. RT estimators
represent the objective or its gradients as a telescoping se-
ries of differences between intermediate values, and draw

Efficient Optimization of Loops and Limits

weighted samples from this series to maintain unbiasedness
while balancing variance and expected computation.

The paper proceeds as follows. Section 2 introduces RT esti-
mators and their history. Section 3 formalizes RT estimators
for optimization, and discusses related work in optimization.
Section 4 discusses conditions for finite variance and compu-
tation, and proves RT estimators can achieve optimization
guarantees for loops and limits. Section 5 discusses de-
signing RT estimators by maximizing a bound on expected
improvement per unit of computation. Section 6 describes
practical considerations for adapting RT estimators online.
Section 7 presents experimental results. Section 8 discusses
limitations and future work. Appendix A presents algorithm
pseudocode. Appendix B presents proofs. Code may be
found at https://github.com/PrincetonLIPS/
randomized_telescopes.

2. Unbiased randomized truncation
In this section, we discuss the general problem of estimating
limits through randomized truncation. The first subsection
presents the randomized telescope family of unbiased esti-
mators, while the second subsection describes their history
(dating back to von Neumann and Ulam). In the following
sections, we will describe how this technique can be used
to provide cheap unbiased gradient estimates and accelerate
optimization for many problems.

2.1. Randomized telescope estimators

Consider estimating any quantity YH := limn→H Yn
for n ∈ N+ where H ∈ N+ ∪ {∞}. Assume that we can
compute Yn for any finite n ∈ N+, but since the cost is
nondecreasing in n there is a point at which this becomes
impractical. Rather than truncating at a fixed value short
of the limit, we may find it useful to construct an unbiased
estimator of YH and take on some randomness in return for
reduced computational cost.

Define the backward difference ∆n and represent the quan-
tity of interest YH with a telescoping series:

YH =

H∑
n=1

∆n where ∆n =

{
Yn − Yn−1 n > 1

Y1 n = 1
.

We may sample from this telescoping series to provide unbi-
ased estimates of YH , introducing variance to our estimator
in exchange for reducing expected computation. We use
the name randomized telescope (RT) to refer to the fam-
ily of estimators indexed by a distribution q over the inte-
gers 1, . . . ,H (for example, a geometric distribution) and a
weight function W (n,N):

ŶH =

N∑
n=1

∆nW (n,N) N ∈ {1, . . . ,H} ∼ q . (2)

Proposition 2.1. Unbiasedness of RT estimators. The RT
estimators in (2) are unbiased estimators of YH as long as

EN∼q[W (n,N)1{N ≥ n}]=
H∑

N=n

W (n,N)q(N)=1, ∀n .

See Appendix B for a short proof. Although we are coining
the term “randomized telescope” to refer to the family of
estimators with the form of Eq. 2, the underlying trick has a
long history, discussed in the next section. The literature we
are aware of focusses on one or both of two special cases of
Eq. 2, defined by choice of weight function W (n,N). We
will also focus on these two variants of RT estimators, but
we observe that there is a larger family.

Most related work uses the “Russian roulette” estimator
originally discovered and named by von Neumann and Ulam
(Kahn, 1955), which we term RT-RR and has the form

W (n,N) =
1

1−
∑n−1
n′=1 q(n

′)
1{N ≥ n} . (3)

It can be seen as summing the iterates ∆n while flipping a
biased coin at each iterate. With probability q(n), the series
is truncated at term N = n. With probability 1− q(n),
the process continues, and all future terms are upweighted
by 1

1−q(n) to maintain unbiasedness.

The other important special case of Eq. 2 is the “single sam-
ple” estimator RT-SS, referred to as “single term weighted
truncation” in Lyne et al. (2015). RT-SS takes

W (n,N) =
1

q(N)
1{n = N} . (4)

This is directly importance sampling the differences ∆n.

We will later prove conditions under which RT-SS and RT-
RR should be preferred. Of all estimators in the form
of Eq. 2 which obey proposition 2.1 and for all q, RT-
SS minimizes the variance across worst-case diagonal co-
variances Cov(∆i,∆j). Within the same family, RT-RR
achieves minimum variance when ∆i and ∆j are indepen-
dent for all i, j.

2.2. A brief history of unbiased randomized truncation

The essential trick—unbiased estimation of a quantity via
randomized truncation of a series—dates back to unpub-
lished work from John von Neumann and Stanislaw Ulam.
They are credited for using it to develop a Monte Carlo
method for matrix inversion in Forsythe & Leibler (1950),
and for a method for particle diffusion in Kahn (1955).

It has been applied and rediscovered in a number of fields
and applications. The early work from von Neumann and
Ulam led to its use in computational physics, in neutron

Efficient Optimization of Loops and Limits

transport problems (Spanier & Gelbard, 1969), for studying
lattice fermions (Kuti, 1982), and to estimate functional
integrals (Wagner, 1987). In computer graphics Arvo & Kirk
(1990) introduced its use for ray tracing; it is now widely
used in rendering software. In statistical estimation, it has
been used for estimation of derivatives (Rychlik, 1990),
unbiased kernel density estimation (Rychlik, 1995), doubly-
intractable Bayesian posterior distributions (Girolami et al.,
2013; Lyne et al., 2015; Wei & Murray, 2016), and unbiased
Markov chain Monte Carlo (Jacob et al., 2017).

The underlying trick has been rediscovered by Fearnhead
et al. (2008) for unbiased estimation in particle filtering,
by McLeish (2010) for debiasing Monte Carlo estimates,
by Rhee & Glynn (2012; 2015) for unbiased estimation in
stochastic differential equations, and by Tallec & Ollivier
(2017) to debias truncated backpropagation. The latter also
uses RT estimators for optimization; however, it only con-
siders fixed “Russian roulette”-style randomized telescope
estimators and does not consider convergence rates or how
to adapt the estimator online (our main contributions).

3. Optimizing loops and limits
In this paper, we consider optimizing functions defined
as limits. Consider a problem where, given parame-
ters θ we can obtain a series of approximate losses Ln(θ),
which converges uniformly to some limit limn→H Ln := L,
for n ∈ N+ and H ∈ N+ ∪ {∞}. We assume the sequence
of gradients with respect to θ, denoted Gn(θ) := ∇θLn(θ)
converge uniformly to a limit G(θ). Under this uni-
form convergence and assuming convergence of Ln, we
have limn→H ∇θLn(θ) = ∇θ limn→H Ln(θ) (see Theo-
rem 7.17 in Rudin et al. (1976)), and so G(θ) is indeed
the gradient of our objective L(θ). We assume there is
a computational cost C(n) associated with evaluating Ln
or Gn, nondecreasing with n, and we wish to efficiently
minimize L with respect to θ. Loops are an important spe-
cial case of this framework, where Ln is the final output
resulting from running e.g., a training loop or RNN for some
number of steps increasing in n.

3.1. Randomized telescopes for optimization

We propose using randomized telescopes as a stochastic
gradient estimator for such optimization problems. We aim
to accelerate optimization much as mini-batch stochastic
gradient descent accelerates optimization for large datasets:
using Monte Carlo sampling to decrease the expected cost
of each optimization step, at the price of increasing variance
in the gradient estimates, without introducing bias.

Consider the gradient G(θ) = limn→H Gn(θ), and
the backward difference ∆n(θ) = Gn(θ)−Gn−1(θ),
where G0(θ) = 0, so that G(θ) =

∑H
n=1 ∆n(θ). We use

the randomized telescope estimator

Ĝ(θ) =

N∑
n=1

∆n(θ)W (n,N) (5)

where N ∈ {1, 2, . . . ,H} is drawn according to a proposal
distribution q, and together W and q satisfy proposition 2.1.

Note that due to linearity of differentiation, and let-
ting L0(θ) := 0, we have

N∑
n=1

∆n(θ)W (n,N) = ∇θ
N∑
n=1

(Ln(θ)−Ln−1(θ))W (n,N) .

Thus, when the computation of Ln(θ) can reuse most of
the computation performed for Ln−1(θ), we can evalu-
ate ĜN (θ) via forward or backward automatic differentia-
tion with cost approximately equal to computing GN (θ),
i.e., ĜN (θ) has computation cost ≈ C(N). This most
often occurs when evaluating Ln(θ) involves an inner
loop with a step size which does not change with n,
e.g., meta-learning and training RNNs, but not solv-
ing ODEs or PDEs. When computing Ln(θ) does not
reuse computation evaluating ĜN (θ) has computation
cost

∑N
n=1 C(n)1{W (n,N) 6= 0}.

3.2. Related work in optimization

Gradient-based bilevel optimization has seen extensive work
in literature. See Jameson (1988) for an early example of op-
timizing implicit functions, Christianson (1998) for a math-
ematical treatment, and Maclaurin et al. (2015); Franceschi
et al. (2017) for recent treatments in machine learning. Sha-
ban et al. (2018) propose truncating only the backward pass
by only backpropagating through the final few optimization
steps to reduce memory requirements. Metz et al. (2018)
propose linearly increasing the number of inner steps over
the course of the outer optimization.

An important case of bi-level optimization is optimization
of architectures and hyperparameters. Truncation causes
bias, as shown by Wu et al. (2018) for learning rates and by
Metz et al. (2018) for neural optimizers.

Bi-level optimization is also used for meta-learning across
related tasks (Schmidhuber, 1987; Bengio et al., 1992). Ravi
& Larochelle (2016) train an initialization and optimizer,
and Finn et al. (2017) only an initialization, to minimize val-
idation loss. The latter paper shows increasing performance
with the number of steps used in the inner optimization.
However, in practice the number of inner loop steps must
be kept small to allow training over many tasks.

Bi-level optimization can be accelerated by amortization.
Variational inference can be seen as bi-level optimization;
variational autoencoders (Kingma & Welling, 2014) amor-
tize the inner optimization with a predictive model of the

Efficient Optimization of Loops and Limits

solution to the inner objective. Recent work such as Brock
et al. (2018); Lorraine & Duvenaud (2018) amortizes hyper-
parameter optimization in a similar fashion.

However, amortizing the inner loop induces bias. Cremer
et al. (2018) demonstrate this in VAEs, while Kim et al.
(2018) show that in VAEs, combining amortization with
truncation by taking several gradient steps on the output
of the encoder can reduce this bias. This shows these tech-
niques are orthogonal to our contributions: while fully amor-
tizing the inner optimization causes bias, predictive models
of the limit can accelerate convergence of Ln to L.

Our work is also related to work on training sequence mod-
els. Tallec & Ollivier (2017) use the Russian roulette estima-
tor to debias truncated backpropagation through time. They
use a fixed geometrically decaying q(N), and show that this
improves validation loss for Penn Treebank. They do not
consider efficiency of optimization, or methods to automat-
ically set or adapt the hyperparameters of the randomized
telescope. Trinh et al. (2018) learn long term dependencies
with auxiliary losses. Other work accelerates optimization
of sequence models by replacing recurrent models with
models which use convolution or attention (Vaswani et al.,
2017), which can be trained more efficiently.

4. Convergence rates with fixed RT estimators
Before considering more complex large-scale problems,
we examine the simple RT estimator for stochastic gra-
dient descent on convex problems. We assume that
the sequence Ln(θ) and units for C are chosen such
that C(n) = n. We study RT-SS, with q(N) fixed a priori.
We consider optimizing parameters θ ∈ K, where K ⊂ Rd
is a bounded, convex and compact set with diameter
bounded by D. We assume L(θ) is convex in θ, and Gn(θ)
converge according to ||∆n||2 ≤ ψn, where ψn converges
polynomially or geometrically. The quantity of inter-
est is the instantaneous regret, Rt = L(θt)−minθ L(θ),
where θt is the parameter after t steps of SGD.

In this setting, any fixed truncation scheme using LN
as a surrogate for L, with fixed N < H , cannot
achieve limt→∞Rt = 0. Meanwhile, the fully unrolled
estimator has computational cost which scales with H . In
the many situations where H →∞, it is impossible to take
even a single gradient step with this estimator.

The randomized telescope estimator overcomes these draw-
backs by exploiting the fact that Gn converges according
to ||∆n||2 ≤ ψn. As long as q is chosen to have tails no
lighter than ψn, for sufficiently fast convergence, the re-
sulting RT-SS gradient estimator achieves asymptotic regret
bounds invariant to H in terms of convergence rate.

All proofs are deferred to Appendix B. We begin by prov-

ing bounds on the variance and expected computation for
polynomially decaying q(N) and ψn.
Theorem 4.1. Bounded variance and compute with
polynomial convergence of ψ. Assume ψ con-
verges according to ψn ≤ c/np or faster, for con-
stants p > 0 and c > 0. Choose the RT-SS estimator
with q(N) ∝ 1/(Np+1/2). The resulting estimator Ĝ

achieves expected compute C ≤ (Hp−1/2
H)2, where HiH is

the Hth generalized harmonic number of order i, and
expected squared norm E[||Ĝ||22] ≤ c2ψ(Hp−1/2

H)2 := G̃2.

The limit limH→∞Hp−
1/2

H is finite iff p > 3/2, in
which case it is given by the Riemannian zeta func-
tion, limH→∞Hp−

1/2
H = ζ(p− 1/2). Accordingly, the es-

timator achieves horizon-agnostic variance and expected
compute bounds iff p > 3/2.

The corresponding bounds for geometrically decaying q(N)
and ψn follow.
Theorem 4.2. Bounded variance and compute with geo-
metric convergence of ψ. Assume ψn converges accord-
ing to ψn ≤ cpn, or faster, for 0 < p < 1. Choose RT-SS
and with q(N) ∝ pN . The resulting estimator Ĝ achieves
expected compute C ≤ (1− p)−2 and expected squared
norm ||Ĝ||22 ≤ c

(1−p)2 := G̃2. Thus, the estimator achieves
horizon-agnostic variance and expected compute bounds
for all 0 < p < 1.

Given a setting and estimator Ĝ from either 4.1 or 4.2,
with corresponding expected compute cost C and upper
bound on expected squared norm G̃2, the following theorem
considers regret guarantees when using this estimator to
perform stochastic gradient descent.
Theorem 4.3. Asymptotic regret bounds for optimizing
infinite-horizon programs. Assume the setting from 4.1
or 4.2, and the corresponding C and G̃ from those theorems.
Let Rt be the instantaneous regret at the tth step of opti-
mization, Rt = L(θt)−minθ L(θ). Let t(B) be the great-
est t such that a computational budget B is not exceeded.
Use online gradient descent with step size ηt = D√

tE[||Ĝ||22]
.

As B →∞, the asymptotic instantaneous regret is bounded

by Rt(B) ≤ O(G̃D
√

C
B), independent of H .

Theorem 4.3 indicates that if Gn converges sufficiently fast
and Ln is convex, the RT estimator provably optimizes the
limit.

5. Adaptive RT estimators
In practice, the estimator considered in the previous sec-
tion may have high variance. This section develops an
objective for designing such estimators, and derives closed-
form W (n,N) and q which maximize this objective given
estimates of E[||∆i||22] and assumptions on Cov(∆i,∆j).

Efficient Optimization of Loops and Limits

5.1. Choosing between unbiased estimators

We propose choosing an estimator which achieves the best
lower bound on the expected improvement per compute
unit spent, given smoothness assumptions on the loss. Our
analysis builds on that of Balles et al. (2016): they adap-
tively choose a batch size using batch covariance informa-
tion, while we choose between between arbitrary unbiased
gradient estimators using knowledge of those estimators’
expected squared norms and computation cost.

Here we assume that the true gradient of the objec-
tive ∇θ[L(θ)] := ∇θ (for compactness of notation) is
smooth in θ. We do not assume convexity. Note that ∇θ
is not necessarily equal to G(θ), as the loss L(θ) and its
gradient G(θ) may be random variables due to sampling of
data and/or latent variables.

We assume that L is L-smooth (the gradients of L(θ)
are L-Lipschitz), i.e., there exists a constant L > 0 such
that ∇θb−∇θa≤L||θb−θa||2 ∀θa, θb ∈ Rd. It follows
(Balles et al., 2016; Bottou et al., 2018) that, when perform-
ing SGD with an unbiased stochastic gradient estimator Ĝt,

E[LH(θt)− LH(θt+1)]

≥ E[ηt∇TθtĜt(θt)]− E[
Lη2

t

2
||Ĝt(θt)||22] . (6)

Unbiasedness of Ĝ implies E[∇TθtĜt(θt)] = ||∇Tθt ||
2
2, thus:

E[LH(θt)− LH(θt+1)]

≥ E[ηt||∇θ||22]− E[
Lη2

t

2
||Ĝt(θt)||22] := J . (7)

Above, J is a lower bound on the expected improvement in
the loss from one optimization step. Given a fixed choice
of Ĝt(θt), how should one pick the learning rate ηt to max-
imize J and what is the corresponding lower bound on
expected improvement?

Optimizing ηt by finding η?t s.t. dJ/dη?t = 0 yields

η?t =
||∇θ||22

LE[||Ĝt(θt)||22]
∝ 1

E[||Ĝt(θt)||22]
(8)

J? =
||∇θ||4

2LE[||Ĝt(θt)||22]
∝ 1

E[||Ĝt(θt)||22]
. (9)

This tells us how to choose ηt if we know L, ||Ĝ||22, etc. In
practice, it is unlikely that we know L or even ||∇θt ||2. We
instead assume we have access to some “reference” learning
rate η̄t, which has been optimized for use with a “reference”
gradient estimator Ḡt, with known E[||Ḡt||22]. When using
RT estimators, we may have access to learning rates which
have been optimized for use with the un-truncated estimator.
Even when we do not know an optimal reference learning

rate, this construction means we need only tune one hyper-
parameter (the reference learning rate), and can still choose
between a family of gradient estimators online. Instead of
directly maximizing J , we choose ηt for Ĝ by maximizing
improvement relative to the reference estimator in terms
of J , the lower bound on expected improvement.

Assume that η̄t has been set optimally for a problem and
reference estimator Ḡ up to some constant k, i.e.,

η̄t = k
||∇θt ||22

LE[||Ḡt(θt)||22]
. (10)

Then the expected improvement J̄ obtained by the reference
estimator Ḡ is:

J̄ = (k − k2

2
)

||∇θt ||4

2LE[||Ḡt(θt)||22]
(11)

We assume that 0 < k < 2, such that J̄ is positive and the
reference has guaranteed expected improvement. Now set
the learning rate according to

ηt = η̄t
E[||Ĝt||22]

E[||Ḡt||22]
. (12)

It follows that the expected improvement Ĵ obtained by the
estimator Ĝ is

Ĵ =
E[||Ḡt(θt)||22]

E[||Ĝt(θt)||22]
J̄ (13)

Let the expected computation cost of evaluating Ĝ be Ĉ.
We want to maximize Ĵ/Ĉ. If we use the above method
to choose ηt, we have Ĵ/Ĉ ∝

(
ĈE||Ĝt(θt)||22

)−1
. We

call
(
ĈE||Ĝt(θt)||22

)−1
the relative optimization efficiency,

or ROE. We decide between gradient estimators Ĝ by choos-
ing the one which maximizes the ROE. Once an estimator
is chosen, one should choose a learning rate according to
(12) relative to a reference learning rate η̄ and estimator Ḡ.

5.2. Optimal weighted sampling for RT estimators

Now that we have an objective, we can consider designing
RT estimators which optimize the ROE. For the classes
of single sample and Russian roulette estimators, we prove
conditions under which that class maximizes the ROE across
an arbitrary choice of RT estimators. We also derive closed-
form expressions for the optimal sampling distribution q for
each class, under the conditions where that class is optimal.

We assume that computation can be reused and
evaluating ĜH =

∑N
n=1 ∆nW (n,N) has computation

cost C(N). As described in Section 3.1, this
is approximately true for many objectives. When
it is not, the cost of computing

∑N
n=1 ∆nW (n,N)

is
∑N
n=1 C(n)1{(W (n,N) 6= 0) or (W (n+ 1, N) 6= 0)}.

This would penalize the ROE of dense W (n,N) and favor

Efficient Optimization of Loops and Limits

sparse W (n,N), possibly impacting the optimality con-
ditions for RT-RR. We mitigate this inaccuracy by subse-
quence selection (described in the following subsection),
which allows construction of sparse sampling strategies.

We begin by showing the RT-SS estimator is optimal with
regards to worst-case diagonal covariances Cov(∆i,∆j),
and deriving the optimal q(N).

Theorem 5.1. Optimality of RT-SS under adversarial cor-
relation. Consider the family of estimators presented
in Equation 2. Assume θ, ∇θ, and G are univari-
ate. For any fixed sampling distribution q, the single-
sample RT estimator RT-SS minimizes the worst-case
variance of Ĝ across an adversarial choice of covari-
ances Cov(∆i,∆j) ≤

√
Var(∆i)

√
Var(∆j).

Theorem 5.2. Optimal q under adversarial correlation.
Consider the family of estimators presented in Equation 2.
Assume Cov(∆i,∆i) and Cov(∆i,∆j) are diagonal. The

RT-SS estimator with qn ∝
√

E[||∆n||22
C(n) maximizes the ROE

across an adversarial choice of diagonal covariance matri-
ces Cov(∆i,∆j)kk ≤

√
Cov(∆i,∆i)kkCov(∆j ,∆j)kk.

We next show the RT-RR estimator is optimal
when Cov(∆i,∆i) is diagonal and ∆i and ∆j are
independent for j 6= i, and derive the optimal q(N).

Theorem 5.3. Optimality of RT-RR under independence.
Consider the family of estimators presented in Eq. 2. Assume
the ∆j are univariate. When the ∆j are uncorrelated, for
any importance sampling distribution q, the Russian roulette
estimator achieves the minimum variance in this family and
thus maximizes the optimization efficiency lower bound.

Theorem 5.4. Optimal q under independence. Consider
the family of estimators presented in Equation 2. As-
sume Cov(∆i,∆i) is diagonal and ∆i and ∆j are indepen-

dent. The RT-RR estimator with Q(i) ∝
√

E[||∆i||22
C(i)−C(i−1)],

where Q(i) = Pr(n ≥ i) =
∑H
j=i q(j), maximizes the

ROE.

5.3. Subsequence selection

The scheme for designing RT estimators given in the previ-
ous subsection contains assumptions which will often not
hold in practice. To partially alleviate these concerns, we
can design the sequence of iterates over which we apply the
RT estimator to maximize the ROE.

Some sequences may result in more efficient estimators,
depending on how the intermediate iterates Gn correlate
with G. The variance of the estimator, and the ROE, will
be reduced if we choose a sequence Ln such that Gn is
positively correlated with G for all n.

We begin with a reference sequence L̄i, Ḡi, with cost
function C̄, where i, j ∈ N and i, j ≤ H̄ , and where Ḡi

has cost c̄i. We assume knowledge of E[||Ḡi−Ḡj ||22].
We aim to find a subsequence S ∈ S, where S is
the set of subsequences over the integers 1, . . . , H̄
which have final element S−1 = H̄ . Given S, we
take Ln = L̄Sn

, Gn = ḠSn
, C(n) = C̄(Sn), H = |S|,

and ∆n = Gn −Gn−1, where G0 := 0.

In practice, we greedily construct S by adding indexes i
to the sequence [H̄] or removing indexes i from the se-
quence [1, . . . , H̄]. As this step requires minimal computa-
tion, we perform both greedy adding and greedy removal
and return the S with the best ROE. The minimal subse-
quence S = [H̄] is always considered, allowing RT estima-
tors to fall back on the original full-horizon estimator.

6. Practical implementation
6.1. Tuning the estimator

We estimate the expected squared distances E[||Ḡi− Ḡj ||22]
by maintaining exponential moving averages. We keep track
of the computational budget B used so far by the RT es-
timator, and “tune” the estimator every KC̄(H̄) units of
computation, where C̄(H̄) is the compute required to eval-
uate ḠH̄ , and K is a “tuning frequency” hyperparameter.
During tuning, the gradients Gi are computed, the squared
norms ||Ḡi− Ḡj ||22 are computed, and the exponential mov-
ing averages are updated. At the end of tuning, the estimator
is updated using the expected squared norms; i.e. a subse-
quence is selected, q is set according to section 5.2 with
choice of RT-RR or RT-SS left as a hyperparameter, and the
learning rate is adapted according to section 5.1

6.2. Controlling sequence length

Tuning and subsequence selection require computation.
Consider using RT to optimize an objective with an inner
loop of size M . If we let Ḡi be the gradient of the loss
after i inner steps, we must maintain M2 −M exponential
moving averages E||Ḡi − Ḡj ||22, and compute M gradients
Ḡi each time we tune the estimator. The computational cost
of the tuning step under this scheme is O(M2). This is
unacceptable if we wish our method to scale well with the
size of loops we might wish to optimize.

To circumvent this, we choose base subsequences such
that C̄i ∝ 2i. This ensures that H̄ = O(log2M), where M
is the maximum number of steps we wish to unroll. We must
maintain O(log2

2M) exponential moving averages. Com-
puting the gradients Ḡi during each tuning step requires
compute Ctune =

∑H̄
i=1 k ∗ 2i. Noting that C̄H̄ = k ∗ 2H̄

and that
∑N
i=1 2i < 2N+1∀N yields Ctune < 2C̄H̄ = 2M .

Efficient Optimization of Loops and Limits

7. Experiments
For all experiments, we tune learning rates for
the full-horizon un-truncated estimator via grid
search over all a× 10−b, for a ∈ {1.0, 2.2, 5.5}
and b ∈ {0.0, 1.0, 2.0, 3.0, 5.0}. The same learning
rates are used for the truncated estimators and (as reference
learning rates) for the RT estimators. We do not decay the
learning rate. Experiments are run with the random seeds
0, 1, 2, 3, 4 and we plot means and standard deviation.

We use the same hyperparameters for our online tuning
procedure for all experiments: the tuning frequency K is
set to 5, and the exponential moving average weight α is set
to 0.9. These hyperparameters were not extensively tuned.
For each problem, we compare deterministic, RT-SS, and
RT-RR estimators, each with a range of truncations.

7.1. Lotka-Volterra ODE

We first experiment with variational inference of parameters
of a Lotka-Volterra (LV) ODE. LV ODEs are defined by the
predator-prey equations, where u2 and u1 are predator and
prey populations, respectively:

du1

dt
= Au1 −Bu1u2

du2

dt
= Cu1u2 −Du2

We aim to infer the parameters λ = [u1(t = 0), u2(t =
0), A,B,C,D]. The true parameters are drawn from
U([1.0, 0.4, 0.8, 0.4, 1.5, 0.4], [1.5, 0.6, 1.2, 0.6, 2.0, 0.6]),
chosen empirically to ensure stability solving the equations.
We generate ground-truth data by solving the equations
using RK4 (a common 4th-order Runge Kutta method)
from t = 0 to t = 5 with 10000 steps. The learner is given
access to five equally spaced noisy observations y(t),
generated according to y(t) = u(t) +N (0, 0.1).

We place a diagonal Gaussian prior on θ with the same
mean and standard deviation as the data-generating distribu-
tion. The variational posterior is a diagonal Gaussian q(λ)
with mean µ and standard deviation σ. The parameters
optimized are θ = [µ̃, σ̃]. We let µ = g(µ̃) and σ = g(σ̃),
where g(x̃) = log(1 + ex̃), to ensure positivity. We use a
reflecting boundary to ensure positivity of parameter sam-
ples from q. The variational posterior is initialized to have
mean equal to the prior and standard deviation 0.1.

The loss considered is the negative evidence lower bound
(negative ELBO). The ELBO is:

ELBO(q(θ))=Eq(θ)
∑
t

log p(y(t)|uθ(t))+DKL

(
q(θ)||p(θ)

)
Above, uθ(t) is the value of the solution uθ to the LV ODE
with parameters θ, evaluated at time t. We consider a se-
quence Ln(θ), where in computing the ELBO, uθ(t) is
approximated by solving the ODE using RK4 with 2n + 1
steps, and linearly interpolating the solution to the 5 observa-
tion times. The outer-loop optimization is performed with a

N
eg

at
iv

e
E

L
B

O

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Untruncated, H = 9
Untruncated, H = 6
Untruncated, H = 4
RT-SS, H=9
RT-SS, H=6
RT-SS, H=4
RT-RR, H=9
RT-RR, H=6
RT-RR, H=4

Gradient evaluations (thousands)

Figure 1. Lotka-Volterra parameter inference

batch size of 64 (i.e., 64 samples of θ are performed at each
step) and a learning rate of 0.01. Evaluation is performed
with a batch size of 512.

Figure 7.1 shows the loss of the different estimators over
the course of training. RT-SS estimators outperform the
un-truncated estimator without inducing bias. They are
competitive with the truncation H = 6, while avoiding the
bias present with the truncation H = 4, at the cost of some
variance. Some RT-RR estimators experience issues with
optimization, appearing to obtain the same biased solution
as the H = 4 truncation.

7.2. MNIST learning rate

We next experiment with meta-optimization of a learning
rate on MNIST. We largely follow the procedure used by
Wu et al. (2018). We use a feedforward network with two
hidden layers of 100 units, with weights initialized from a
Gaussian with standard deviation 0.1, and biases initialized
to zero. Optimization is performed with a batch size of 100.

The neural network is trained by SGD with momentum us-
ing Polyak averaging, with the momentum parameter fixed
to 0.9. We aim to learn a learning rate η0 and decay λ for the
inner-loop optimization. These are initialized to 0.01 and 0.1
respectively. The learning rate for the inner optimization at
an inner optimization step t is ηt = η0(1 + t

5000)−λ.

As in Wu et al. (2018), we pre-train the net for 50 steps with
a learning rate of 0.1. Ln is the evaluation loss after 2n + 1
training steps with a batch size of 100. The evaluation loss
is measured over 2n + 1 validation batches or the entire
validation set, whichever is smaller. The outer optimization
is performed with a learning rate of 0.01.

RT-SS estimators achieve faster convergence than fixed-
truncation estimators. RT-RR estimators suffer from very
poor convergence. Truncated estimators appear to obtain
biased solutions. The un-truncated estimator achieves a
slightly better loss than the RT estimators, but takes signifi-
cantly longer to converge.

Efficient Optimization of Loops and Limits
E

va
lu

at
io

n
lo

ss

0 500 1000 1500 2000

0.12

0.14

0.16

0.18

0.20
Untruncated, H = 9
Untruncated, H = 7
Untruncated, H = 5
RT-SS, H=9
RT-SS, H=7
RT-SS, H=5
RT-RR, H=9
RT-RR, H=7
RT-RR, H=5

Neural network evaluations (thousands)

Figure 2. MNIST learning rate meta-optimization

7.3. enwik8 LSTM

Finally, we study a high-dimensional optimization problem:
training an LSTM to model sequences on enwik8. These
data are the first 100M bytes of a Wikipedia XML dump.
There are 205 unique tokens. We use the first 90M, 5M, and
5M characters as the training, evaluation, and test sets.

We build on code1 from Merity et al. (2017; 2018). We train
an LSTM with 1000 hidden units and 400-dimensional input
and output embeddings. The model has 5.9M parameters.
The only regularization is an `2 penalty on the weights
with magnitude 10−6. The optimization is performed with
a learning rate of 2.2. This model is not state-of-the-art:
our aim to investigate performance of RT estimators for
optimizing high-dimensional neural networks, rather than
to maximize performance at a language modeling task.

We choose Ln to be the mean cross-entropy after unrolling
the LSTM training for 2n−1 + 1 steps. We choose the hori-
zon H = 9, such that the un-truncated loop has 257 steps,
chosen to be close to the 200-length training sequences used
by Merity et al. (2018).

Figure 7.3 shows the training bits-per-character (propor-
tional to the training cross-entropy loss). RT estimators
provide some acceleration over the un-truncated H = 9 esti-
mator early in training, but after about 200k cell evaluations,
fall back on the un-truncated estimator, subsequently pro-
gressing slightly more slowly due to computational cost of
tuning. We conjecture that the diagonal covariance assump-
tion in Section 5 is unsuited to high-dimensional problems,
and leads to overly conservative estimators.

8. Limitations and future work
Other optimizers. We develop the lower bound on ex-
pected improvement for SGD. Important future directions
would investigate adaptive and momentum-based SGD
methods such as Adam (Kingma & Ba, 2014).

Tuning step. Our method includes a tuning step which

1http://github.com/salesforce/awd-lstm-lm

Tr
ai

ni
ng

bi
ts

-p
er

-c
ha

ra
ct

er

0 500 1000 1500 2000 2500 3000 3500 4000

1.6

1.8

2.0

2.2

2.4
Untruncated, H = 9
Untruncated, H = 7
Untruncated, H = 5
Untruncated, H = 3
RT-SS, H=9
RT-SS, H=7
RT-SS, H=5
RT-SS, H=3
RT-RR, H=9
RT-RR, H=7
RT-RR, H=5
RT-RR, H=3

LSTM cell evaluations (thousands)

Figure 3. LSTM training on enwik8

requires computation. It might be possible to remove this
tuning step by estimating covariance structure online using
just the values of Ĝ observed during each optimization step.

RT estimators beyond RT-SS and RT-RR. There is a rich
family defined by choices of q and W (n,N). The optimal
member depends on covariance structure between the Gi.
We explore RT-SS and RT-RR under strict covariance as-
sumptions. Relaxing these assumptions and optimizing q
and W across a wider family could improve adaptive esti-
mator performance for high-dimensional problems such as
training RNNs.

Predictive models of the sequence limit. Using any se-
quence Gn with RT yields an unbiased estimator as long
as the sequence is consistent, i.e. its limit G is the true
gradient. Combining randomized telescopes with predictive
models of the gradients (Jaderberg et al., 2017; Weber et al.,
2019) might yield a fast-converging sequence, leading to
estimators with low computation and variance.

9. Conclusion
We investigated the use of randomly truncated unbiased
gradient estimators for optimizing objectives which involve
loops and limits. We proved these estimators can achieve
horizon-independent convergence rates for optimizing loops
and limits. We derived adaptive variants which can be tuned
online to maximize a lower bound on expected improvement
per unit computation. Experimental results matched theo-
retical intuitions that the single sample estimator is more
robust than Russian roulette for optimization. The adaptive
RT-SS estimator often significantly accelerates optimization,
and can otherwise fall back on the un-truncated estimator.

10. Acknowledgements
We would like to thank Matthew Johnson, Peter Orbanz,
and James Saunderson for helpful discussions. This work
was funded by the Alfred P. Sloan Foundation and NSF
IIS-1421780.

Efficient Optimization of Loops and Limits

References
Arvo, J. and Kirk, D. Particle transport and image synthe-

sis. ACM SIGGRAPH Computer Graphics, 24(4):63–66,
1990.

Balles, L., Romero, J., and Hennig, P. Coupling adaptive
batch sizes with learning rates. In Uncertainty in Artificial
Intelligence, 2016.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. On the
optimization of a synaptic learning rule. In Conference on
Optimality in Artificial and Biological Neural Networks,
1992.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Brock, A., Lim, T., Ritchie, J., and Weston, N. SMASH:
One-shot model architecture search through hypernet-
works. In International Conference on Learning Repre-
sentations, 2018.

Christianson, B. Reverse accumulation and implicit func-
tions. Optimization Methods and Software, 9(4):307–322,
1998.

Cremer, C., Li, X., and Duvenaud, D. Inference sub-
optimality in variational autoencoders. arXiv preprint
arXiv:1801.03558, 2018.

Fearnhead, P., Papaspiliopoulos, O., and Roberts, G. O.
Particle filters for partially observed diffusions. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(4):755–777, 2008.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, 2017.

Forsythe, G. E. and Leibler, R. A. Matrix inversion by a
Monte Carlo method. Mathematics of Computation, 4
(31):127–129, 1950.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, 2017.

Girolami, M., Lyne, A.-M., Strathmann, H., Simpson, D.,
and Atchade, Y. Playing Russian roulette with intractable
likelihoods. Technical report, Citeseer, 2013.

Jacob, P. E., O’Leary, J., and Atchadé, Y. F. Unbiased
Markov chain Monte Carlo with couplings. arXiv preprint
arXiv:1708.03625, 2017.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O.,
Graves, A., Silver, D., and Kavukcuoglu, K. Decoupled
neural interfaces using synthetic gradients. In Interna-
tional Conference on Machine Learning, pp. 1627–1635.
JMLR. org, 2017.

Jameson, A. Aerodynamic design via control theory. Jour-
nal of Scientific Computing, 3(3):233–260, 1988.

Kahn, H. Use of different Monte Carlo sampling techniques.
1955.

Kim, Y., Wiseman, S., Miller, A. C., Sontag, D., and Rush,
A. M. Semi-amortized variational autoencoders. In Inter-
national conference on Machine Learning, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kuti, J. Stochastic method for the numerical study of lattice
fermions. Physical Review Letters, 49(3):183, 1982.

Lorraine, J. and Duvenaud, D. Stochastic hyperparame-
ter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419, 2018.

Lyne, A.-M., Girolami, M., Atchadé, Y., Strathmann, H.,
Simpson, D., et al. On Russian roulette estimates for
Bayesian inference with doubly-intractable likelihoods.
Statistical science, 30(4):443–467, 2015.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing, pp. 2113–2122, 2015.

McLeish, D. A general method for debiasing a Monte Carlo
estimator. Monte Carlo Methods and Applications, 2010.

Merity, S., Keskar, N. S., and Socher, R. Regularizing
and optimizing LSTM language models. arXiv preprint
arXiv:1708.02182, 2017.

Merity, S., Keskar, N. S., and Socher, R. An analysis of neu-
ral language modeling at multiple scales. arXiv preprint
arXiv:1803.08240, 2018.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, C. D.,
and Sohl-Dickstein, J. Learned optimizers that outper-
form SGD on wall-clock and validation loss. arXiv
preprint arXiv:1810.10180, 2018.

Ravi, S. and Larochelle, H. Optimization as a model for few-
shot learning. In International Conference on Learning
Representations, 2016.

Efficient Optimization of Loops and Limits

Rhee, C.-h. and Glynn, P. W. A new approach to unbiased
estimation for SDEs. In Proceedings of the Winter Simula-
tion Conference, pp. 17. Winter Simulation Conference,
2012.

Rhee, C.-h. and Glynn, P. W. Unbiased estimation with
square root convergence for SDE models. Operations
Research, 63(5):1026–1043, 2015.

Rudin, W. et al. Principles of Mathematical Analysis, vol-
ume 3. McGraw-hill New York, 1976.

Rychlik, T. Unbiased nonparametric estimation of the
derivative of the mean. Statistics & probability letters, 10
(4):329–333, 1990.

Rychlik, T. A class of unbiased kernel estimates of a proba-
bility density function. Applicationes Mathematicae, 22
(4):485–497, 1995.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. Trun-
cated back-propagation for bilevel optimization. arXiv
preprint arXiv:1810.10667, 2018.

Spanier, J. and Gelbard, E. M. Monte Carlo Principles and
Neutron Transport Problems. Addison-Wesley Publishing
Company, 1969.

Tallec, C. and Ollivier, Y. Unbiasing truncated backpropa-
gation through time. arXiv preprint arXiv:1705.08209,
2017.

Trinh, T. H., Dai, A. M., Luong, T., and Le, Q. V. Learning
longer-term dependencies in RNNs with auxiliary losses.
arXiv preprint arXiv:1803.00144, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Neural Information Processing
Systems, pp. 5998–6008, 2017.

Wagner, W. Unbiased Monte Carlo evaluation of certain
functional integrals. Journal of Computational Physics,
71(1):21–33, 1987.

Weber, T., Heess, N., Buesing, L., and Silver, D. Credit
assignment techniques in stochastic computation graphs.
arXiv preprint arXiv:1901.01761, 2019.

Wei, C. and Murray, I. Markov chain truncation for doubly-
intractable inference. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2016.

Wu, Y., Ren, M., Liao, R., and Grosse., R. Understanding
short-horizon bias in stochastic meta-optimization. In
International Conference on Learning Representations,
2018.

